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THE FIRST LINK

Introduction

FEBRUARY 7, 2000, SHOULD HAVE BEEN a big day for Yahoo. Instead of
the few million customers that daily flock to the Internet search engine,
billions tried to enter the site. Such exploding popularity should have
turned the company into the most valuable asset of the new economy.
There was a problem, however. They all arrived at the exact same time
and not one of them asked for a stock quote or a pecan pie recipe.
Rather, they all sent, in scripted computer language, the message “Yes, |
heard you!” Yahoo, as far as it could tell, had said nothing. Neverthe-
less, hundreds of computers in Yahoo'’s Santa Clara, California, head-
quarters were kept busy responding to these screaming ghosts, while
millions of legitimate customers, who wanted a movie title or an airline
ticket, waited. I was one of them. Naturally I had no idea that Yahoo
was frantically busy serving ten billion ghosts. I was patient for about
three minutes before [ moved to a more responsive search engine. The
next day the royals of the Web, Amazon.com, eBay, CNN.com, ETrade,
and Excite, fell under the same spell: They too were obliged to serve
billions of ghosts making the same fruitless inquiry that had handi-
capped Yahoo. True consumers, with shiny credit cards ready for pur-
chases, were forced to wait on the sidelines.

Of course, getting billions of real computer users to type
“Yahoo.com” into their browser at precisely 10:20 Pacific Standard

Time is impossible. There are simply not enough computers around.
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Early news reports construed the shutdown of the leading e-commerce
sites to be the work of a group of sophisticated hackers. The consensus
was that these renegade geeks, fascinated by the challenge of outsmart-
ing sophisticated security systems, had hijacked hundreds of computers
in schools, research labs, and businesses and turned them into zombies,
telling Yahoo thousands of times, “Yes, I heard you.” Every second, huge
amounts of data were thrown at this prominent Website, much more
than it could ever handle. The massive denial-of-service attack Yahoo
was experiencing set off a much-publicized international hunt for the
hackers responsible.

Surprisingly, the high-profile operation of the Federal Bureau of
Investigation did not lead to the much-anticipated cyberterrorist organ-
ization. Instead, the FBI arrived at the suburban home of a Canadian
teenager. Investigators eavesdropping on an Internet chat room over-
heard the teen soliciting suggestions for new targets to attack. He was
caught bragging.

Hiding behind the pseudonym MafiaBoy, this fifteen-year-old suc-
cessfully halted the operations of billion-dollar companies with access
to the best computer security experts in the world. Was he a contempo-
rary David who, armed with the humblest of home computer slingshots,
beat the mega-Goliaths of the information age? In hindsight, experts
agree on one thing: The attacks were not the work of a genius. They
were executed using tools available to anybody on various hacker Web-
sites. MafiaBoy’s online antics revealed him to be a rank amateur,
whose sloppy trail led the police right to his parents’ door. In fact, his
actions were more reminiscent of a Goliath than David: Lacking the
know-how to penetrate any of the sites he attacked and clumsy and
slow on his feet, he only managed to take down easy targets, obviously
vulnerable computers from universities and small companies, which he
simply instructed to bombard Yahoo with messages.

One can imagine a fifteen-year-old boy behind his bedroom door,
in the glow of his computer, finding sweet satisfaction in the protracted
“Yes, 1 heard you!” hurled at Yahoo. He must have screamed that phrase
himself a million times when Mom or Dad called him to come to din-
ner or take out the trash. The attack succeeded with brute force, a lot of
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nerve, and little sophistication. But this is exactly what makes us won-
der, how could this teenager’s actions take out the largest corporations
of the new economy? If a mere youth can wreak havoe on the Internet,
what could a small group of trained and skilled professionals achieve?
How vulnerable are we to such attacks?

1.

The early Christians were nothing more than a renegade Jewish sect.
Regarded as eccentric and problematic, they were persecuted by both
Jewish and Roman authorities. There is no historical evidence that
their spiritual leader, Jesus of Nazareth, ever intended to have an im-
pact beyond Judaism. His ideas were difficult and controversial enough
for Jews, and reaching the gentiles seemed particularly hopeless. As a
starter, those non-Jews who wanted to follow in his footsteps had to un-
dergo circumcision, had to obey the laws of contemporary Judaism, and
were excluded from the Temple—the spiritual center of early Jewish
Christianity. Very few walked the path. Indeed, reaching them with the
message was almost impossible. In a fragmented and earthbound society
news and ideas traveled by foot, and the distances were long. Christian-
ity, like many other religious movements in human history, seemed
doomed to oblivion. Despite the odds, close to two billion people call
themselves Christian today. How did that happen? How did the un-
orthodox beliefs of a small and disdained Jewish sect come to form the
basis of the Western world’s dominant religion?

Many credit the triumph of Christianity to the message offered by
the historical figure we know today as Jesus of Nazareth. Today, market-
ing experts would describe his message as “sticky”—it resonated and
was passed down by generations while other religious movements fizzled
and died. But credit for the success of Christianity in fact goes to an or-
thodox and pious Jew who never met Jesus. While his Hebrew name
was Saul, he is better known to us by his Roman name, Paul. Paul’s life
mission was to curb Christianity. He traveled from community to com-
munity persecuting Christians because they put Jesus, condemned by
the authorities as a blasphemer, on the same level as God. He used
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scourging, ban, and excommunication to uphold the traditions and to
force the deviants to adhere to Jewish law. Nevertheless, according to
historical accounts, this fierce persecutor of Christians underwent a
sudden conversion in the year 34 and became the fiercest supporter of
the new faith, making it possible for a small Jewish sect to become the
dominant religion in the Western world for the next 2,000 years.

How did Paul’s efforts succeed? He understood that for Christianity
to spread beyond Judaism, the high barriers to becoming a Christian
had to be abolished. Circumcision and the strict food laws had to be re-
laxed. He took his message to the original disciples of Jesus in Jerusalem
and received the mandate to continue evangelization without demand-
ing circumcision.

But Paul understood that this was not enough: The message had to
spread. So he used his firsthand knowledge of the social network of the
first century’s civilized world from Rome to Jerusalem to reach and con-
vert as many people as he could. He walked nearly 10,000 miles in the
next twelve years of his life. He did not wander randomly, however; he
reached out to the biggest communities of his era, to the people and
places in which the faith could germinate and spread most effectively.
He was the first and by far the most effective salesperson of Christian-
ity, using theology and social networks equally effectively. So should he,
or Jesus, or the message be credited for Christianity’s success? Could it

happen again’

2.

There are huge differences between MafiaBoy and Paul: MafiaBoy’s
was an act of destruction. Paul, despite his initial intentions, became
a bridge builder between early Christian communities. But the two
have something important in common: Both were masters of the net-
work. Though neither of them thought about it in these terms, the
key to their success was the existence of a complex network that of-
fered an effective medium for their actions. MafiaBoy operated on a
network of computers—the Internet is the fastest and most effective
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way to reach the largest number of people at the turn of the third mil-
lennium. Paul was a master of first-century social and religious links,
the only network at the beginning of the modern era that could carry
and spread a faith. Neither of them fully grasped the forces that aided
them in their actions. But nearly 2,000 years after Paul we are making
the first inroads toward understanding what made Paul and MafiaBoy
successful. We now know that the answer lies as much in the struc-
ture and topology of the networks on which they operated as in their
ability to navigate them.

Paul and MafiaBoy succeeded because we are all connected. Our bi-
ological existence, social world, economy, and religious traditions tell a
compelling story of interrelatedness. As the great Argentinean author
Jorge Luis Borges put it, “everything touches everything.”

3.

“There be dragons there!” wrote the ancient mapmakers, marking off
the frightening unknown. As adventurous explorers penetrated every
region of the globe, these monster-marked patches gradually disap-
peared. But there are still lots of dragon-infested areas in our mental
map of how the different parts of the world fit together, from the mi-
croscopic universe locked within a cell to the unbounded world of the
Internet. The good news is that recently scientists have been learning
to map our interconnectivity. Their maps are shedding new light on
our weblike universe, offering surprises and challenges that could not
even be imagined a few years ago. Detailed maps of the Internet have
unmasked the Internet’s vulnerability to hackers. Maps of companies
connected by trade or ownership have traced the trail of power and
money in Silicon Valley. Maps of interactions between species in
ecosystems have offered glimpses of humanity’s destructive impact on
the environment. Maps of genes working together in a cell have pro-
vided insights into how cancer works. But the real surprise has come
from placing these maps side by side. Just as diverse humans share
skeletons that are almost indistinguishable, we have learned that these
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diverse maps follow a common blueprint. A string of recent breath-
taking discoveries has forced us to acknowledge that amazingly simple
and far-reaching natural laws govern the structure and evolution of

all the complex networks that surround us.

4.

Have you ever seen a child take apart a favorite toy? Did you then see
the little one cry after realizing he could not put all the pieces back to-
gether again? Well, here is a secret that never makes the headlines: We
have taken apart the universe and have no idea how to put it back to-
gether. After spending trillions of research dollars to disassemble nature
in the last century, we are just now acknowledging that we have no clue
how to continue—except to take it apart further.

Reductionism was the driving force behind much of the twentieth
century’s scientific research. To comprehend nature, it tells us, we first
must decipher its components. The assumption is that once we under-
stand the parts, it will be easy to grasp the whole. Divide and conquer;
the devil is in the details. Therefore, for decades we have been forced to
see the world through its constituents. We have been trained to study
atoms and superstrings to understand the universe; molecules to com-
prehend life; individual genes to understand complex human behavior;
prophets to see the origins of fads and religions.

Now we are close to knowing just about everything there is to
know about the pieces. But we are as far as we have ever been from
understanding nature as a whole. Indeed, the reassembly turned out
to be much harder than scientists anticipated. The reason is simple:
Riding reductionism, we run into the hard wall of complexity. We
have learned that nature is not a well-designed puzzle with only one
way to put it back together. In complex systems the components can
fit in so many different ways that it would take billions of years for us
to try them all. Yet nature assembles the pieces with a grace and pre-
cision honed over millions of years. It does so by exploiting the all-
encompassing laws of self-organization, whose roots are still largely a

mystery to us.
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Today we increasingly recognize that nothing happens in isola-
tion. Most events and phenomena are connected, caused by, and in-
teracting with a huge number of other pieces of a complex universal
puzzle. We have come to see that we live in a small world, where
everything is linked to everything else. We are witnessing a revolu-
tion in the making as scientists from all different disciplines discover
that complexity has a strict architecture. We have come to grasp the
importance of networks.

With the Internet dominating our life, the word network is on
everybody’s lips these days, featured in company names and popular
journal titles. After September 11, witnessing the deadly power of ter-
rorist networks, we had to get used to yet another meaning of the
term. Very few people realize, however, that the rapidly unfolding sci-
ence of networks is uncovering phenomena that are far more exciting
and revealing than the casual use of the word network could ever con-
vey. Some of these discoveries are so fresh that many of the key results
still circulate as unpublished papers within the scientific community.
They open up a novel perspective on the interconnected world
around us, indicating that networks will dominate the new century to
a much greater degree than most people are yet ready to acknowledge.
They will drive the fundamental questions that form our view of the
world in the coming era.

This book has a simple aim: to get you to think networks. It is
about how networks emerge, what they look like, and how they evolve.
It shows you a Web-based view of nature, society, and business, a new
framework for understanding issues ranging from democracy on the
Web to the vulnerability of the Internet and the spread of deadly
viruses.

Networks are present everywhere. All we need is an eye for them.
As you move from link to link within this book, you will learn to see
society as a complex social network and to grasp the smallness of this
great world in which we live. You will come to understand how and
why Paul succeeded and how, despite some obvious differences, his so-
cial milieu was similar to the one we experience today. You will see the
challenges doctors face when they attempt to cure a disease by focusing
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on a single molecule or gene, disregarding the complex interconnected-
ness of living matter. You will be reminded that MafiaBoy is not alone in
attacking networks. You will come to appreciate how the Internet, often
viewed as entirely human in its creation, has become more akin to an
organism or an ecosystem, demonstrating the power of the basic laws
that govern all networks. You will see how the emergence of terrorism is
also ruled by the laws of network formation and how these deadly webs
take advantage of the fundamental robustness of nature’s webs. You'll
wonder at the amazing similarities among such diverse systems as the
economy, the cell, and the Internet, using one to grasp the other. This
will be an eye-opening trip across disciplines that I hope will challenge
you to step out of the box of reductionism and explore, link by link, the
next scientific revolution: the new science of networks.



THE SECOND LINK

The Random Universe

ON SEPTEMBER 18, 1783, IN ST. PETERSBURG Leonhard Euler started
the day as usual. He gave a mathematics lesson to one of his grandchil-
dren and took up some calculations on the flight of balloons. Just three
months earlier, south of Lyon, the Montgolfier brothers had launched
an enormous balloon that rose 6,500 feet into the air and landed safely
about a mile away. Euler was working out the mechanics of the bal-
loon’s motion as the Montgolfier brothers were preparing to launch a
sheep into the air in front of King Louis XVI in Paris, a flight that took
place the next day, on September 19. Euler never heard about the
event, however. After lunch, working with his assistants, he made some
calculations on the orbit of the recently discovered planet Uranus. The
equations introduced by him, capturing the planet’s peculiar orbit,
would lead decades later to the discovery of the planet Pluto. Euler did
not live to witness that discovery either. About five o’clock in the after-
noon, he suffered a brain hemorrhage and uttered, “I am dying,” before
losing consciousness. He died that evening, ending the most prolific ca-
reer in mathematics of all time.

Euler, a Swiss born mathematician who spent his career in Berlin and
St. Petersburg, had an extraordinary influence on all areas of mathematics,
physics, and engineering. Not only was the importance of his discoveries
unparalleled, their sheer quantity is also overwhelming. Opera Omnia, the
still incomplete record of Euler’s collected works, currently runs to over
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seventy-three volumes, six hundred pages each. The last seventeen years
of Euler’s life, between his return to St. Petersburg in 1766 and his death at
the age of 76, were rather tumultuous. Yet, despite many personal
tragedies, about half of his works were written during these years. These
include a 775-page treatise on the motion of the moon, an influential al-
gebra textbook, and a three-volume discussion of integral calculus, com-
pleted while he continued to publish an average of one mathematics pa-
per per week in the journal of the St. Petersburg Academy. The amazing
thing is that he barely wrote or read a single line during this time. Having
partially lost his sight soon after returning to St. Petersburg in 1766, Euler
was left completely blind after a failed cataract operation in 1771. The
thousands of pages of theorems were all dictated from memory.

Three decades earlier, his sight intact, Euler had written a short pa-
per addressing an amusing problem that originated in Kénigsberg, a
town not too far from Euler’s home in St. Petersburg. Kénigsberg, a
flowering city in eastern Prussia, did not suspect in the early eighteenth
century the sad and war-torn fate that awaited it as host for one of the
fiercest battles of the Second World War. Contemporary etchings show
a thriving city on the banks of the Pregel, where a busy fleet of ships
and their trade offered a comfortable life to the local merchants and
their families. The healthy economy allowed city officials to build not
fewer than seven bridges across the river. Most of these connected the
elegant island Kneiphof, which was caught between the two branches
of the Pregel, with other parts of the city. Two additional bridges
crossed the two branches of the river (Figure 2.1). The people of
Konigsberg, enjoying a time of peace and prosperity, amused themselves
with mind puzzles, one of which was: “Can one walk across the seven
bridges and never cross the same one twice?” No one was to find such a
path until a new bridge was built in 1875.

Almost 150 years before the new bridge, in 1736, Euler offered a
rigorous mathematical proof stating that with the seven bridges such a
path does not exist. He not only solved the Kénigsberg problem but in
his brief paper inadvertently started an immense branch of mathemat-
ics known as graph theory. Today graph theory is the basis for our
thinking about networks. During the centuries after Euler it grew into a
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Figure 2.1 Konigsberg Bridges. The layout of Konigsberg before 1875, with
Kneiphof island (A) and the land area D caught between the two branches of the
Pregel River. Solving the Konigsberg problem meant finding a route around the
city that would require a person to cross each bridge only once. In 1736, Leonhard
Euler gave birth to graph theory by replacing each of the four land areas with nodes
(A to D) and each bridge with a link (a to g), obtaining a graph with four nodes
and seven links. He then proved that on the Konigsberg graph, a route crossing each

link only once does not exist.

mature field, to which most great mathematicians contributed. To open
the door on the field of networks, let us briefly revisit the reasoning
process that led Euler to the introduction of the first graph.

1.

Euler’s proof is simple and elegant, easily understood even by those not
trained in mathematics. Nevertheless, it is not the proof that made
history but rather the intermediate step that he took to solve the prob-
lem. Euler’s great insight lay in viewing Kénigsberg’s bridges as a graph,
a collection of nodes connected by links. For this he used nodes to
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represent each of the four land areas separated by the river, distin-
guishing them with letters A, B, C, and D. Next he called the bridges
the links and connected with lines those pieces of land that had a
bridge between them. He thus obtained a graph whose nodes were
pieces of land and links were bridges.

