Geometriai transzformációk:
          Def: a geometriai transzformációk olyan függvények, 
          amelyek értelmezési tartománya,
          és értékkészlete is ponthalmaz. ÉT 
          elemei a tárgypontok, ÉK elemei a képpontok
          Egymás utáni transzformációk elvégezhetõk. 
          A sorrendet kell egyértelmûen megadni.
          Egy geometriai transzformáció FIXPONTJA: az olyan pont, 
          melynek képe önmaga.
        Egybevágósági transzformációk: 
          Bármely 2 pont távolsága egyenlõ a képük 
          távolságával
          Tulajdonságaik: 
          -Bármely szakasz képe az eredetivel azonos hosszúságú 
          szakasz - TÁVOLSÁGTARTÓ
          -Szög képe ugyanolyan nagyságú szög - 
          SZÖGTARTÓ
          -Egyenes képe egyenes - EGYENESTARTÓ
          Tipusai:
          Megadási mód:
          - Tengelyes tükrözés t tengely
          - Középpontos tükrözés O középpont
          - Pont körüli elforgatás O, alfa ( ),alfa iránya
          - Eltolás v vektor
        Alakzatok egybevágósága:
          Def: 2 alakzat egybevágó ha létezik olyan egybevágósági
          transzformázcó, amellyel az egyik alakzatot a másikba 
          vihetjük át.
          2 háromszög egybevágó ha: - oldalaik hossza 
          páronként megegyezik
          - 2-2 oldaluk hossza páronként egyenlõ, és 
          az ezek által bezárt szög is egyenlõ 
          - 1-1 oldaluk hossza és a rajtuk levõ 2 szögük 
          páronként egyenlõ
          - 2-2 oldaluk hossza és a nagyobbikkal szemközti szögek 
          egyenlõk
          2 sokszög egybevágó, ha: 
          - megfelelõ oldalaik hossza egyenlõ és a megfelelõ 
          szögeik is egyenlõk
          - megfelelõ oldalaik hossza egyenlõ, és a megfelelõ 
          átlók hossza is egyenlõ
          Alakzatok szimmetriája:
          Egy síkbeli alakzat tengelyesen szimmetrikus, ha létezik
          olyan tengely a síkban amelyre történõ tükrözéskor 
          az alakzat képe önmaga.
          Egy alakzat középpontosan szimmetrikus, ha létezik 
          olyan pont,
          amelyre történõ tükrözésnél 
          az alakzat képe önmaga.
          Egy alakzat síkszimmetrikus, ha létezik olyan sík, 
          
          amelyre vonatkozó tükrözésnél az alakzat 
          képe önmaga.
        Hasonlósági transzformációk:
          Középpontos hasonlóság: Adott a középpontos 
          hasonlósági
          transzformáció o kp.-ja és egy szám.
          A kp. Képe önmaga (fixpont). Ha egy P pont nem illeszkedik 
          a kp.-ra,
          akkor a P pont képe az O pontból kiinduló vektor 
          P' végponja. 
          Ha = 1-minden pont fixpont, ha = -1-középpontos tükrözés.
          1. Egyenes képe egyenes: ha O e akkor a képe önmaga
          ha O e akkor a képe olyan egyenes amely párhuzamos az 
          eredetivel
          2. Szög képe azonos nagyságú szög
          3. Bármely szakasz képének, és az eredeti 
          szakasz aránya állandó
          Hasonlósági tr. És tulajdonságai:
          Olyan geometriai transzformáció, amely kp-os hasonlóság 
          és
          egybevágósági transzformáció egymás 
          utáni elvégzésével jön létre.
          Tulajdonságai: 1. egyenes képe egyenes, 2. szög képe 
          azonos nagyságú szög,
          3. A arányú hasonlósági tr. Bármely 
          szakasz hosszát -szorosára változtatja.
          /Aránytartó/