data=read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/00194/sensor_readings_2.data",header=FALSE) pairs( data[1:2], bg=c("red", "green", "blue", "yellow")[data[[3]]], pch=21, cex=0.75 ) selected <- sample(1:nrow(data), 0.5 * nrow(data)) summary(data) library(nnet) net=nnet(V3 ~ ., data, subset=selected, size=10,maxit=25) result=predict(net, data[selected, 1:2], type="class") tab=table(data[["V3"]][selected], result) print(tab) cat("accuracy on training set: ",100*sum(diag(tab))/sum(tab),"%\n",sep="") result2=predict(net, data[-selected, 1:2], type="class") tab2=table(data[["V3"]][-selected], result2) print(tab2) cat("accuracy on test set: ",100*sum(diag(tab2))/sum(tab2),"%\n",sep="")