Euler’s proof that in Kénigsberg there is no path crossing all seven
bridges only once was based on a simple observation. Nodes with an odd
number of links must be either the starting or the end point of the journey.
A continuous path that goes through all bridges can have only one start-
ing and one end point. Thus, such a path cannot exist on a graph that has
more than two nodes with an odd number of links. As the Konigsberg
graph had four such nodes, one could not find the desired path.

For our purpose the most important aspect of Euler’s proof is that the
existence of the path does not depend on our ingenuity to find it. Rather,
it is a property of the graph. Given the layout of the Kénigsberg bridges, no
matter how smart we are, we will never succeed at finding the desired
path. The people of Kénigsberg finally agreed with Euler, gave up their
fruitless search, and in 1875 built a new bridge between B and C, increas-
ing the number of links of these two nodes to four. Now only two nodes
(A and D) with an odd number of links remained. It was then rather
straightforward to find the desired path. Perhaps the creation of this path
was the hidden rationale behind building the bridge?

In retrospect, Euler’s unintended message is very simple: Graphs or
networks have properties, hidden in their construction, that limit or
enhance our ability to do things with them. For more than two cen-
turies the layout of Koénigsberg’s graph limited its citizens’ ability to
solve their coffeehouse problem. But a change in the layout, the addi-
tion of only one extra link, suddenly removed this constraint.

In many ways Euler’s result symbolizes an important message of this
book: The construction and structure of graphs or networks is the key
to understanding the complex world around us. Small changes in the
topology, affecting only a few of the nodes or links, can open up hidden
doors, allowing new possibilities to emerge.

Graph theory boomed after Euler with contributions made by
mathematical giants such as Cauchy, Hamilton, Cayley, Kirchhoff, and
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Pélya. They uncovered just about everything that is known about large
but ordered graphs, such as the lattice formed by atoms in a crystal or
the hexagonal lattice made by bees in a beehive. Until the mid-twenti-
eth century the goal of graph theory was simple: It aimed to discover
and catalogue the properties of the various graphs. Famous problems in-
cluded finding a way to escape from a maze or labyrinth, first solved in
1873, or finding a sequence of moves with a knight on a chess board
such that each square is visited only once and the knight returns to its
starting point. Some of the more difficult problems have gone unsolved
for centuries.

Two centuries passed after Euler’s inspiring work before mathemati-
cians moved from studying the properties of various graphs to asking
the quintessential question of how graphs, or, more commonly, net-
works, came about. Indeed, how do real networks form? What are the
laws governing their appearance and structure? These questions, and
the first answer, did not come until the 1950s, when two Hungarian
mathematicians made a revolution in graph theory.

2.

One afternoon in late 1920s Budapest, a seventeen-year-old youth can-
tered with a weird gait through the streets and stopped in front of an
elegant shoe shop that sold custom-made shoes. With his strangely
shaped feet, on which normal shoes would never fit, he could indeed
use a cobbler. But new shoes were not the occasion of this visit. After
knocking on the store’s door—an act that would have seemed just as
odd back then as today—he entered, ignoring the saleswoman at the
counter, and went up to a fourteen-year-old boy in the back of the shop.

“Give me a four digit number,” he said.

“2,532,” came the wide-eyed boy’s reply as he stared at the strange
creature. The older boy did not let him stare too long, however.

“The square of it is 6,441,024,” he continued. “Sorry, I am getting
old and I cannot tell you the cube. How many proofs of the
Pythagorean theorem do you know?”

“One,” replied the youngster.
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“I know thirty-seven,” and without taking a breath he continued.
“Did you know that the points of a straight line do not form a counta-
ble set?” After showing the sharp boy Cantor’s proof as evidence, his
business at the cobbler’s store finished, he said, “I must run,” and so he
did, turning on his heel and galloping out of the store.

Paul Erd&s galloped on to become the presiding genius and most
famous misfit of the twentieth century. He wrote more than 1,500
mathematics papers before his death in 1996. This output, unparalleled
since Euler, contained eight articles published with another Hungarian
mathematician, Alfréd Rényi. These eight papers addressed for the first
time in history the most fundamental question pertaining to our under-
standing of our interconnected universe: How do networks form? Their
solution laid the foundation of the theory of random networks. This el-
egant theory so profoundly determined our thinking about networks
that we are still struggling to break away from its hold.

3.

Organize a party for a hundred guests who have been selected and in-
vited because they do not know a single other person on the guest list.
Offer this group of strangers wine and cheese, and they will immediately
start to chat, as human beings’ inborn desire to meet and know each
other inevitably brings them together. Soon you will see thirty to forty
groups of two or three. Now mention to one guest that the red wine in
the unlabeled dark green bottles is a rare twenty-year-old vintage port,
far better than that with the red label. But ask that guest to share this in-
formation only with his or her new acquaintances. You know that your
expensive port is fairly safe, because your friend has only had time to
meet two or three people in the room. However, guests will inevitably
become bored talking to the same person for too long and move on to
join other groups. An outside observer would not notice anything spe-
cial. Yet there are invisible social links between people who met earlier
but now belong to different groups. As a consequence, subtle paths start
connecting people who are still strangers to each other. For example,
though John has not met Mary yet, they have both met Mike, and so
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Figure 2.2 The Party. At a party with ten guests, none of whom initially knows
one another, social ties form as the guests start chatting in small groups. At first, the
groups are isolated from each other (left panel). Indeed, though there are social links
(shown as continuous lines) between those in the same group, everyone outside of
that group is still a stranger. As time goes on (right panel), three guests move to dif-
ferent groups and a giant cluster emerges. Although not everyone knows everyone
else, there is now a single social network that includes all the guests. By following

the social links, one can now find a path between any two guests.

there is a path from John to Mary through Mike. If John knew about
the wine, chances are that now Mary knows too, since she could hear it
from Mike, who was told by John. As time goes on, the guests will be
increasingly interwoven by such intangible links, creating a fine web of
acquaintances that includes a sizable portion of the guests. The expen-
sive wine is increasingly endangered as its identity is passed from a tiny
group of insiders to more and more chatting groups (Figure 2.2).

Assuming that each person passes on the information to all of her
or his new acquaintances, will the reputation of the fine port reach all
of the guests before the end of the party? To be sure, if all were to get to
know each other, everybody would be pouring the superior wine from
the unlabeled bottle. But even if each encounter took only ten minutes,
meeting all ninety-nine others would take about sixteen hours. Parties
rarely last that long. Thus, you might feel that you could reveal the
identity of the wine to your friend and reasonably hope that some
would be left at the end of the party.
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Paul Erdgs and Alfréd Rényi begged to differ. “A mathematician is
a machine that turns coffee into theorems,” Erd&s used to say, quoting
Rényi. A particularly lucky cup of coffee turned into a much quoted
theorem: If each person gets to know at least one other guest, then soon
everybody will be drinking the reserve port. According to Erdds and
Rényi, it would take only thirty minutes to form a single invisible social
web that includes all guests in the room. Minutes after you hear the rec-
ommendation for the wine, you may find yourself tipping an empty bot-
tle into your expectant glass.

4.

The guests we met at the cocktail party are part of a problem in graph the-
ory, the branch of mathematics pioneered by Euler. The guests are the
nodes, and every encounter creates a social link between them. Thus a
web of acquaintances—a graph—emerges, a bunch of nodes connected by
links. Computers linked by phone lines, molecules in our body linked by
biochemical reactions, companies and consumers linked by trade, nerve
cells connected by axons, islands connected by bridges are all examples of
graphs. Whatever the identity and the nature of the nodes and links, for a
mathematician they form the same animal: a graph or a network.

Despite its elegance, simplifying all webs into graphs poses some
formidable challenges. While society, the Internet, a cell, or the brain
can all be represented by graphs, each is clearly very different from the
others. It is hard to imagine much commonality between human soci-
ety, where we make friends and acquaintances through a combination
of random encounters and conscious decisions, and the cell, where the
unforgiving laws of chemistry and physics govern all reactions between
molecules. There must be a clear difference in the rules that govern the
placement of links in the various networks we encounter in nature.
Finding a model to describe all of these different systems seems, on its
face, an insurmountable challenge.

Yet the ultimate goal of all scientists is to find the simplest possible
explanation for very complex phenomena. Erd6s and Rényi took on this
challenge by proposing an elegant mathematical answer to describe all
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complex graphs within a single framework. Since different systems follow
such disparate rules in building their own networks, ErdSs and Rényi de-
liberately disregarded this diversity and came up with the simplest solution
nature could follow: connect the nodes randomly. They decided that the
simplest way to create a network was to play dice: Choose two nodes and,
if you roll a six, place a link between them. For any other roll of the dice,
do not connect these two nodes but choose a different pair and start
over. Therefore, Erd&s and Rényi viewed graphs and the world they rep-
resented as fundamentally random.

“There is an old debate,” Erd&s liked to say, “about whether you cre-
ate mathematics or just discover it. In other words, are the truths already
there, even if we don’t yet know them?” Erd&s had a clear answer to this
question: Mathematical truths are there among the list of absolute
truths, and we just rediscover them. Random graph theory, so elegant
and simple, seemed to him to belong to the eternal truths. Yet today we
know that random networks played little role in assembling our uni-
verse. Instead, nature resorted to a few fundamental laws, which will be
revealed in the coming chapters. Erd&s himself created mathematical
truths and an alternative view of our world by developing random graph
theory. Not privy to nature’s laws in creating the brain and society, Erd&s
hazarded his best guess in assuming that God enjoys playing dice. His
friend Albert Einstein, at Princeton, was convinced of the opposite:
“God does not play dice with the universe.”

5.

Let’s go back to our cocktail party and the exercise in random graph
theory. You start with a large number of isolated nodes. Then you ran-
domly add links between the nodes, mimicking the random encounters
between the guests. If you add only a few connections, the only conse-
quence of your activity will be that some of the nodes will pair up. If
you continue adding links, you will inevitably connect some of these
pairs to each other, forming clusters of several nodes. But when you add
enough links such that each node has an average of one link, a miracle
happens: A unique giant cluster emerges. That is, most nodes will be -
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part of a single cluster such that, starting from any node, we can get to
any other by navigating along the links between the nodes. This is the
moment when your expensive wine is in danger, since a rumor can
reach everyone who belongs to the giant cluster. Mathematicians call
this phenomenon the emergence of a giant component, one that in-
cludes a large fraction of all nodes. Physicists call it percolation and will
tell you that we just witnessed a phase transition, similar to the mo-
ment in which water freezes. Sociologists would tell you that your sub-
jects had just formed a community. Though different disciplines may
have different terminology, they all agree that when we randomly pick
and connect pairs of nodes together in a network, something special
happens: The network, after placing a critical number of links, drasti-
cally changes. Before, we have a bunch of tiny isolated clusters of
nodes, disparate groups of people that communicate only within the
clusters. After, we have a giant cluster, joined by almost everybody.

6.

Each of us is part of a large cluster, the worldwide social net, from
which no one is left out. We do not know everybody on this globe, but
it is guaranteed that there is a path between any two of us in this web of
people. Likewise, there is a path between any two neurons in our brain,
between any two companies in the world, between any two chemicals
in our body. Nothing is excluded from this highly interconnected web
of life. Paul Erdds and Alfréd Rényi told us why: It requires only one link
per node to stay connected. One acquaintance per person, one link to at
least one other neuron for each neuron in the brain, the ability to
participate in at least one reaction for each chemical in our body, trade
with at least one other company in the business world. One is the
threshold. If nodes have less than one connection on average, then our
network breaks into tiny noncommunicating clusters. If there is more
than one connection per node, that danger becomes remote.

Nature repeatedly and extravagantly exceeds the one-link mini-
mum. Sociologists estimate that we know between 200 and 5,000 people

by name. An average neuron is connected to dozens of others, some to
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thousands. Each company is inevitably linked to hundreds of suppliers
and customers; some of the biggest have links to millions. In our body,
most molecules take part in far more than a single reaction—some, like
water, in hundreds. Thus, real networks not only are connected but are
well beyond the threshold of one. Random network theory tells us that
as the average number of links per node increases beyond the critical
one, the number of nodes left out of the giant cluster decreases exponen-
tially. That is, the more links we add, the harder it is to find a node that
remains isolated. Nature does not take risks by staying close to the
threshold. It well surpasses it. Consequently, the networks around us are
not just webs. They are very dense networks from which nothing can es-
cape and within which every node is navigable. This is why there are no
islands of people completely isolated from society at large and why all
molecules in our body are integrated into a single complex cellular map.
This is why the Apostle Paul’s message reached people he never met and
why MafiaBoy made headlines: Along the links their actions easily af-
fected millions.

7.

Erd8s and Rényi’s discovery of this very special moment when a giant
cluster emerges through a phase or percolation transition was a huge
event in graph theory, but not because it made the unbelievable predic-
tion that only one acquaintance is required to form a society. Rather, it
was largely because, before Erd&s and Rényi, graph theory had not dealt
with cocktail parties, social networks, or random graphs. [t focused al-
most exclusively on regular graphs, which contain no ambiguity about
their structure. But when it comes to such complex systems as the In-
ternet or the cell, regular graphs are the exception rather than the
norm. Erd6s and Rényi acknowledged for the first time that real graphs,
from social networks to phone lines, are not nice and regular. They are
hopelessly complicated. Humbled by their complexity, the two assumed
that these networks are random.

In retrospect, it is not surprising that this unlikely pair of mathe-
maticians were the ones to turn around a respectable field of mathematics
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by injecting randomness into it. Chance and randomness were very
much a part of their lives. Though Rényi was seven years younger than
Erd&s, they knew each other thanks to the friendship between their
parents back in Budapest. By the time they started working together,
after meeting up in Amsterdam in 1948, both had lived through rather
tumultuous times. Subject to the Numerus Clausus laws that limited
the number of Jews admitted to university, Rényi had worked in a
shipyard after high school. After winning a math and Greek competi-
tion, he was allowed to enter the university in 1939. Soon after finishing
his mathematical studies he was called to forced labor, from which he
somehow escaped.

Erd6s and his colleagues, who were familiar with Rényi’s resistance
activities during the war, deeply admired and respected him. Rényi had
boldly disguised himself in the uniform of the Hungarian fascists, Nyilas,
to help his friends escape the concentration camps. According to one
story, Rényi entered the Budapest ghetto dressed as a Nyilas soldier and
managed to escort his parents out. He also lived for years in Nazi-
controlled Budapest using false documents. Only those aware of the re-
alities of the Nazi terror could truly appreciate the courage needed to
perform these acts. Not surprisingly, Rényi’s ability to focus on mathe-
matics was highly constrained until the end of the war, when in 1946
he traveled to Leningrad to continue his studies. There his creativity
exploded. He not only learned and absorbed number theory in record
time, despite his limited Russian language skills, but also proved some
fundamental theorems on one of the notoriously difficult problems of
number theory, the Goldbach conjecture. Thus, when he met ErdSs
two years later in Amsterdam, he was no longer the aspiring young
mathematician and family friend but a well-known scientist with an
international reputation.

ErdSs by then had already developed his trademark traveling-
mathematician lifestyle. He would show up at his colleagues’
doorsteps and proclaim, “My brain is open,” an invitation to join in
his tireless pursuit of mathematical truth. His only permanent job of-
fer came from the University of Notre Dame, in South Bend, Indiana.
Arnold Ross, at that time the chairman of the math department, of-
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fered Erdds a visiting professorship on very generous terms: He could
come and go as he pleased, since he had an assistant who would pick
up the lectures where he left them off.

A Catholic liberal arts college, Notre Dame was not the prominent
university it would become decades later. Nevertheless it offered Erd&s
a quiet and comfortable work environment and the opportunity for fre-
quent discussions with his priest colleagues, which Erd&s, with his
unique perspective on the universe and deity, particularly enjoyed.
Once asked about his time there, he remarked tongue-in-cheek, “There
are too many plus signs,” a reference to the numerous crucifixes about
campus. When Notre Dame eventually offered to turn Erdés’s status
into a permanent one, on the same comfortable terms, Erd&s politely
refused. Perhaps losing the randomness and unpredictability that had
characterized his life was too much for him to fathom.

8.

The Amsterdam meeting between Erd6s and Rényi was the start of a
very close friendship and collaboration that resulted in over thirty joint
publications before Rényi’s early death at the age of forty-nine in 1970.
Among these publications were the eight legendary papers on graph
theory. The first, published more than a decade after the Amsterdam
meeting, addressed for the first time the important questions of how
graphs form. Their use of randomness to tackle graph theory problems
is most evident when we look at how many links nodes have in a graph
or network. Regular graphs are unique in that each node has exactly the
same number of links. Indeed, in a two-dimensional mesh of perpendi-
cular lines forming a simple square lattice each node has exactly four
links, or in a hexagonal lattice of a beehive each node is connected to
exactly three others.

Such regularity is clearly absent from random graphs. The premise
of the random network model is deeply egalitarian: We place the links
completely randomly; thus all nodes have the same chance of getting
one—ijust as in Las Vegas, where supposedly we all have the same
chance of hitting the jackpot. At the end of the day, however, only a
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few of our fellow gamblers walk away richer. Similarly, if we place the
links randomly in a graph, some nodes will get more links than others.
Some might even have bad luck and get nothing for a while. The ran-
dom world of Erd&s and Rényi can be simultaneously unfair and gener-
ous: It can make some poor and others rich. Yet a far-reaching predic-
tion of Erdds and Rényi’s theory tells us that this only appears to be so.
If the network is large, despite the links’ completely random placement,
almost all nodes will have approximately the same number of links.

One way to see this is to interview all guests as they leave the cock-
tail party, asking them how many acquaintances they made. When
everybody leaves, we can draw a histogram by plotting how many of the
guests have one, two, or exactly k new acquaintances. For the random
network model of Erdés and Rényi the shape of the histogram was de-
rived and proved exactly in 1982 by one of Erd&s’s students, Béla Bol-
lobds, professor of mathematics at the University of Memphis in the
United States and Trinity College in the United Kingdom. The result
shows that the histogram follows a Poisson distribution, which has
some unique properties that will follow us throughout this book. A
Poisson distribution has a prominent peak, indicating that the majority
of nodes have the same number of links as the average node does. On
the two sides of the peak the distribution rapidly diminishes, making
significant deviations from the average extremely rare.

Translated back to a society of 6 billion people, a Poisson distribu-
tion tells us that most of us have roughly the same number of friends and
acquaintances. It predicts that it is exponentially rare to find someone
who deviates from the average by having considerably more or fewer
links than the average person. Therefore, random graph theory predicts
that if we assign social links randomly, we end up with an extremely
democratic society, where all of us are average and very few deviate from
the norm to be extremely social or utterly asocial types. We obtain a
network with a very uniform fabric in which the mean is the norm.

Erd&s and Rényi’s random universe is dominated by averages. It pre-
dicts that most people have roughly the same number of acquaintances;
most neurons connect roughly to the same number of other neurons;

most companies trade with roughly the same number of other compa-
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nies; most Websites are visited by roughly the same number of visitors.
As nature blindly throws the links around, in the long run no node is
favored or singled out.

9.

The random network theory of Erdés and Rényi has dominated scien-
tific thinking about networks since its introduction in 1959. It created
several paradigms that are consciously or unconsciously imprinted on
the minds of everyone who deals with networks. It equated complexity
with randomness. If a network was too complex to be captured in
simple terms, it urged us to describe it as random. Sure enough, society,
the cell, communication networks, and the economy are all complex
enough to fit the bill.

You may be thinking that there is something fishy about this ran-
dom universe, in which all nodes are equal. Would I be able to write
this book if the molecules in my body decided to react to each other
randomly? Would there be nations, states, schools, and churches or any
other manifestations of social order if people interacted with each other
completely randomly? Would we have an economy if companies se-
lected their consumers randomly, replacing their salespeople with mil-
lions of dice? Most of us feel that we do not live in such a random
world—that there has to be some order behind these complex systems.

Why, then, would two such unparalleled intellects as Erd&s and
Rényi choose to model the emergence of networks as a completely ran-
dom process? The answer is simple: They never planned to provide a
universal theory of network formation. They were far more intrigued by
the mathematical beauty of random networks than by the model’s abil-
ity to faithfully capture the webs nature created around them. To be
sure, in their seminal 1959 paper they did mention that “the evolution
of graphs may be considered as a rather simplified model of the evolu-
tion of certain communication nets (railway, road or electric network
systems, etc.).” But, despite this brief journey into the real world, their
work in this area was motivated by a deep curiosity about the mathe-
matical depths of the problem rather than by its applications.
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Erdss would be the first to agree with us that real networks must
have organizing principles that distinguish them from the random net-
work model they introduced in 1959. But for him this would be beside
the point. By using the hypothesis of randomness he opened a window
to a new world, whose mathematical beauty and consistency was the
main driving force behind the subsequent work in graph theory.

Until recently we had no alternative for describing our interlinked
universe. Thus random networks came to dominate our ideas on net-
work modeling. Complex real networks were viewed as fundamentally
random.

Erd&s holds the record for suggesting good problems and making
sure that somebody else solved them. Though he never owned more
than a few clothes that fit into a small leather suitcase that he always
traveled with, he often offered monetary rewards for solutions or
proofs to problems that he found interesting—$5 for a problem he
considered simple, $500 for a truly difficult one. And he would happily
pay if the proof was delivered. Never mind that often a $1 problem
turned out to be more difficult than a $500 one. The lucky mathemati-
cians who earned one of his rewards never cashed his checks anyway.
Most of them framed them. The reward was a unique recognition by
the presiding genius of the century; no cash amount could match its
spiritual value.

Let us follow Erdé&s’s example and ask a question he left untouched.
What do real networks look like? Posing a problem in such a sloppy way
would never have satisfied him. It is too broad. It may not even have a
unique answer. And most likely we can never offer a rigorous proof.
Thus it could not possibly be from the Transfinite Book, the ultimate
depository in Erd&s’s world of all good mathematical proofs and theo-
rems. But though the question might not have won his approval, in the
coming chapters, we will see that it makes a huge difference outside the
world of mathematics.



THE THIRD LINK

Six Degrees of Separation

IN 1912, JuST AS ANNA ERDOS DISCOVERED she was pregnant with her
third child, Paul, the streets of Budapest were abuzz with talk about a
new collection of poems and prose by the best Hungarian and interna-
tional writers. The first edition had sold out before the literary critics
could even get to it, and the second printing was also disappearing when
the first serious reviews appeared in newspapers around the country. By
then Anna Erd&s had entered the hospital, given birth to Paul, and gone
home, only to discover that her two older daughters were the victims of
a scarlet fever epidemic that was tearing through Budapest.

Despite the city’s many personal tragedies, enthusiasm for the new
literary phenomenon was unabating. The book’s popularity was rooted
in a minor detail: All the poems and short stories were fake. In Igy irtok
ti, or This Is How You Whrite, Frigyes Karinthy, a twenty-five-year-old
virtually unknown poet and writer, invented what he called literary
caricature. The volume is a collection of poems and short stories that
appear to be written by a who’s who of world literature. If you were fa-
miliar with the authors, you could easily recognize their styles. Each
piece is a cunning parody that, like a distorting mirror, keeps the mim-
icked author recognizable while changing all the proportions.
Karinthy applied his vitriolic and annihilating humor with equal ease
on deceased giants and close friends. And his arrow was often deadly:
The authors he most venomously parodied are known to us only

25
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through his book; their actual works are lost in the unforgiving sink of
literary taste and history.

Igy irtok ti is one of the most read books in Hungarian history. It
made Karinthy an instant celebrity. Never again did he have to wait for
the bus in the bus station—he simply waved to it from wherever he
was, and the drivers, with wide smiles, stopped for him. He wrote most
of the time behind the expansive glass windows of the Central Café in
the heart of Budapest. Passersby often performed a strange dance. As
they walked by the window, they suddenly stopped, turned, and peered
through the window at the working writer, as if he were an exotic
species in a new aquarium.

Almost two decades after Igy irtok ti, in 1929, at about the same time
that the seventeen-year-old Erd&s was lecturing about the Pythagorean
theorem in the shoe store a few streets away from the Central Café,
Karinthy published his forty-sixth book, Minden masképpen van (Every-
thing Is Different), a collection of fifty-two short stories. By now he was
recognized as the genius of Hungarian literature. Everyone, however,
was still waiting for “The Book,” the novel that would define Karinthy
and guarantee his place among literature’s immortals. The critics openly
voiced concern that Karinthy was selling out his unique talent by writing
short stories that drew quick bucks. Karinthy, whose incredibly disor-
dered and chaotic life was spent between coffeehouses and a hectic and
noisy home, failed to deliver the long awaited tome. The short story col-
lection was a critical failure and soon sank into obscurity. It has been out
of print ever since. | have visited most bookstores and antiquaries in Bu-
dapest and cannot find a trace of it. But there is one story, entitled
“Lancszemek,” or “Chains,” that deserves our attention.

“To demonstrate that people on Earth today are much closer than
ever, a member of the group suggested a test. He offered a bet that we
could name any person among earth’s one and a half billion inhabitants
and through at most five acquaintances, one of which he knew personally,
he could link to the chosen one,” writes Karinthy in “Lancszemek.” And
indeed, Karinthy’s fictional character immediately links a Nobel
prizewinner to himself, noting that the Nobelist must know King Gustav,
the Swedish monarch who hands out the Nobel prize, who in turn is a
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consummate tennis player and plays occasionally with a tennis champion
who happens to be a good friend of Karinthy’s character. Remarking that
linking to celebrities is easy, Karinthy’s character demands a more diffi-
cult assignment. Next he tries to link a worker in Ford’s factory to him-
self: “The worker knows the manager in the shop, who knows Ford; Ford
is on friendly terms with the general director of Hearst Publications, who
last year became good friends with Arpad Pisztor, someone I not only
know, but is to the best of my knowledge a good friend of mine—so 1
could easily ask him to send a telegram via the general director telling
Ford that he should talk to the manager and have the worker in the shop
quickly hammer together a car for me, as | happen to need one.” Though
these short stories have been neglected, Karinthy’s 1929 insight that
people are linked by at most five links was the first published appearance
of the concept we know today as “six degrees of separation.”

1.

Six degrees was rediscovered almost three decades later, in 1967, by Stan-
ley Milgram, a Harvard professor who turned the concept into a much cel-
ebrated, groundbreaking study on our interconnectivity. Amazingly, Mil-
gram’s first paper on the subject occasionally reads like an English
translation of Karinthy’s “Lancszemek” rewritten for an audience of sociol-
ogists. Milgram, perhaps the most creative practitioner of experimental
psychology, is best known for a series of highly debated experiments prob-
ing the conflict between obedience to authority and personal conscience.
But his intellect was wide-ranging, and he soon became interested in the
structure of our social network, a topic that was frequently discussed by so-
ciologists at Harvard and MIT during the late sixties.

Milgram’s goal was to find the “distance” between any two people
in the United States. The question driving the experiment was, how
many acquaintances would it take to connect two randomly selected
individuals? To get started, he first chose two target persons, the wife of
a divinity graduate student in Sharon, Massachusetts, and a stock bro-
ker in Boston. He picked Wichita, Kansas, and Omaha, Nebraska, as
starting points for the study because “from Cambridge, these cities seem
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vaguely ‘out there,’ on the Great Plains or somewhere.” There was little
consensus about how many links it would take to connect people from
these remote areas. Milgram himself pointed out in 1969, “Recently I
asked a person of intelligence how many steps he thought it would take,
and he said that it would require 100 intermediate persons, or more, to
move from Nebraska to Sharon.”

Milgram’s experiment entailed sending letters to randomly chosen
residents of Wichita and Omaha asking them to participate in a study
of social contact in American society. The letter contained a short
summary of the study’s purpose, a photograph, and the name and ad-
dress of and other information about one of the target persons, along
with the following four-step instructions:

HOW TO TAKE PART IN THIS STUDY

1. ADD YOUR NAME TO THE ROSTER AT THE BOT-
TOM OF THIS SHEET, so that the next person who re-

ceives this letter will know who it came from.

2. DETACH ONE POSTCARD. FILL IT OUT AND RE-
TURN IT TO HARVARD UNIVERSITY. No stamp is
needed. The postcard is very important. It allows us to keep

track of the progress of the folder as it moves toward the tar-
get person.

3. IF YOU KNOW THE TARGET PERSON ON A PER-
SONAL BASIS, MAIL THIS FOLDER DIRECTLY TO
HIM (HER). Do this only if you have previously met the
target person and know each other on a first name basis.

4. IFYOU DO NOT KNOW THE TARGET PERSON ON A
PERSONAL BASIS, DO NOT TRY TO CONTACT HIM
DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST-
CARDS AND ALL) TO A PERSONAL ACQUAIN-
TANCE WHO IS MORE LIKELY THAN YOU TO
KNOW THE TARGET PERSON. You may send the folder
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to a friend, relative or acquaintance, but it must be someone
you know on a first name basis.

Milgram had a pressing concern: Would any of the letters make it
to the target!? If the number of links was indeed around one hundred, as
his friend guessed, then the experiment would likely fail, since there is
always someone along such a long chain who does not cooperate. It was
therefore a pleasant surprise when within a few days the first letter ar-
rived, passing through only two intermediate links! This would turn out
to be the shortest path ever recorded, but eventually 42 of the 160 let-
ters made it back, some requiring close to a dozen intermediates. These
completed chains allowed Milgram to determine the number of people
required to get the letter to the target. He found that the median num-
ber of intermediate persons was 5.5, a very small number indeed—and
coincidentally, amazingly close to Karinthy's suggestion. Round it up to
6, however, and you get the famous “six degrees of separation.”

As Thomas Blass, a social psychologist who has devoted the last fif-
teen years to in-depth research on the life and work of Stanley Milgram,
pointed out to me, Milgram himself never used the phrase “six degrees of
separation.” John Guare originated the term in his brilliant 1991 play of
that title. After an extremely successful season on Broadway, the play was
made into a movie with the same title. In the play, Ousa (played by
Stockard Channing in the movie), musing about our interconnectedness,
tells her daughter, “Everybody on this planet is separated by only six
other people. Six degrees of separation. Between us and everybody else
on this planet. The president of the United States. A gondolier in
Venice. . . . [t's not just the big names. It's anyone. A native in a rain for-
est. A Tierra del Fuegan. An Eskimo. I am bound to everyone on this
planet by a trail of six people. It’s a profound thought. . . . How every per-
son is a new door opening up into other worlds.”

Milgram’s study was confined to the United States, linking people
“out there” in Wichita and Omaha to “over here” in Boston. For
Guare’s Ousa, however, six degrees applied to the whole world. Thus a
myth was born. Because more people watch movies than read sociology
papers, Guare’s version has prevailed in popular thought.
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Six degrees of separation is intriguing because it suggests that, de-
spite our society’s enormous size, it can easily be navigated by following
social links from one person to another—a network of six billion nodes
in which any pair of nodes are on average six links from each other. Per-
haps we should be surprised that there is a path between any two
people. Yet we saw in the previous chapter that being connected re-
quires very little—barely more than one social link per person. As we
all have many more than one link, each of us is a part of the giant net-
work that we call society.

Stanley Milgram awakened us to the fact that not only are we con-
nected, but we live in a world in which no one is more than a few
handshakes from anyone else. That is, we live in a small world. Our
world is small because society is a very dense web. We have far more
friends than the critical one needed to keep us connected. Yet is six de-
grees something uniquely human, tied somehow to our desire to form
social links? Or do other kinds of networks look the same? Answers to
these questions surfaced only a few years ago. We now know that social
networks are not the only small worlds.

2.

“Suppose all the information stored on computers everywhere were
linked. . . . All the best information in every computer at CERN and
on the planet would be available to me and anyone else. There would
be a single global information space.” This was the dream of Tim
Berners-Lee in 1980 while working as a programmer at the European
Organization for Nuclear Research, commonly known by its French
acronym, CERN, in Geneva, Switzerland. To turn his dream into re-
ality, he wrote a program that allowed computers to share informa-
tion—to link to each other. By inventing the links, Berners-Lee re-
leased a genie whose existence had been unknown to us. In less than
ten years the genie turned into the World Wide Web, one of the
largest ever human-made networks. It is a virtual network whose
nodes are Webpages that have it all: news, movies, gossip, maps, pic-
tures, recipes, biographies, and books. If it can be written, drawn, or
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photographed, chances are there is already a node on the Web con-
taining it in some form.

The power of the Web is in the links, the uniform resource locators
(URLs) that allow us to move with the click of a mouse from one page to
another. They allow us to surf, locate, and string together information.
These links turn the collection of individual documents into a huge net-
work spun together by mouse clicks. They are the stitches that keep the
fabric of our modern information society together. Remove the links, and
the genie would spectacularly vanish. Huge inaccessible databases would
be left behind, the contemporary ruins of an interconnected world.

How large is the Web today? How many Web documents and links
are out there! Until recently no one knew for sure—there’s no single
organization to keep track of all the nodes and links. It was Steve
Lawrence and Lee Giles, working at the NEC Research Institute at
Princeton, who took up this unique challenge in 1998. Their measure-
ments indicated that in 1999 the Web had close to a billion docu-
ments—not bad for a virtual society born less than a decade earlier.
Considering that it grows much faster than human society, chances are
that by the time this book is published there will be more Web docu-
ments than people on Earth.

But the real issue isn't the overall size of the Web. It’s the distance
between any two documents. How many clicks does it take to get from
the home page of a high-school student in Omaha to the Webpage of a
Boston stockbroker? Despite the billion nodes, could the Web be a
“small world”? The answer to this question is not irrelevant to anybody
who surfs the Web. If Webpages are thousands of clicks from each
other, it is hopeless to find any document without a search engine.
Finding that the Web was not a small world would also indicate that
the networks behind society and the online universe were fundamen-
tally different. If that were the case, to fully understand networks we
would need to understand why and how this difference emerges. There-
fore, at the end of 1998 I set out with Réka Albert, a Ph.D. student, and
Hawoong Jeong, a postdoctoral associate—both working at that time in
my research group at the physics department at the University of Notre
Dame—to grasp the size of the world behind the Web.
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Our first goal was to obtain a map of the Web, essentially an inven-
tory of all Webpages and the links connecting them. The information
contained in such a map would be truly unparalleled. If we were to con-
struct a similar map for society, it would have to include each person’s
professional and personal interests and chart everyone she or he knew. It
would make Milgram’s experiment seem clumsy and obsolete by allowing
us to find, in seconds, the shortest path to any person in the world. It
would be a must-use tool for everyone from politicians to salespeople and
epidemiologists. Of course, such a social search engine is impossible to
build, since it would take at least a lifetime to interrogate all 6 billion
people on the earth to learn about their friends and acquaintances. Yet
there is something magical about the Web that sets it apart from society:
We can navigate its links instantaneously. [t is just a matter of clicks.

Unlike our current society, the Web is digital. This allows us to write
a piece of software that downloads any document, finds all the links on it,
then visits and downloads the documents to which they point, continu-
ing until all pages on the Web are captured. If you let such a program
loose, in theory it will return a complete map of the Web. In the com-
puter world, this software is called a robot or crawler because it crawls
through the Web without human supervision. The big search engines,
such as Alta Vista or Google, have thousands of computers running nu-
merous robots that constantly look for new documents on the Web. Our
little research group clearly could not compete on their scale. So Jeong
created a robot to accomplish a more modest goal. First it gave us a map
of the nd.edu domain by mapping about 300,000 documents within the
University of Notre Dame, a rather eclectic collection containing every-
thing from philosophy course Web pages to Irish music fan sites. But we
were not concerned about the content of the pages. We were interested
only in the links that told us how to travel from one page to another.
With such a map at hand, we could then measure the distance between
any two pages within the university.

Just as Milgram saw some of his letters reaching the target person in
two steps while others took as many as eleven, our results indicated lots of
variability in the distances between Web documents. For example, my
graduate students have links to my Webpage; thus they are one click away
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from me. Yet going from my Webpage to the homepage of a philosophy
major would often require twenty clicks. What was astonishing, however,
is that, taken together, these paths were not as long as the vastness of the
Web would suggest. The measurements indicated that pages were on aver-
age eleven clicks away from each other. Paraphrasing Guare’s title, we
could say there are eleven degrees of separation at Notre Dame.

However, the Webpages within our university, the nd.edu domain,
represent only a tiny subset of the World Wide Web. The full Web in
1999 was at least 3,000 times larger. Would this mean that the distance
between two randomly selected nodes on the World Wide Web was
also 3,000 times longer than the eleven clicks our measurements indi-
cated? That is, would it take a full 33,000 clicks to get from one page to
another on the Web? To answer this question we needed a map of the
full Web. The problem was that nobody had one. Even the largest
search engines that tirelessly scan the Web with thousands of comput-
ers have managed to cover less than 15 percent of the Web’s full size.
Could we determine the separation for the full Web without such a
map! The answer was yes. But we had to use a method commonly em-
ployed in statistical mechanics—the field of physics that regularly deals
with random systems with unpredictable components or outcomes.

Our approach had a simple premise: If the Web is too large to fit
into our computer, then we should study many smaller pieces of it that
do fit. For example, we took a small portion of the Web, with only
1,000 nodes, and calculated the separation between any two nodes on
this tiny sample. Next we took a slightly larger piece, with 10,000
nodes, and determined the separation again. We repeated this for the
largest systems our computer allowed us to use and looked for trends in
the obtained node-to-node distances. The results indicated that the av-
erage separation between the nodes increased much more slowly than
the number of documents, following a very simple and reproducible
expression.! This finding allowed us to predict the separation on the

L. We found the separation to be proportional to the logarithm of the number of nodes
in the network. That is, if we denote d to be the average separation between the nodes
on a Web of N Webpages, then this separation followed the equation d = 0.35 + 2log N,
where log N denotes the base-10-logarithm of N.
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full Web as long as we know the total number of documents out there.
That number was provided by the NEC group. They estimated the size
of the publicly indexable Web to be around 800 million nodes at the
end of 1998. Thus our expression predicted that the diameter of the
Web was 18.59, close to 19. As Guare might say: nineteen degrees of
separation. While surfing might give you a different impression, in real-
ity the Web is a small world. Any document is on average only nine-
teen clicks away from any other.

3.

Taken together, Milgram’s six degrees and the Web’s nineteen degrees
suggest that behind the short observed distances there is something
more fundamental than humanity’s desire to spread social links all over
the globe. This suspicion was confirmed by subsequent discoveries
which demonstrated that small separations are common in just about
every network scientists have had a chance to study. Indeed, species in
food webs appear to be on average two links away from each other; mol-
ecules in the cell are separated on average by three chemical reactions;
scientists in different fields of science are separated by four to six coau-
thorship links; and the neurons in the brain of the C. elegans worm are
separated by fourteen synapses. In fact, it appears that the Web holds
the absolute record at nineteen degrees, as all other networks studied so
far display a separation between two and fourteen.

Nineteen degrees may appear to be drastically far from six degrees.
This is not the case, however. What is important is that huge networks,
with hundreds of millions or billions of nodes, collapse, displaying sepa-
ration far shorter than the number of nodes they have. Our society, a
network of six billion nodes, has a separation of six. The Web, with close
to a billion nodes, has a separation of nineteen. The Internet, a network
of hundreds of thousands of routers, has a separation of ten. Seen from
this perspective, the difference between six and nineteen is negligible.

The natural question is: Why? How do networks achieve such a
uniformly short path despite consisting of billions of nodes? The answer
lies in the highly interconnected nature of these networks. In the previ-
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ous chapter, we saw that random networks require only one link per
node to form a giant cluster. The question is, what if, as usually happens
in real networks, nodes have many more links than that? At the critical
point when the average connectivity is around one per node, the sepa-
ration between nodes could be rather large. But as we add more links,
the distance between the nodes suddenly collapses. Consider a network
in which the nodes have on average k links. This means that from a
typical node we can reach k other nodes with one step. There are, how-
ever, k? nodes two links away and roughly kd nodes exactly d links away.
Therefore, if k is large, for even small values of d the number of nodes
you can reach can become very large. Within a few steps you have
reached all nodes to be found, which explains why the average separa-
tion is so short in most networks.

These arguments can be easily turned into a mathematical formula
that predicts the separation in a random network as a function of the
number of nodes.2 The origin of the small separation is a logarithmic
term present in the formula. Indeed, the logarithm of even a very large
number is rather small. The ten-based logarithm of a billion is only
nine. For example, if we have two networks, both with an average of
ten links per node, but one 100 times larger than the other, the separa-
tion of the larger net will be only two degrees higher than the separa-
tion of the smaller one. The logarithm shrinks the huge networks, cre-
ating the small worlds around us.

4.

One of the most absentminded people of his generation, Karinthy was
well-known for forgetting meetings he had arranged ahead of time. Dezs6
Kosztolanyi, Karinthy's close friend and literary rival, once remarked, “I
have got to run home because Karinthy promised that he would visit us,
and perhaps he forgot that he promised, and he will indeed come.” Inter-
estingly, six degrees appears to follow a very Karinthyan path: forgotten,

2 If we have N nodes in the network, k¢ must not exceed N. Thus, using k¢ = N, we ob-
tain a simple formula that works well for random networks, telling us that the average
separation follows the equation d = log N/log k.
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reformulated, and rediscovered in the popular press and scientific texts
alike. I have no idea who originally discovered the six degrees concept.
The earliest written account that I know of comes from Karinthy. But
how did he get it? Did he think of it by himself? In view of his unparal-
leled intellect and fondness for unexpected and unconventional ideas, it
is not inconceivable. Or did he hear about it from others in the coffee-
house, as his short story suggests? We will perhaps never have an answer.
But it is interesting to speculate on the subsequent turn of events.
Karinthy’s short story was published in 1929, when Erdés, also living
in Budapest, was seventeen years old. As even unsuccessful books of
Karinthy’s were literary events, it is not unlikely that Erd&s read or heard
of the “Chains” story, in which Karinthy postulates that all people on
the earth can be connected by a chain of five acquaintances. The same
conjecture could even be made about Alfred Rényi, who, though only
nine years old when “Chains” appeared, had a unique affinity for litera-
ture. Indeed, he was known to have been good friends with many writ-
ers, including Karinthy’s son, Ferenc, a well-known writer himself.
Erd&s teamed up with Alfred Rényi in 1959 to write their famous
string of eight papers on random networks. The papers do contain the
expression giving the network’s diameter as a function of the number of
nodes. Should either of them have cared, they could have easily shown
that Karinthy’s intuition was correct, since the many social links we
have shrink even gigantic webs into truly tiny worlds. They never men-
tion this application in their papers, however, and we will probably
never know if they amused themselves with the idea while taking breaks
between proofs and theorems. But the links do not stop there. Stanley
Milgram published his experiments uncovering the 5.5 links in 1967,
four decades after Karinthy’s five-link conjecture and almost a decade af-
ter Erd&s and Rényi introduced the random network theory. He did not
seem to have been aware of the body of work on networks in graph the-
ory and most likely had never heard of Erdés and Rényi. He is known to
have been influenced by the work of Ithel de Sole Pool of MIT and
Manfred Kochen of IBM, who circulated manuscripts about the small-
world problem within a group of colleagues for decades without publish-
ing them, because they felt they had never “broken the back of the prob-
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lem.” Incidentally, Milgram is a child of a Hungarian father and Roman-
ian mother who immigrated to the United States and settled in the
Bronx. Could his father or uncles, who often visited, have been aware
even anecdotally of Karinthy’s five degrees? Could his real interest in the
problem have been rooted in stories he overheard as a child? This again
is something that we will never know, but it certainly suggests some in-
teresting paths in the evolution of the idea of six degrees.

5.

The six/nineteen degrees phrase is deeply misleading because it suggests
that things are easy to find in a small world. This could not be further
from the truth! Not only is the desired person or document six/nine-
teen links away, but so are all people or documents. In other words,
six—or ten or nineteen—can either be a very small number or a very
large one, depending on what you’re trying to do. Since the average
number of links on any given Web document is around seven, this
means that while we can follow only seven links from the first page,
there are 49 documents two clicks away, 343 three clicks away, and so
on. By the time we reach the nodes that are exactly nineteen degrees
away, in principle we would have checked 1016 documents, 10 million
times more than the total number of pages on the Web. This contra-
diction has an easy resolution: Some of the links we meet along the
road will point back to pages that we have seen before. Thus they are
not “new” links. But even if it takes only one second to check a document,
it would still take over 300 million years to get to all documents that
are nineteen clicks away! Nevertheless, despite the abundance of
choices, we sometimes find documents rather quickly, even without
search engines.

The trick, of course, is that we do not follow all links. Rather, we
use clues. Indeed, if we are looking for information on Picasso and are
faced with three choices on a given Webpage, we are more apt to follow
the modern art link than either the link for a famous wrestler or a frog’s
love life. By interpreting the links, we avoid having to check all the
pages within nineteen degrees and can zero in on the desired page
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within a few clicks. While this method seems to be the most efficient, it
almost always fails to find the shortest path. Indeed, it is always possible
that the wrestler whose Webpage we bypassed balances his tough guy
image with a link to the best Picasso site. But most people looking for
Picasso would ignore the wrestler’s link and eventually follow a longer
path to the destination. The computer, having no taste or bias (yet),
will chew through with equal excitement the wrestler, modern art, and
frog’s love life pages, pragmatically following the links to all of them. By
trying all the possible paths, it will inevitably locate the shortest one,
independent of the content of the intermediate pages.

Finding Picasso on the Web highlights a fundamental problem with
six degrees: Milgram’s method overestimated the shortest distance be-
tween two people in the United States. Six degrees is really an upper
limit. There is an enormous number of paths with widely different
lengths between any two people. Milgram’s subjects were never aware
of the shortest path to their target. This is like being lost in a huge maze
where we can see only the corridors and doors next to us. Even if we
have a compass and we know that the exit is toward the north, finding
it could be woefully inefficient and time-consuming. With a map of the
maze in hand, we could be out in five minutes. Similarly, Milgram’s let-
ters would have followed the shortest path between Omaha and Boston
only if all participants had had a map that compiled the social links of
all Americans. Lacking such a map, they forwarded the message to
those that they thought were most likely to take it in the right direc-
tion. For example, if you wish to be introduced to the president of the
United States, you would try to think of somebody who knows the
president. Most likely you would settle on your senator or representa-
tive. As most of us do not know our senator on a first name basis, we
would try to find somebody who does and who would be willing to bro-
ker a meeting with the president. That would take at least three hand-
shakes. In the meantime, you might have no clue that the gentleman
you sat next to a few days earlier at a dinner party went to school with
the president. Thus in reality you are only two degrees away from the
president. Similarly, the paths recorded by Milgram’s experiment were
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invariably longer than the shortest possible. Thus, the real separation
in society was clearly overestimated. It must be shorter than six—per-
haps shorter than Karinthy’s five. We don’t have a social search engine,
so we may never know the real number with total certainty.

6.

Six degrees is the product of our modern society—a result of our insis-
tence on keeping in touch. It is aided by our relatively newfound ability
to communicate over great distances—often over thousands of miles.
The global village we’ve grown used to inhabiting is a new reality for
humans. The ancestors of most Americans lost contact with those they
left behind in the old country. From the cattle herds on the prairies or
the gold mines of the Rocky Mountains it was impossible to reach
loved ones separated by oceans and continents. No postcards, no phone
calls. In the subtle social network of those days, it was rather difficult to
activate the links that had been broken when people moved. That
changed in this century as the mail system, the telephone, and then air
travel demolished barriers and shrank physical distances. Today immi-
grants to America can choose to maintain their links to the people they
leave behind. We can and do keep in touch. I keep track of my relatives
and friends even if they are as far away as Korea or eastern Europe. The
world has collapsed irreversibly in the twentieth century. And it is un-
dergoing yet another implosion right now, as the Internet reaches to
every corner of the world. Though we are nineteen clicks away from
everybody on the Web, we are only one click away from our friends.
They might have hopped three cities and five jobs since we last met in
person. But no matter where they are, we can usually find them on the
Internet if and when we wish to do so. The world is shrinking because
social links that would have died out a hundred years ago are kept alive
and can be easily activated. The number of social links an individual
can actively maintain has increased dramatically, bringing down the
degrees of separation. Milgram estimated six. Karinthy five. We could
be much closer these days to three.
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“Small worlds” are a generic property of networks in general. Short
separation is not a mystery of our society or something peculiar about the
Web: Most networks around us obey it. It is rooted in their structure—it
simply doesn’t take many links for me to reach a huge number of Web-
pages or friends. The resulting small worlds are rather different from the
Euclidean world to which we are accustomed and in which distances are
measured in miles. Our ability to reach people has less and less to do with
the physical distance between us. Discovering common acquaintances
with perfect strangers on worldwide trips repeatedly reminds us that some
people on the other side of the planet are often closer along the social
network than people living next door. Navigating this non-Euclidean
world repeatedly tricks our intuition and reminds us that there is a new
geometry out there that we need to master in order to make sense of the
complex world around us.



THE FOURTH LINK

Small Worlds

WHEN MARK GRANOVETTER SUBMITTED his first-ever paper for publi-
cation, he was still a graduate student at Harvard, but he had high
hopes for his manuscript. Harvard in the late 1960s was the right place
at the right time. Networks were about to infest sociology, and Harvard
and MIT were the hotbeds of the new ideas. A series of lectures by Har-
rison White, a pioneer of the network perspective in social sciences, ex-
posed Granovetter to social networks early in his graduate studies.
Many of the new ideas proved to have fallen on fertile ground in his
doctoral thesis, which brought under a sociological microscope an issue
that sooner or later plagues all graduates: how people get jobs. Instead
of polishing his résumé and going to job fairs, Granovetter crossed the
Charles River to Newton, Massachusetts. Whereas today Newton is a
wealthy suburb of Boston, in the late sixties it was a working-class
neighborhood. Aiming to find out how people “network”—use their so-
cial connections to land a new job—he interviewed dozens of manage-
rial and professional workers, asking them who helped them find their
current job. Was it a friend? He kept getting the same reply: No, it was
not a friend. It was just an acquaintance. This reminded Granovetter of
the classic chemistry lesson demonstrating how weak hydrogen bonds
hold huge water molecules together, and that image, stuck in his mind
since his freshman year, inspired his first research paper, a long, reveal-
ing manuscript on the importance of the weak social ties in our lives. He

41
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mailed it out in August 1969 to the American Sociological Review. In De-
cember he received word that two anonymous referees had rejected the
paper. As one put it, the manuscript should not be published for “an
endless series of reasons that immediately come to mind.” Terribly dis-
couraged, Granovetter did not touch the paper until three years later.
In 1972 he submitted a somewhat shortened version of the manuscript
to a different journal, the American Journal of Sociology. This time he
had better luck, and the paper was finally published in May 1973, four
years after its first submission. Today Granovetter’s paper, The Strength
of Weak Ties, is recognized as one of the most influential sociology
papers ever written. It is one of the most cited as well, featured as a
Citation Classic by Current Contents in 1986.

In The Strength of Weak Ties Granovetter proposed something that
sounds preposterous at first: When it comes to finding a job, getting
news, launching a restaurant, or spreading the latest fad, our weak so-
cial ties are more important than our cherished strong friendships. As
he put it, the structure of the social network around an ordinary person,
whom he calls Ego, is rather generic. “Ego will have a collection of
close friends, most of whom are in touch with one another—a densely
knit clump of social structure. Moreover, Ego will have a collection of
acquaintances, few of which know each other. Each of these acquain-
tances, however, is likely to have close friends in his own right and
therefore to be enmeshed in a closely knit clump of social structure, but
one different from Ego’s.”

Hidden within Granovetter’s argument there is an image of a society
that is very different from the random universe Erdés and Rényi de-
picted. In his view society is structured into highly connected clusters, or
close-knit circles of friends, in which everybody knows everybody else.
A few external links connecting these clusters keep them from being
isolated from the rest of the world. If Granovetter’s description is cort-
rect, then the network describing our society has a rather peculiar struc-
ture. It is a collection of complete graphs, tiny clusters in which each node
is connected to all other nodes within the cluster (Figure 4.1). These
complete graphs are linked to each other by a few weak ties between ac-
quaintances belonging to different circles of friends.
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Figure 4.1 Strong and Weak Ties. In Mark Granovetter’s social world, our
close friends are often friends with each other as well. The network behind such a
clustered society consists of small, fully connected circles of friends connected by
strong ties, shown as bold lines. Weak ties, shown as thin lines, connect the members
of these friendship circles to their acquaintances, who have strong ties to their own
[friends. Weak ties play an important role in any number of social activities, from

spreading rumors to getting a job.

Weak ties play a crucial role in our ability to communicate with the
outside world. Often our close friends can offer us little help in finding a
job. They move in the same circles we do and are inevitably exposed to
the same information. To get new information, we have to activate our
weak ties. Indeed, managerial workers are more likely to hear about a job
opening through weak ties (27.8 percent of the cases) than through
strong ties (16.7 percent). The weak ties, or acquaintances, are our bridge
to the outside world, since by frequenting different places they obtain
their information from different sources than our immediate friends.

In a random network there would be no circle of friends, as our
links to other nodes are completely random. In the Erd&s-Rényi social
universe the likelihood of my two closest friends knowing each other is
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the same as the chance that an Australian cobbler’s best friend is an
African tribal chief. But that is not what our society looks like. In most
cases two good friends know each other’s friends. They often go to the
same parties, frequent the same pubs, and watch the same movies. The
stronger the tie between two people, the larger the overlap between
their circles of friends. Though Granovetter’s argument about the im-
portance of weak ties at first glance may seem counterintuitive and
even paradoxical, it formulates a simple truth about our social organiza-
tion. Granovetter’s society, a fragmented web of fully connected clus-
ters communicating through weak ties, is truer to our daily experience
than the completely random picture offered by Erd&s and Rényi. To
fully understand the structure of society, somehow the theory of ran-
dom networks had to be reconciled with the clustered reality depicted
by Granovetter. It took almost three decades to accomplish this. Inter-
estingly, the clue for a possible solution did not come from sociology or
graph theory.

1.

Across from the Central Café, a few paces from Karinthy’s favorite win-
dow, you descend through a small door and narrow underground stair-
case into one of the elite studio theaters of Budapest. Appropriately
named the Kamra, or Closet, since it holds only about ten actors on the
stage and a hundred people in the audience, the seats at its perform-
ances are highly coveted by those familiar with Budapest’s burgeoning
theater life. The last performance I watched in the Kamra did away
with the curtain to save space, forcing the audience to guess exactly
when the play ended. It was hard to miss, though, as suddenly everyone
around me burst into tumultuous applause, which was echoed and am-
plified by the black walls of the small underground cavern. In no time
the chaotic thunder gave way to unison clapping. Our palms came to-
gether at precisely the same moment, united by a mysterious force that
urged us to clap in phase, as if following the baton of an invisible con-
ductor. As the actors bowed, disappeared backstage, and reappeared,
the rhythmic applause grew even stronger. Its synchrony dissolved tem-
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porarily as the clapping gathered speed and strength, only to reappear
in full force a few seconds later.

Synchronized clapping is hardly unique to the tiny Kamra theater
of Budapest. It is a regular occurrence after theater performances, con-
certs, or sports events in eastern Europe and is occasionally heard all
over the world. It spontaneously emerged, for example, in Madison
Square Garden when the audience unconsciously synchronized its clap-
ping to honor Wayne Gretzky, the legendary hockey player, before his
retirement from the New York Rangers in 1999. Spontaneous and mys-
terious, synchronized clapping offers a wonderful example of self-organ-
ization following strict laws extensively researched by physicists and
mathematicians. Some species of fireflies are also subject to these laws.
In southwest Asia they gather by the millions around tall mangrove
trees, flashing periodically. Then suddenly, all the fireflies begin to
switch their fluorescent tails on and off at exactly the same moment,
turning the beacon-shaped tree into a huge pulsing light bulb visible for
miles. A subtle urge to synchronize is pervasive in nature. Indeed, it
drives the firing of thousands of pacemaker cells in the heart and brings
into synchrony the menstrual cycles of women who live together for
long periods of time.

Duncan Watts, working on his Ph.D. in applied mathematics at
Cormnell University in the mid-1990s, was asked to investigate a pecu-
liar problem: how crickets synchronize their chirping. Male crickets at-
tract females by chirping loudly. Unlike many humans, crickets eschew
the spotlight by carefully listening to the other crickets around them,
adjusting their chirp to match that of their neighbors. Put many of
them together and from the cacophony a symphony emerges that we
often enjoy on the back porch on humid summer nights.

Watts does not fit the stereotypical image of a bookish mathe-
matician. Possessing an agile mind, he has the rare ability to stop, step
back, and reflect on his work, changing direction if he needs to. In-
deed, the cricket study turned him into a student of social networks
and eventually a sociologist, a transformation made official in 2000
when he was offered a professorship in the department of sociology at
Columbia University.
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While struggling to grasp how crickets synchronize, Watts was
struck by the concept of six degrees of separation, planted in his head by
his father during a casual conversation. People wonder about things like
six degrees all the time, but such coffeehouse philosophy rarely leads to
serious research. Watts thought that to fully comprehend how crickets
synchronize he needed to understand how they pay attention to each
other. Do all crickets listen to every other cricket that is chirping? Or do
some pick a favorite one and try to synchronize with that one only?
What is the structure of the network encoding how crickets, or people,
influence each other? Finding himself thinking more and more about
networks, and less and less about crickets, Watts approached his Ph.D.
advisor, Steven Strogatz for advice. An applied mathematics professor at
Cornell with a distinguished record in the study of chaos and synchro-
nization, Strogatz is not known for allowing an unconventional idea to
pass him by. Soon they were off to uncharted territories, taking networks
beyond the boundaries set by Erd&s and Rényi.

Watts started his voyage into networks with a simple question:
What is the likelihood that two friends of mine know each other? As
we have just seen, this question has a clear answer in random network
theory. Because the nodes are linked randomly, my two best friends
have the same chance of knowing each other as do a gondolier from
Venice and an Eskimo fisherman. Clearly, as Granovetter argued
twenty-five years earlier, that is not how society works. We are part of
clusters in which everybody knows everybody else. Thus my two best
friends will inevitably know each other. To gather evidence about the
clustered nature of society in terms that are acceptable to a mathe-
matician or physicist we need to be able to measure clustering. To
achieve this, Watts and Strogatz introduced a quantity called the clus-
tering coefficient. Let’s assume that you have four good friends. If they
are all friends with each other as well, you can connect each of them
with a link, obtaining altogether six friendship links. Chances are,
however, that some of your friends are not friends with each other.
Then the real count will give fewer than six links—let’s say, four. In
this case the clustering coefficient for your circle of friends is 0.66, ob-
tained by dividing the number of actual links between your friends
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(four) by the number of links that they could have if they were all
friends with each other (six).

The clustering coefficient tells you how closely knit your circle of
friends is. A number close to 1.0 means that all your friends are good
friends with each other. On the other hand, if the clustering coefficient
is zero, then you are the only person who holds your friends together, as
they do not seem to enjoy each other’s company. Granovetter’s vision
of society includes many highly connected clusters, linked to each
other by weak ties. Such a highly clustered network should have a large
clustering coefficient. To obtain quantitative evidence that society is
indeed full of such clusters, we would need to measure the clustering
coefficient for each person on Earth. As there are no maps telling us
who is connected to whom and who is friends with whom, this is an im-
possible task. Fortunately, however, a peculiar subset of society regularly
publishes their social ties. We can therefore look for clustering among
this unusual group.

2.

Today Paul Erd&s is famous not only for his countless theorems and
proofs, but also for a concept he inspired: the Erd8s number. Erd&s pub-
lished over 1,500 papers with 507 coauthors. It is an unparalleled honor
to be counted among his hundreds of coauthors. Short of this, it is a
great distinction to be only two links from him. To keep track of their
distance from Erd8s, mathematicians introduced the Erd&s number.
Erd8s has Erd8s number zero. Those who coauthored a paper with him
have Erd&s number one. Those who wrote a paper with an Erd&s coau-
thor have Erd8s number two, and so on. A low Erd&s number is a matter
of pride—so much so that some suspect that counterfeit collaborations
may have been concocted after Erdss’s death in 1996 to lower someone’s
number. Consequently, mathematicians all around the world have been
(and still are) scrambling to figure out their distance from this eccentric
center of the math universe. To ease their search, Jerry Grossmann, a
professor of mathematics at Oakland University in Rochester, Michigan,
maintains a detailed Webpage collecting the Erd&s numbers for thousands
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of mathematicians, allowing any published mathematician to calculate
his or her own.

Most mathematicians turn out to have rather small Erd8s numbers,
being typically two to five steps from Erd@s. But Erd&s’s influence goes
well beyond his immediate field. Economists, physicists, and computer
scientists also can be easily connected to him. Einstein has Erd8s number
two. Paul Samuelson, the Nobel prize—winning economist, has five.
James D. Watson, the codiscoverer of the double helix, has eight. Noam
Chomsky, the famous linguist, has four. Even William H. (Bill) Gates,
founder of Microsoft, who has published little science, has an Erdés num-
ber of four. My Erd&s number is also four: Erd8s wrote a paper with
Joseph E. Gillis, who had George H. Weiss among his seventeen coau-
thors, who in turn worked with H. Eugene Stanley, my Ph.D. advisor,
with whom I have coauthored a book and over a dozen scientific articles.

The very existence of the Erd6s number demonstrates that the sci-
entific community forms a highly interconnected network in which all
scientists are linked to each other through the papers they have writ-
ten. The smallness of most Erd6s numbers indicates that this web of sci-
ence truly is a small world. As it only rarely happens that the authors of
a publication do not personally know each other, coauthorships repre-
sent strong social links. Consequently, the web of science is a small-
scale prototype of our social network, with the unique feature that its
links are regularly published. Indeed, so that researchers can locate pa-
pers on a certain topic, all scientific publications are recorded in com-
puterized databases; this automatically creates a detailed digital record
of the social and professional links between scientists. We can therefore
use them to study the structure of the collaboration network.

This is exactly what a group of us did in the spring of 2000. Tamds
Vicsek, a distinguished researcher and chairman of the department of
biological physics at Edtvés University in Budapest during the aca-
demic year 1999-2000, organized a year-long program focusing on bio-
logical physics at the Institute of Advanced Study, located in a charm-
ing medieval Buda castle overlooking the Danube. Zoltin Néda, a
physicist from Romania, was one of the participants, and he had
brought along Erzsébet Ravasz, at that time a masters student in Néda’s
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group. Also joining the team was Andrds Schubert, an expert on socio-
metrics working for the Hungarian Academy, who had access for re-
search purposes to large coauthorship databases. Together with Vicsek,
Ravasz, Néda, Schubert, and Hawoong Jeong, we linked all mathemati-
cians through papers published between 1991 and 1998, reassembling
the highly interwoven network of 70,975 mathematicians connected
by over 200,000 coauthorship links. If the mathematicians had chosen
their coauthors randomly, the resulting random network would be pre-
dicted by the Erdés-Rényi theory to have a very small clustering coeffi-
cient, approximately 10-5. However, our measurements indicated that
the clustering coefficient for the real collaboration network is about
10,000 times larger than that, proving that mathematicians do not pick
their collaborators randomly. Rather, they form a highly clustered net-
work, similar to the one spotted by Granovetter in society at large.

Unknown to us, Mark Newman, a physicist at the Santa Fe Insti-
tute, had also been investigating the collaboration graph of scientists—
in particular physicists, medical doctors, and computer scientists—ask-
ing questions similar to the ones we were asking in Budapest. Newman,
whose expertise ranges from random systems to species extinctions in
ecosystems, recognized the unique opportunity our computerized world
offers us to finally understand networks. Before turning to collaboration
networks, he had already written several papers on small worlds that are
now considered classics. As our computer was churning out the first re-
sults, he posted on the Internet his first paper on collaborations be-
tween scientists. Newman’s paper proved that the day-to-day business
of science is conducted in densely linked clusters of scientists con-
nected by occasional weak ties. His work, combined with our own, of-
fered quantitative evidence for something we had felt to be true all
along but that was notoriously difficult to measure before computers:
Clustering is indeed present in social systems.

3.

Clustering in society is something we understand intuitively. Humans
have an inborn desire to form cliques and clusters that offer familiarity,
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safety, and intimacy. However, a property of the social network is only of
interest to scientists if it reveals something generic about most networks
in nature. Therefore, Watts and Strogatz’s most important discovery is
that clustering does not stop at the boundary of social networks.

Though it is common to associate human intelligence with the
complexity and size of the neural network within our brain, the unpro-
nounceable Caenorhabditis elegans, which goes by its nickname, C. ele-
gans, is living proof of how far one can get with a mere 302 neurons.
Despite its two-to-three-week life span, this one-millimeter worm has
had a shining career since Sydney Brenner, a prominent molecular biol-
ogist at the Molecular Sciences Institute in Berkeley, California, picked
it in 1962 as a “guinea pig” of molecular biology. Since then it has been
featured in thousands of articles and bred in hundreds of laboratories
worldwide, and several Webpages are dedicated to it.

Though its genome is not that different from humans’, C. elegans is
one of the simplest multicellular organisms. Indeed, scientists have suc-
ceeded in figuring out the precise wiring of its nervous system, creating
a map that details which neurons are connected to which. Studying
this neural wiring diagram, Watts and Strogatz found that this tiny web
is not much different from society at large: It displays a high degree of
clustering—so high in fact that the neighbors of a neuron are five times
more likely to be linked together than would be the case in a random
network. The researchers detected the same pattern when studying the
electricity network of the western United States, the nodes of which
are generators and transformers linked together by power lines. This
power network also displays an unusually high degree of clustering. So
does the collaboration network of Hollywood actors, a network that we
will discuss in detail in the next chapter.

Thanks to the high interest in clustering generated by Watts and
Strogatz’s unexpected discovery, the scientific community has subse-
quently scrutinized many networks. We now know that clustering is pres-
ent on the Web; we have spotted it in the physical lines that connect
computers on the Internet; economists have detected it in the network
describing how companies are linked by joint ownership; ecologists see it
in food webs that quantify how species feed on each other in ecosystems;
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Figure 4.2 A Small and Clustered World. To model networks with a high
degree of clustering, Duncan Watts and Steven Strogatz started from a circle of
nodes, where each node 1s connected to its immediate and next-nearest neighbors
(left). To make this world a small one, a few extra links were added, connecting
randomly selected nodes (right). These long-range links offer the crucial short-
cuts between distant nodes, drastically shortening the average separation be-

tween all nodes.

and cell biologists have learned that it characterizes the fragile network
of molecules packed within a cell. The discovery that clustering is ubiqui-
tous has rapidly elevated it from a unique feature of society to a generic
property of complex networks and posed the first serious challenge to the
view that real networks are fundamentally random.

4.

To explain the ubiquity of clustering in most real networks, Watts
and Strogatz offered an alternative to Erd6s and Rényi’s random net-
work model in their 1998 study published in Nature. They proposed a
model that for the first time reconciled clustering with the com-
pletely haphazard character of random graphs. They envisioned that
people live on a circle (Figure 4.2) along which everybody knows
their immediate neighbors. In this simple model each node has exactly
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four neighbors, who are connected to each other by three links. Thus,
the resulting network has a high clustering coefficient. Indeed, if all
four neighbors were connected to each other, there would be six links
between them. Since there are only three, the clustering coefficient is
3/6, or 0.5, close to the 0.56 we found for mathematicians. To see that
this indeed represents significant clustering, consider a random network
in which a typical node still has four neighbors but is connected ran-
domly to any node in the system. The number of links between my four
neighbors now depends on the size of the network. If | have twelve
nodes, as | do in the figure, the clustering coefficient is 0.33. For 1 bil-
lion nodes, however, it drops to four over a billion! Clearly the cluster-
ing coefficient of 0.5, which the new model predicts, is gigantic com-
pared to these values.

We have to pay a price, however, for the high clustering the model
offers us. Our small world is gone. In the model society shown in the
figure only my immediate and next nearest neighbors are close to me.
To get to somebody on the other side of the circle, I would literally
- have to go around the circle, shaking innumerable hands along the way.
Indeed, it is easy to check that the shortest path connecting the top
node to the bottom one is at least three links long. That may not sound
like a lot, but if | had had the patience (and space) to draw 6 billion
nodes along the same ring, each connected to its immediate and next
neighbors, the shortest path to the opposite side of the circle would re-
quire more than a billion handshakes! Thus a society on a circle not
only is highly clustered but represents a very large world, as well.

In reality we all have links to distant people around the globe. Each
of us has friends who do not live next door to us. If I want to find a path
to a person in Australia, I will not go door to door, since sooner or later
I will hit the Pacific Ocean. Instead, 1 remember that my best friend
from high school moved to Sydney a few years ago. Thus all I need to
do is find a link to my Australian target through the increasingly dense
friendship links my friend is creating around him right now. A realistic
model of society today must allow for distant links. We can easily
achieve this in the model described above by adding a few links to some
randomly chosen nodes around the circle. That is, pick any two nodes
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along the circle and connect them with a new link. This will decrease

to one the distance between the selected nodes, and their immediate

neighbors will be a lot closer to each other too. If I add many such ran-
dom links, 1 can bring all the nodes very close together.

The surprising finding of Watts and Strogatz is that even a few extra
links are sufficient to drastically decrease the average separation be-
tween the nodes. These few links will not significantly change the clus-
tering coefficient. Yet thanks to the long bridges they form, often con-
necting nodes on the opposite side of the circle, the separation between
all nodes spectacularly collapses. The model’s ability to severely de-
crease the separation while keeping the clustering coefficient practi-
cally unchanged indicates that we can afford to be very provincial in
choosing our friends, as long as a small fraction of the population has
some long-range links. According to the insight provided by this simple
model, six degrees are rooted in the fact that a few people have friends
and relatives that do not live next door any longer. These distant links
offer us short paths to people in very remote areas of the world. Huge
networks do not need to be full of random links to display small world
features. A few such links will do the job.

5.

The publication of the Watts-Strogatz paper on clustering, two years af-
ter Erd8s’s death, garnered enormous interest among physicists and
mathematicians alike. First, it formalized Granovetter’s vision by offer-
ing a model that did display significant clustering. Second, it played a
unique role in bringing the small-world problem, a much investigated
issue within sociology, to the attention of the physics and mathematics
community. For a short time it seemed as if the more general, cluster-
friendly model of Watts and Strogatz would replace the random uni-
verse of Erd6s and Rényi. We could all relate to the simple picture of fa-
miliar local order sprinkled with a few distant links, offering a lucid
explanation of the small worlds around us. The model offered an ele-
gant compromise between the completely random world of Erd&s and
Rényi, which is a small world but hostile to circles of friends, and a
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regular lattice, which displays high clustering but in which nodes are
far from each other.

Today we understand that the Watts-Strogatz model is not incom-
patible with the Erd&s-Rényi worldview. To be sure, by assuming that
we start with a regular lattice, it does allow for clusters. But in many
ways, its fundamental philosophy continues to follow closely the Erdés-
Rényi vision. Indeed, apart from the initial arranging of the nodes
along a circle, we connect the nodes completely randomly to each
other. Therefore both models depict a deeply egalitarian society, whose
links are ruled by the throw of a dice.

When the landmark paper of Watts and Strogatz was published in
1998, my research group was trying to understand the structure of com-
plex networks, focusing mainly on the Word Wide Web. It took us a
while to fully grasp the important message of the paper and to appreci-
ate the new model’s ability to bring together the Erd&s-Rényi world-
view with Granovetter’s clustered society. By the time it finally sank in,
we had an emergency at hand. Our tiny robot returned from the Web
with a network that was drastically different from the predictions of
both the Erd&s-Rényi and the Watts-Strogatz models. As we will see in
the next chapter, it carried home a bunch of hubs—nodes with an ex-
traordinarily large number of links. The problem was that in the egali-
tarian model of Erdés and Rényi such hubs are extremely rare; thus it
was clear that the model could not account for our robot’s inding. The
Watts-Strogatz model did not fare much better: It, too, forbids nodes
with significantly more links than the average node has. Something im-
portant was clearly missing from both models, limiting our understand-
ing of the weblike universe. The data prompted us to search for a better
understanding of real networks, eventually forcing us to abandon alto-
gether the random worldview. Following this path, the events took a
very unexpected turn. We had to give up just about everything we had
learned about networks thus far.




THE FIFTH LINK

Hubs and Connectors

MALCOLM GLADWELL, A STAFF WRITER at the New Yorker magazine, de-
scribes in his recent book, The Tipping Point, a simple test to measure
how social you are. He gives you a list of 248 surnames compiled from a
Manhattan phone book and asks you to give yourself a point if you
know anybody with that name. Multiples count, too: If you know three
people named Jones, one of the names on the list, you get 3 points.
Running the list by college students in the City College of Manhattan,
most of them recent immigrants in their early twenties, Gladwell
recorded an average score of 21. In other words, they typically knew
about twenty-one people with the same surname as somebody on the
list. A random group of mostly white, highly educated academics scored
around 39, almost double that of the college students. This was hardly
surprising. But what caught Gladwell’s attention was the range. In the
college class, the scores ranged from 2 to 95. In a random sample, the
low score was 9 and the high score was 118. Even for a highly homoge-
nous group of people of similar age, education, and income the range
was enormous: The lowest score was 16 while the highest was 108.
Gladwell ended up testing about four hundred people altogether, find-
ing a few high scorers in every social group he looked at. His conclusion
was unavoidable: “Sprinkled among every walk of life . . . are a handful
of people with a truly extraordinary knack of making friends and ac-
quaintances. They are connectors.”

55
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Connectors are an extremely important component of our social
network. They create trends and fashions, make important deals,
spread fads, or help launch a restaurant. They are the thread of soci-
ety, smoothly bringing together different races, levels of education,
and pedigrees. In noticing connectors, Gladwell thought that he was
seeing something particularly human. In fact, unknown to him, he
had stumbled across something altogether bigger, a phenomenon that
was puzzling my research group well before the publication of The Tip-
ping Point. Connectors—nodes with an anomalously large number of
links—are present in very diverse complex systems, ranging from the
economy to the cell. They are a fundamental property of most net-
works, a fact that intrigues scientists from disciplines as disparate as
biology, computer science, and ecology. Their discovery has turned
everything we thought we knew about networks on its head. Clustering
exposed the first crack in the Erd8s-Rényi random worldview. The
simple model of Watts and Strogatz, discussed in the previous chapter,
saved the day, reconciling the circle of friends with six degrees of sep-
aration. The connectors are the final blow to both models. Accounting
for these highly connected nodes requires abandoning once and for
all the random worldview.

1.

Cyberspace embodies the ultimate freedom of speech. Some may be of-
fended, others may love it, but the content of a Webpage is hard to cen-
sor. Once posted, it is available to hundreds of millions of people. This
unparalleled license of expression, coupled with diminished publishing
costs, makes the Web the ultimate forum of democracy; everybody’s
voice can be heard with equal opportunity. Or so insist constitutional
lawyers and glossy business magazines. If the Web were a random net-
work, they would be right. But it is not. The most intriguing result of
our Web-mapping project was the complete absence of democracy, fair-
ness, and egalitarian values on the Web. We learned that the topology
of the Web prevents us from seeing anything but a mere handful of the
billion documents out there.
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When it comes to the Web, the key question is no longer whether
your views can be published. They can. Once published, they will be
instantaneously available to anyone around the world with an Internet
connection. Rather, faced with a jungle of a billion documents, the
question is, if you post information on the Web, will anybody notice it?

In order to be read you have to be visible, a truism equally valid for
fiction writers and scientists. On the Web the measure of visibility is
the number of links. The more incoming links pointing to your Web-
page, the more visible it is. If each document on the Web had a link to
your Webpage, in a very short time everyone would know what you had
to say. But the average Webpage only has about five to seven links, each
pointing to one of the billion pages out there. Therefore, the likelihood
that a typical document links to your Webpage is close to zero.

This conclusion applies perfectly to my homepage, www.nd.edu/~alb.
According to AltaVista, there are about forty other pages worldwide link-
ing to it. Frankly, that is a lot, considering its narrow scope. But if you
take into account that there are about a billion pages to choose from, the
likelihood of your discovering my Webpage is roughly forty in a billion.
That is, if you randomly surf the Web and a visit to each Webpage lasts
only ten seconds, you will be surfing eight years, day and night, before you
run across a link pointing to my home page.

Each of us has very different interests, values, beliefs, and tastes.
The links we add to our Webpages reflect this diversity. We link all over
the map, from sites on African tribal art to e-commerce portals. Con-
sidering the billion plus nodes from which we can choose, we might ex-
pect the resulting linking pattern to look fairly random. Such random
linking would imply that the Erd&s-Rényi model reigns. A random
Web would be the ultimate carrier of egalitarianism, since the Erdés-
Rényi theory guarantees that all nodes are very similar to each other,
each having roughly the same number of incoming links.

Our measurements, however, defied these expectations. The map
returned by our robot offered evidence of a high degree of unevenness
in the Web’s topology. Of the 325,000 pages on the University of Notre
Dame’s domain we investigated, 270,000, or 82 percent of all pages, had
three or fewer incoming links. However, a small minority, about 42
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pages, had been referenced by over a thousand other pages and had
more than 1,000 incoming links! Subsequent measurements on a
sample of 203 million Webpages uncovered an even wider spectrum:
The vast majority, as many as 90 percent of all documents, have ten or
fewer links pointing to them, while a few, about three, are referenced by
close to a million other pages!

Just as in society a few connectors know an unusually large number
of people, we found that the architecture of the World Wide Web is
dominated by a few very highly connected nodes, or hubs. These hubs,
such as Yahoo! or Amazon.com, are extremely visible—everywhere you
go, you see another link pointing to them. In the network behind the
Web many unpopular or seldom noticed nodes with only a small number
of links are held together by these few highly connected Websites.

The hubs are the strongest argument against the utopian vision of
an egalitarian cyberspace. Yes, we all have the right to put anything we
wish on the Web. But will anybody notice? If the Web were a random
network, we would all have the same chance to be seen and heard. In a
collective manner, we somehow create hubs, Websites to which every-
one links. They are very easy to find, no matter where you are on the
Web. Compared to these hubs, the rest of the Web is invisible. For all
practical purposes, pages linked by only one or two other documents do
not exist. It is almost impossible to find them. Even the search engines
are biased against them, ignoring them as they crawl the Web looking
for the hottest new sites.

2.

Kevin Bacon’s movie The Air Up There was airing on television the
night that Craig Fass, Brian Turtle, and Mike Ginelly, students from
Albright College in Reading, Pennsylvania, had a revelation. It sud-
denly occurred to them that Bacon had played in so many different
movies that you could connect him to just about any actor in Holly-
wood. Full of excitement, in January of 1994 they mailed a letter to
the Jon Stewart Show, an irreverent celebrity talk show popular with
college audiences. “We are three men on a mission. QOur mission is to
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prove to the Jon Stewart audience, nay, the world, that Bacon is God.”
Much to their surprise, they got their fifteen minutes of fame. They
were invited to appear on the Stewart show with Kevin Bacon, and
charmed the audience with their ability to connect Bacon to any actor
whose name was thrown at them. Down the line, however, they were
desperately wrong. Bacon is no closer to the center of Hollywood than
to the center of the universe.

The genius, if it can be called that, of these three students was their
observation that every actor in Hollywood could be connected to Kevin
Bacon with typically two to three links. For example, Tom Cruise is only
one step away from Bacon because they played together in A Few Good
Men. Using the Erd6s number analogy, Tom Cruise has Bacon number
one. Mike Myers has two, being connected to Robert Wagner through
The Spy Who Shagged Me. Wagner has Bacon number one thanks to Wild
Things. But even such historical figures as Charlie Chaplin have a path
to Bacon: Chaplin played with Barry Norton in Monsieur Verdoux, who
played with Robert Wagner in What Price Glory, who, as we already
know, is only one link away from Bacon. Thus Charlie Chaplin has Ba-
con number three. To further tangle the tale, Paul Erd&s has a Bacon
number four, by virtue of N Is a Number, a documentary about him in
which he plays himself. In the cast was Gene Patterson, playing himself,
who later had a small role in the movie Box of Moonlight, through which
he gains Bacon number three. And since N Is a Number featured the
créme de la créme of graph theory, many mathematicians have not only
a small Erd&s number but a small Bacon number too.

The Kevin Bacon game would have remained mere movie trivia
had two computer science students not watched the Stewart show.
Glen Wasson and Brett Tjaden, from the University of Virginia, imme-
diately realized that determining the distance between any two actors
was a viable computer science project, if one had access to a complete
database of all actors and movies ever released. The Internet Movie
Database, or IMDb.com, a cinephile powerhouse offering more infor-
mation about actors and movies than one could ever need, was already
in place. It took Wasson and Tjaden a few weeks of programming to set up
The Oracle of Bacon Website, which became the unbeatable master of
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the game. If you type in the name of any two actors, in milliseconds it
provides the shortest path between them, listing the chain of actors and
movies through which they are connected. In no time the Website was
receiving over 20,000 visits per day, eventually landing on Time maga-
zine’s list of top ten sites of 1997. Last time I checked, on August 26,
2001, it had hosted over 13,000 visitors that day alone.

3.

We can play the Kevin Bacon game because Hollywood forms a densely
interconnected network in which the nodes are actors linked by the
movies in which they have appeared. An actor has links to all other ac-
tors in the cast. Thus those who have played in several movies acquire
links quickly. As each actor has an average of twenty-seven links, many
more than the necessary one to make the network fully connected, six
degrees is unavoidable: Each actor can be connected to any other actor
through three links on average. Yet, as my research group has noticed
when analyzing the actor network, averages do not apply here. As
many as 41 percent of actors have fewer than ten links. These are the
less known actors whose names appear on the movie screen after you
have walked out of the theater. A tiny minority of actors, however,
have far more than ten links. John Carradine collected 4,000 links to
other actors during his prolific career, while Robert Mitchum acted
with 2,905 colleagues during his decades on the silver screen. These ex-
ceptionally well connected actors are the hubs of Hollywood. Remove a
few of them, and suddenly the paths from almost any actor to Bacon
will drastically lengthen.

On the one hand, an educated guess would be that the actors who
have played in the most movies are also the most connected, having the
shortest distance to everybody else in Hollywood. This turns out to be
true on average: The more movies an actor plays in, the shorter his or
her average distance to his or her peers. On the other hand, the list of
actors with the most movies fails to give us the most-connected actors
and holds some surprises, too. Compiled by Hawoong Jeong, the top ten
list, showing in parentheses the number of movies in which they played,
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looks like this: Mel Blanc (759), Tom Byron (679), Marc Wallice (535),
Ron Jeremy (500), Peter North (491), T. T. Boy (449), Tom London
(436), Randy West (425), Mike Horner (418), and Joey Silvera (410).
I'd wager that for most of you these names are as unrecognizable as they
were to us when we first looked at the list. Well, you might know Mel
Blanc, the famed voice of popular and beloved animated cartoon char-
acters like Bugs Bunny, Woody Woodpecker, Daffy Duck, Porky Pig,
Tweety Pie, and Sylvester. And those over fifty years old would have
seen Tom London, perhaps the most prolific B western movie actor, por-
tray countless sheriffs, ranch owners, and henchmen. The rest of the ac-
tors on the most-prolific list, however, eluded us. In the end, after some
research, we pinned them down. They are all porn stars.

This list is perhaps the most vivid demonstration that, when it
comes to networks, size does not always matter. Despite the record
number of movies porn stars make, they fail to be anywhere near the
center of Hollywood. As networks are clustered, nodes that are linked
only to nodes in their cluster could have a central role in that subcul-
ture or genre. Without links connecting them to the outside world,
they can be quite far from nodes in other clusters. Thus it is rather diffi-
cult to connect an actor who has played only in porn movies and has
links only to porn stars to the cast of a Martin Scorsese or Andrey
Tarkovsky movie. They simply move in very different worlds. The truly
central position in networks is reserved for those nodes that are simul-
taneously part of many large clusters. They are the actors who have
played in very different genres during their careers. They are the Web-
pages that not only reference modern art, but have links to all domains
of human inquiry. They are the people who regularly come into contact
with people from diverse fields and social strata. They are the Erd&ses of
mathematics, who cannot be confined to a box, who take on with equal
ease problems relevant to many subfields of science. They are the
Leonardo da Vincis of networks, equally at home in arts and sciences.

Of course, Bacon is a prominent Hollywood actor. He has played in
over forty-six movies, collecting links to more than 1,800 actors. His
average separation from everyone else in Hollywood is 2.79—that is,
most actors are within three links of him. This is the reason that some
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are so good at the Kevin Bacon game, easily connecting any other actor
to him. But is Bacon the most connected actor? When Hawoong Jeong
prepared the list of the thousand most-connected actors, the real hubs
of Hollywood, it took us a while to find Bacon on it. We saw Rod
Steiger in the number-one spot, with an average distance of 2.53 from
everybody else. Donald Pleasence, with a separation of 2.54, was right
behind him. Martin Sheen, Christopher Lee, Robert Mitchum, and
Charlton Heston took up the next four spots, each with a separation
less than 2.57. We read hundreds of names, browsing through dozens of
pages, without a sign of Bacon. Eventually we discovered him towards
the end of the list, at the 876th spot.

Why do we play the Kevin Bacon game then? Bacon’s prominence
is a historical fluke, rooted in the publicity offered by the Stewart show.
Every actor is three links from most actors. Bacon is by no means spe-
cial. Not only is he far from the center of the universe, he’s far indeed
from the center of Hollywood.

4.

A random universe does not support connectors. If society were ran-
dom, then in Gladwell’s modest social sample of four hundred people,
with their average of around 39 social links, the most social person
should have far fewer acquaintances than the 118 found. If the Web
were a random network, the probability of there being a page with five
hundred incoming links would be 10-*—that is, practically zero, indi-
cating that hubs are forbidden in a randomly linked Web. Yet the latest
Web survey, covering less than a fifth of the full Web, found four hun-
dred such pages and one document with over two million incoming
links. The chance of finding such a node in a random network is
smaller than the chance of locating a particular atom in the universe. If
Hollywood forms a random network, Rod Steiger does not exist, as the
probability of having such a well connected actor is about 10-120, which
is such a small number that it’s hard to come up with a proper
metaphor. These incredibly small numbers help explain our surprise
when we first spotted hubs on the Web and in Hollywood during our



Hubs and Connectors 63

early attempts to understand the structure of real networks. There was
nothing to prepare us for them because they were forbidden by both the
Erd&s-Rényi and the Watts-Strogatz models. They simply were not sup-
posed to exist.

The discovery that on the Web a few hubs grab most of the links
initiated a frantic search for hubs in many areas. The results are star-
tling: We now know that Hollywood, the Web, and society are not
unique by any means. For example, hubs surface in the cell, in the net-
work of molecules connected by chemical reactions. A few molecules,
such as water or ademosine triphosphate (ATP), are the Rod Steigers
of the cell, participating in a huge number of reactions. On the Inter-
net, the network of physical lines connecting computers worldwide, a
few hubs were determined to play a crucial role in guaranteeing the In-
ternet’s robustness against failures. Erd&s is a major hub of mathemat-
ics, as 507 mathematicians have ErdSs number one. According to an
AT&T study, a few phone numbers are responsible for an extraordinar-
ily high fraction of calls placed or received. While those with a
teenager living in their homes might have suspicions about the iden-
tity of some of these phone hubs, the truth is that telemarketing firms
and consumer service numbers are probably the real culprits. Hubs ap-
pear in most large complex networks that scientists have been able to
study so far. They are ubiquitous, a generic building block of our com-
plex, interconnected world.

5.

Lately hubs are enjoying exceptional attention. Celebrating the power
of connectors, Emanuel Rosen spends several chapters in his book The
Anatomy of Buzz categorizing social hubs and inspecting their role in
spreading news and hype. Every four years the United States inaugu-
rates a new social hub—the president. Indeed, Franklin Delano Roo-
sevelt’s appointment book had about 22,000 names in it, making him
one of the biggest hubs of his era. Three prominent biologists have re-
cently suggested in the prestigious scientific journal Nature that the
hublike nature of a certain molecule, the p53 protein, is the key to
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understanding the processes behind many forms of cancer at the molec-
ular level. Ecologists believe that the hubs of food webs are the key-
stone species of an ecosystem, paramount in maintaining the ecosys-
tem’s stability.

The attention to hubs is well deserved. Hubs are special. They
dominate the structure of all networks in which they are present, mak-
ing them look like small worlds. Indeed, with links to an unusually
large number of nodes, hubs create short paths between any two nodes
in the system. Consequently, while the average separation between two
randomly selected people on Earth is six, the distance between anybody
and a connector is often only one or two. Similarly, while two pages on
the Web are nineteen clicks away, Yahoo.com, a giant hub, is reachable
from most Webpages in two to three clicks. From the perspective of the
hubs the world is indeed very tiny.

The view that networks are random, held for decades under the in-
fluence of Erd&s and Rényi, has lately been questioned on many fronts.
Watts and Strogatz’s model offered a simple explanation of clustering,
bringing random networks and clustering under the same roof. Hubs,
however, again challenge the status quo. They cannot be explained by
either of the models we have seen so far. Therefore, hubs force us to re-
consider our knowledge of networks and to ask three fundamental ques-
tions: How do hubs appear? How many of them are expected in a given
network? Why did all previous models fail to account for them?

During the last two years we have answered most of these ques-
tions. Indeed, we have found that hubs are not rare accidents of our in-
terlinked universe. Instead, they follow strict mathematical laws whose
ubiquity and reach challenge us to think very differently about net-
works. Uncovering and explaining these laws has been a fascinating
roller coaster ride during which we have learned more about our com-
plex, interconnected world than was known in the last hundred years.



THE SIXTH LINK

" The 8o/20 Rule

VILFREDO PARETO, THE INFLUENTIAL ITALIAN ECONOMIST, while giving
a talk in the early 1900s at an economics conference in Geneva, was re-
peatedly and noisily interrupted by his powerful colleague Gustav von
Schmoller. Von Schmoller, who from his throne at the University of
Berlin ruled the German academic world, apparently kept shouting in a
patronizing tone, “But are there laws in economics?”

Despite his aristocratic upbringing Pareto had little respect for ap-
pearances, reportedly having written his monumental work Trattato di
Sociologia Generale while owning a single pair of shoes and one suit. It
was therefore easy for him to transform himself into a beggar the next
day and approach von Schmoller on the street. “Please, sir,” Pareto
said, “can you tell me where I can find a restaurant where you can eat
for nothing?” “My dear man,” replied van Schmoller, “there are no such
restaurants, but there is a place around the corner where you can have a
good meal very cheaply.” “Ah,” said Pareto, laughing triumphantly, “so
there are laws in economics!”

Pareto had turned his attention to economics after working for two
decades as a railway engineer. Deeply influenced by the mathematical
beauty of Newtonian physics, he devoted the rést of his life to his
dream of turning economics into an exact science, describable by laws
comparable in reach and universality to those formulated in Isaac
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Newton’s Principia. The fruit of his relentless pursuit, the three-volume
Trattato, continues to be a source of inspiration and interpretation for
economists and sociologists alike.

Outside academia Pareto is best known for one of his empirical ob-
servations. An avid gardener, he noticed that 80 percent of his peas
were produced by only 20 percent of the peapods. A careful observer of
economic inequalities, he saw that 80 percent of Italy’s land was
owned by only 20 percent of the population. More recently, Pareto’s
Law or Principle, known also as the 80/20 rule, has been turned into
the Murphy’s Law of management: 80 percent of profits are produced
by only 20 percent of the employees, 80 percent of customer service
problems are created by only 20 percent of consumers, 80 percent of
decisions are made during 20 percent of meeting time, and so on. It
has morphed into a wide range of other truisms as well: For example,
80 percent of crime is committed by 20 percent of criminals.

Under different guises, the 80/20 rule describes the same phenome-
non: In most cases four-fifths of our efforts are largely irrelevant. Let me
contribute a few more items that approximate the 80/20 rule: 80 percent
of links on the Web point to only 15 percent of Webpages, 80 percent of
citations go to only 38 percent of scientists, 80 percent of links in Holly-
wood are connected to 30 percent of actors. Though it might be tempting
to infer that the 80/20 rule applies to just about anything, that would be a
gross overstatement. In reality all systems following Pareto’s Law are a bit
special. What sets them apart is a property that plays a key role in under-
standing complex networks as well.

1.

When Hawoong Jeong started building our little robot to map the
Web, we had naive expectations about what the network behind the
Web would look like. Guided by the insights of Erdés and Rényi, we
expected to find that Webpages are connected to each other ran-
domly. As we discussed in Chapter 2, the number of links on a Web-
page should follow a peaked distribution, telling us that most documents
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are about equally popular. But the network our robot brought back
from its journey had many nodes with a few links only, and a few
hubs with an extraordinarily large number of links. The biggest sur-
prise came when we tried to fit the histogram of the node connectiv-
ity on a so-called log-log plot. The fit told us that the distribution of
links on various Webpages precisely follows a mathematical expres-
sion called a power law.

If you are not a physicist or mathematician, most likely you have
never heard of power laws. That is because most quantities in nature
follow a bell curve, a distribution rather similar to the peaked distribu-
tion characterizing random networks. For example, if you measure the
height of all your adult male acquaintances and prepare a histogram
counting how many of them are four, five, six, or seven feet tall, you
will find that most people in your sample are between five and six feet
tall. Your histogram will have a peak around these values. Indeed, un-
less you hang out a lot with basketball players, you will have very few
seven- or eight-foot people in your sample. The same is true for shorter
people: Three- or four-feet-tall individuals will be rather rare. As most
quantities in nature follow such a peaked distribution, ranging from our
IQs to the velocity of molecules in a gas, many people are familiar with
these ubiquitous bell curves.

In the past few decades scientists have recognized that on occa-
sion nature generates quantities that follow a power law distribution
instead of a bell curve. Power laws are very different from the bell
curves describing our heights. First, a power law distribution does not
have a peak. Rather, a histogram following a power law is a continu-
ously decreasing curve, implying that many small events coexist with
a few large events. If the heights of an imaginary planet’s inhabitants
followed a power law distribution, most creatures would be really
short. But nobody would be surprised to see occasionally a hundred-
feet-tall monster walking down the street. In fact, among six billion
inhabitants there would be at least one over 8,000 feet tall. So the
distinguishing feature of a power law is not only that there are many
small events but that the numerous tiny events coexist with a few
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very large ones. These extraordinarily large events are simply forbid-
den in a bell curve.!

Each power law is characterized by a unique exponent, telling us,
for example, how many very popular Webpages are out there relative
to the less popular ones. As in networks the power law describes the
degree distribution; the exponent is often called the degree exponent.
Our measurements indicated that the distribution of incoming links
on Webpages followed a power law with a unique and well-defined
degree exponent close to two. A similar power law was present when
we looked at outgoing links, the degree exponent this time being
slightly larger.2

Our tiny robot offered compelling evidence that millions of Web-
page creators work together in some magic way to generate a complex
Web that defies the random universe. Their collective action forces
the degree distribution to evade the bell curve—a signature of random
networks—and to turn the Web into a very peculiar network described
by a power law. The robot failed to answer our most pressing question,
however. What was it about the Web that prompted it to defy the
strict predictions of random networks?

Then we realized that there was another way to approach this
problem. Could it be that equally simple laws characterize most com-
plex networks and we had not seen them because we had not looked
for them before? This second line of questioning turned out to be
much more fruitful. Indeed, a few months later, while analyzing the
actor network behind Hollywood, we found that it too followed the

I Note that there is an important qualitative difference between a power law and a bell
curve when it comes to the tail of the distribution. Bell curves have an exponentially
decaying tail, which is a much faster decrease than that displayed by a power law. This
exponential tail is responsible for the absence of the hubs. In comparison, power laws
decay far more slowly, allowing for “rare events” such as the hubs.

2. This implies that the number of Webpages with exactly k incoming links, denoted by
N(k), follows N(k) ~ k%, where the parameter 7y is the degree exponent.

The slope of the straight line on the log-log plot indicates that the degree expo-
nent had a value close to 2.1. When we counted how many outgoing links were on
a given World Wide Web document, we observed the same pattern: The log-log
plot revealed that the number of pages with exactly k outgoing links follow N(k) ~
k=7, with vy = 2.5.
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same mathematical relationship: The number of actors that had links
to exactly k other actors decays following a power law. Later we
learned that ErdGs and his mathematician colleagues obeyed this law,
too. The web within the cell joined the list as we learned that the
number of molecules interacting with exactly k other molecules de-
cays following a power law. We also discovered a paper by Sid Red-
ner, a professor of physics at Boston University, who found that the
distribution of citations in physics journals follows a power law.
Viewing citations as links of a network whose nodes are publications,
Redner’s finding implied that the citation network is also described
by a power-law degree distribution. Subsequently, in numerous large
networks that we and many other scientists have had a chance to in-
vestigate, an amazingly simple and consistent pattern has emerged:
The number of nodes with exactly k links follows a power law, each
with a unique degree exponent that for most systems varies between
two and three.

2.

The striking visual and structural differences between a random net-
work and one described by a power-law degree distribution are best seen
by comparing a U.S. roadmap with an airline routing map. On the
roadmap cities are the nodes and the highways connecting them the
links. This is a fairly uniform network: Each major city has at least one
link to the highway system, and there are no cities served by hundreds
of highways. Thus most nodes are fairly similar, with roughly the same
number of links. As we saw in Chapter 2, such uniformity is an inher-
ent property of random networks with a peaked degree distribution.
The airline routing map differs drastically from the roadmap. The
nodes of this network are airports connected by direct flights between
them. Inspecting the maps displayed in the glossy flight magazines
placed on the back of each airplane seat, we cannot fail to notice a
few hubs, such as Chicago, Dallas, Denver, Atlanta, and New York,
from which flights depart to almost all other U.S. airports. The vast
majority of airports are tiny, appearing as nodes with at most a few
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links connecting them to one or several hubs. Thus, in contrast to the
highway map, where most nodes are equivalent, on the airline map a
few hubs connect hundreds of small airports (Figure 6.1).

A similar unevenness characterizes networks with power-law de-
gree distribution. Power laws mathematically formulate the fact that in
most real networks the majority of nodes have only a few links and that
these numerous tiny nodes coexist with a few big hubs, nodes with an
anomalously high number of links. The few links connecting the
smaller nodes to each other are not sufficient to ensure that the net-
work is fully connected. This function is secured by the relatively rare
hubs that keep real networks from falling apart.

In a random network the peak of the distribution implies that the
vast majority of nodes have the same number of links and that nodes de-
viating from the average are extremely rare. Therefore, a random net-
work has a characteristic scale in its node connectivity, embodied by the
average node and fixed by the peak of the degree distribution. In con-
trast, the absence of a peak in a power-law degree distribution implies
that in a real network there is no such thing as a characteristic node. We
see a continuous hierarchy of nodes, spanning from rare hubs to the nu-
merous tiny nodes. The largest hub is closely followed by two or three
somewhat smaller hubs, followed by dozens that are even smaller, and so
on, eventually arriving at the numerous small nodes.

The power law distribution thus forces us to abandon the idea of a
scale, or a characteristic node. In a continuous hierarchy there is no sin-
gle node which we could pick out and claim to be characteristic of all the
nodes. There is no intrinsic scale in these networks. This is the reason my
research group started to describe networks with power-law degree distri-
bution as scale-free. With the realization that most complex networks in
nature have a power-law degree distribution, the term scale-free networks
rapidly infiltrated most disciplines faced with complex webs.

Neither the hierarchy of omnipresent hubs nor the accompanying
power laws were accounted for in either of the network theories avail-
able at the time that we discovered them in 1999. If anything, they
were considered merely accidental. The random network theory of
Erd8s and Rényi and its cluster-friendly extension by Watts and Stro-
gatz both insisted that the number of nodes with k links should decrease
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Figure 6.1 Random and Scale-Free Networks. The degree distribution of a
random network follows a bell curve, telling us that most nodes have the same
number of links, and nodes with a very large number of links don’t exist (top left).
Thus a random network is similar to a national highway network, in which the
nodes are the cities, and the links are the major highways connecting them. Indeed,
most cities are served by roughly the same number of highways (bottom left). In
contrast, the power law degree distribution of a scale-free network predicts that
most nodes have only a few links, held together by a few highly connected hubs (top
right). Visually this is very similar to the air traffic system, in which a large number

of small airports are connected to each other via a few major hubs (bottom right).

exponentially—a much faster decay than that predicted by a power law.
They both told us, in rigorous mathematical terms, that hubs do not exist.
The surprising discovery of power laws in the Web forced us to ac-
knowledge the hubs. The slowly decaying power law distribution accom-
modates such highly linked anomalies in a natural way. It predicts that
each scale-free network will have several large hubs that will fundamen-
tally define the network’s topology. The finding that most networks of con-
ceptual importance, ranging from the World Wide Web to the network
within the cell, are scale-free gave legitimacy to hubs. We would come to
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see that they determine the structural stability, dynamic behavior, robust-
ness, and error and attack tolerance of real networks. They stand as proof of
the highly important organizing principles that govern network evolution.

3.

Pareto never used the phrase 80/20. It was arrived at by later econo-
mists working with Pareto’s observation. Rather, at the end of the
nineteenth century he noticed that a few quantities in nature and the
economy defy the omnipresent bell curve and instead follow a power
law. His most celebrated discovery was that income distribution fol-
lows a power law, implying that most money is earned by a few very
wealthy individuals, while the majority of the population earn rather
small amounts. Pareto’s finding implies that roughly 80 percent of
money is earned by only 20 percent of the population, an inequality
that is still with us a hundred years after Pareto’s discovery.

It is not clear when the term 80/20 surfaced. Whereas physicists and
mathematicians nonchalantly talk about power laws, the 80/20 principle
pervades the popular press and business literature. But every time an
80/20 rule truly applies, you can bet that there is a power law behind it.
Power laws formulate in mathematical terms the notion that a few large
events carry most of the action.

Power laws rarely emerge in systems completely dominated by a roll
of the dice. Physicists have learned that most often they signal a transi-
tion from disorder to order. Thus the power laws we spotted on the Web
indicated, for the first time in precise mathematical terms, that real net-
works are far from random. Complex networks finally started to speak
to us in a language that scientists trained in self-organization and com-
plexity could finally understand. They spoke of order and emerging be-
havior. We just needed to listen carefully.

It might seem that the discovery that networks obey a simple power
law would be exciting only to a few mathematicians or physicists. But
power laws are at the heart of some of the most stunning conceptual ad-
vances in the second half of the twentieth century, emerging in fields
like chaos, fractals, and phase transitions. Spotting them in networks
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signaled unsuspected links to other natural phenomena and placed net-
works at the forefront of our understanding of complex systems in gen-
eral. The fact that the networks behind the Web, Hollywood, scientists,
the cell, and many other complex systems all obey a power law allowed
us to paraphrase Pareto and claim for the first time that perhaps there
were laws behind complex networks .

4.

With a big O head and two great H ears, the Mickey Mouse—shaped wa-
ter molecule and its H,O symbol is familiar to all of us. Its size and in-
ternal structure are known in miniscule detail. This is hardly surprising:
Water is the most common and most studied substance on Earth. But
liquid water, the collection of billions of cohesive molecules crowded in
a glass, continues to challenge us.

Gases are simple: Molecules fly in empty space, taking notice of
each other only when they bounce into one another. Crystals are the
opposite but relatively simple, too: Molecules hold hands tightly to cre-
ate a perfectly rigid lattice. Liquids, however, strike a delicate balance
between these two extremes. The attractive forces that keep the water
molecules together are not strong enough to coerce them into a rigid
order. Trapped between order and chaos, water molecules participate in
a majestic dance in which some molecules come together, form small
and somewhat ordered groups, move together, and in no time break
apart to join other molecules forming yet other groups.

Chilling a glass of water does not significantly alter this magnificent
water dance. It only makes the motion of molecules more dignified—
heavier and slower. At 0° C, however, something special happens. The
water molecules suddenly form a perfectly ordered ice crystal, like wan-
dering soldiers lining up at an officer’s command. But soldiers rehearse
this drill hundreds of times, painfully learning their precise position in
the formation. Water molecules, in contrast, may have never experi-
enced ice before. They follow a mysterious urge to exchange their wan-
dering lifestyle for a rigid, ordered one. Ice, a familiar symbol of cold
and perfect order, emerges spontaneously.
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Exchanging their water dance for the cold crystalline order of a
solid is one of the best-known examples of a phase transition, a phenom-
enon that physicists had sought to understand for decades prior to the
1960s. Phase transitions are common in various materials, taking forms
and appearances markedly different from frozen water. For example,
each atom in a ferromagnetic metal has a magnetic moment or spin, of-
ten represented by tiny arrows piercing the atom. At high temperatures
the atoms point their spins randomly in all different directions. Cooled
to some critical temperature, however, all atoms orient their spins in
precisely the same direction and form a magnet.

The freezing of a liquid and the emergence of a magnet are both
transitions from disorder to order. Indeed, relative to the perfect order of
the crystalline ice, liquid water is rather disorganized. At the freezing
point it miraculously gives up this disordered state, choosing instead a
state of high symmetry and order. Similarly, the randomly oriented
spins in a ferromagnetic metal are in a state of chaotic disorder. They
magically take up the highly ordered common orientation once cooled
under a critical temperature. Such sudden transitions hold the key to a
deep question about how nature works, of equal interest to scientists
and philosophers alike: How does order emerge from disorder?

5.

The ordered and the disordered states of a magnet correspond to ther-
modynamically distinct phases of matter. Right at the transition point
the system is poised to choose between these two phases, just like a
climber on a crest choosing which side to go down the mountain. Un-
decided which way to go, the system frequently goes back and forth,
and its vacillations increase near the critical point.

These vacillations have experimentally measurable consequences.
Near the critical point, elements of order and disorder mix within the
same material, signaling that the system explores both sides of the crest.
In metals close to the transition temperature, clusters of atoms develop
whose spins point in the same direction. The closer the metal gets to the
critical point, the larger these ordered magnetic clusters become. The in-
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creasing amount of experimental evidence collected by physicists during
the 1960s indicated that in the vicinity of the critical point several key
quantities follow power laws. For example, the distance over which
atoms communicate with each other, the correlation length, is often used
as a rough measure of the cluster size. Measurements indicated that as we
approach the critical point this correlation length increases following a
power law characterized by a unique critical exponent. The closer the
metal gets to the phase transition temperature, the larger the distance
over which the spins know about each other. The strength of the magnet
in the vicinity of the critical temperature, determined by the fraction of
spins that point in the same direction, also follows a power law, with a
different critical exponent.

As physicists carefully investigated how in various systems order
emerges from disorder, more power laws were discovered to operate dur-
ing a phase transition. The same laws emerged as liquids turned into gas
once heated, or when a piece of lead turned into a superconductor once
sufficiently chilled. The disorder-order transition started to display an
amazing degree of mathematical consistency. The problem was that no-
body knew why. Why do liquids, magnets, and superconductors lose
their identity at some critical point and decide to follow identical
power laws? What is behind the high degree of similarity between such
disparate systems? And what do power laws have to do with it?

6.

One of the first major breakthroughs toward understanding the transi-
tion from disorder to order came during the Christmas week of 1965.
Leo Kadanoff, a physicist at the University of Illinois at Urbana, had a
sudden insight: In the vicinity of the critical point we need to stop
viewing atoms separately. Rather, they should be considered communi-
ties that act in unison. Atoms must be replaced by boxes of atoms such
that within each box all atoms behave as one.

By this time the large number of hours devoted to phase transitions,
drawing the best and brightest in theoretical physics, had led to the dis-
covery of nine different critical exponents, each associated with some



76 LINKED

power law emerging in the vicinity of the critical point. Kadanoff’s idea
offered an appealing visual model that could be used to derive precise
mathematical relationships amongst this crowded zoo of exponents. He
demonstrated that the transition from disorder to order did not require all
nine unknown exponents but could be expressed in terms of any two of
them. Unknown to him, several other researchers arrived at the same
conclusion simultaneously. Ben Widom, a physical chemist from Cornell
University, and A. Z. Patashinskii and V. L. Pokrovskii, physicists from the
Soviet Union, derived similar scaling relations through a different route.
A set of inequalities between the exponents, derived by physicist Michael
Fisher of Cornell University, offered further hints of order within the zoo.

Something was still missing, however. There was no theory that could
provide the two remaining exponents or explain why power laws appeared
each time order spontaneously emerged in complex systems. It was not en-
tirely clear if such an all-encompassing theory existed at all. Based on the
beauty and self-consistency of the results obtained thus far, everyone
hoped that it did. The physics community had to wait until November
1971 for the final answer. It came, unexpectedly, from a physicist with
little track record in phase transitions and critical phenomena.

In the late sixties Kenneth Wilson was an assistant professor with a
mixed reputation in the physics department of Cornell University.
Everybody knew that he was bright, yet his brilliance had not trans-
lated into publications—the tangible measure of success in academia.
This state of affairs was very close to jeopardizing his job at Cornell.
Forced to publish by his tenure committee, he pulled several manu-
scripts from his desk drawer. Two of these, submitted simultaneously on
June 2, 1971, and published in November of the same year by Physical
Review B, turned statistical physics around. They proposed an elegant
and all-encompassing theory of phase transitions.

Wilson took the scaling ideas developed by Kadanoff and molded
them into a powerful theory called renormalization. The starting point of
his approach was scale invariance: He assumed that in the vicinity of the
critical point the laws of physics applied in an identical manner at all
scales, from single atoms to boxes containing millions of identical atoms
acting in unison. By giving a rigorous mathematical foundation to scale
invariance, his theory spat out power laws each time he approached the
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critical point, the place where disorder makes room for order. Wilson'’s
renormalization group not only called for power laws but for the first time
could predict the values of the two missing critical exponents as well.
With that he placed the last stone on the tip of the pyramid of phase tran-
sitions, an achievement that won him the 1982 Nobel prize in physics.

Nature normally hates power laws. In ordinary systems all quantities
follow bell curves, and correlations decay rapidly, obeying exponential
laws. But all that changes if the system is forced to undergo a phase
transition. Then power laws emerge—nature’s unmistakable sign that
chaos is departing in favor of order. The theory of phase transitions told
us loud and clear that the road from disorder to order is maintained by
the powerful forces of self-organization and is paved by power laws. It
told us that power laws are not just another way of characterizing a
system’s behavior. They are the patent signatures of self-organization in
complex systems.

This unique and deep meaning of power laws perhaps explains our
excitement when we first spotted them on the Web. It wasn’t only that
they were unprecedented and unexpected in the context of networks.
It was that they lifted complex networks out of the jungle of random-
ness where Erd&s and Rényi had placed them forty years earlier and
dropped them into the center of the colorful and conceptually rich
arena of self-organization. Gazing at the power laws that our little
search engine carried home from its journey, we caught a glimpse of a
new and unsuspected order within networks, one that displayed an un-
common beauty and coherence.

7.

Physicists trying to understand how magnets work and why water freezes
experienced a revelation when scaling and renormalization group theory
were unveiled in the late sixties and early seventies. They learned that
near the critical point, just when order emerges from disorder, all quanti-
ties of interest follow power laws characterized by critical exponents. But
whether we observe water going from liquid to gas, magma freezing into
rock, a metal becoming a magnet, or a ceramic turning into a supercon-
ductor, the same laws always apply, generating the mysterious power laws.
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We had finally learned that when giving birth to order, complex systems
divest themselves of their unique features and display a universal behavior
that has similar characteristics in a wide range of systems.

The ubiquity of power laws in systems undergoing a transition from
disorder to order prompted my Ph.D. advisor, H. Eugene Stanley, who
at Boston University leads the most active research group investigating
phase transitions, to joke that in Boston there is only log-log paper.
Stanley, who has been involved in all major discoveries shaping our un-
derstanding of phase transitions and universality, was referring to the
plot used by scientists to detect the presence of power laws in experi-
mental data. Indeed, wherever physicists, biologists, ecologists, materi-
als scientists, mathematicians, or economists looked in the eighties and
nineties, if self-organization reigned, power laws and universality
greeted them. It appears that networks are no different: Behind the
hubs there is a rather strict mathematical expression, a power law.

This brings us to the next puzzle. If power laws are the signature of
systems in transition from chaos to order, what kind of transition is tak-
ing place in complex networks? If power laws appear in the vicinity of a
critical point, what tunes real networks to their own critical point, al-
lowing them to display a scale-free behavior? We had come to under-
stand critical phenomena after physicists uncovered the mechanisms
governing phase transitions; rigorous theories now allow us to calculate
with high precision all quantities characterizing systems giving birth to
order. But so far, in networks we had only observed the hubs. We now
knew that they were the consequence of power laws—a hint of self-or-
ganization and order. To be sure, this was an important breakthrough,
allowing us to remove networks from the realm of the random. But the
most important questions, pertaining to the mechanisms that are re-
sponsible for the hubs and the power laws, were still unanswered. Are
real networks in a continuous state of transition from disorder to order?
Why do hubs appear in networks of all kinds, ranging from actors to the
Web? Why are they described by power laws? Are there fundamental
laws forcing different networks to take up the same universal form and

shape? How does nature spin its webs?



THE SEVENTH LINK

Rich Get Richer

ONCE A PROMINENT MERCHANT PORT of the Portuguese empire, Porto to-
day gives the impression of a forgotten city. Built where the slow-moving
Duoro River wends its way to the Atlantic through the steep hills guard-
ing the seashore, it carries the signature of a busy medieval town strategi-
cally located on an easily defensible narrow key. With its magnificent cas-
tles overlooking the river and a rich history of wine making, one might
expect it to be one of the most visited cities in the world. But hidden as it
is in the northwest corner of the Iberian Peninsula, few tourists make the
detour. There are apparently too few fans of the distinctive full-bodied
Porto vintage to awaken this great medieval city from its dreamlike state.

I visited Porto in the summer of 1999, shortly after my students and
[ finished our manuscript on the role of power laws on the Web. [ was
attending a workshop on nonequilibrium and dynamical systems organ-
ized by two professors of physics at the University of Porto, José Mendes
and Maria Santos. During the summer of 1999 very few people were
thinking about networks, and there were no talks on the subject during
this workshop. But networks were very much on my mind. I could not
help carrying with me on the trip our unresolved questions: Why hubs?
Why power laws?

At that time the Web was the only network mathematically proven
to have hubs. Struggling to understand it, we were searching for its dis-
tinguishing features. At the same time, we wanted to learn more about
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the structure of other real networks. Therefore, just before leaving for
Porto, I had contacted Duncan Watts, who kindly provided us the data
describing the power grid of the western United States and the C. ele-
gans topology. Brett Tjaden, the former graduate student behind The
Oracle of Bacon Website, now assistant professor of computer science
at Ohio University in Athens, Ohio, sent us the Hollywood actor
database. Jay Brockman, a computer science professor at Notre Dame,
gave us data on a man-made network, the wiring diagram of a com-
puter chip manufactured by IBM. Before I left for Europe, my graduate
student Réka Albert and I agreed that she would analyze these net-
works. On June 14, a week after my departure, I received a long e-mail
from her detailing some ongoing activities. At the end of the message
there was a sentence added like an afterthought: “I looked at the de-
gree distribution too, and in almost all systems (IBM, actors, power
grid), the tail of the distribution follows a power law.”

Réka’s e-mail suddenly made it clear that the Web was by no means
special. I found myself sitting in the conference hall paying no atten-
tion to the talks, thinking about the implications of this finding. If two
networks as different as the Web and the Hollywood acting community
both display power-law degree distribution, then some universal law or
mechanism must be responsible. If such a law existed, it could poten-
tially apply to all networks.

During the first break between talks I decided to withdraw to the
quiet of the seminary where we were being housed. 1 did not get far,
however. During the fifteen-minute walk back to my room a potential
explanation occurred to me, one so simple and straightforward that I
doubted it could be right. I immediately returned to the university to
fax Réka, asking her to verify the idea using the computer. A few hours
later she e-mailed me the answer. To my great astonishment, the idea
worked. A simple, rich-get-richer phenomenon, potentially present in
most networks, could explain the power laws we spotted on the Web
and in Hollywood.

After Porto | retumed briefly to Notre Dame before taking off for an-
other month-long trip. It was clear, however, that we could not wait an-
other month to submit our results. We had seven days to write a paper.
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The eight-hour flight from Lisbon to New York seemed an ideal opportu-
nity to prepare the first draft. As soon as the plane took off, I pulled out a
laptop newly purchased before the Porto trip and frantically started typing.
[ was just about finished with the introduction when the flight attendant,
handing a Coke to the passenger next to me, suddenly poured the entire
contents of the glass onto my keyboard. Random letters flickered on the
screen of my now useless laptop. But I did finish the paper on the plane,
writing it out from beginning to end in longhand. A week later it was sub-
mitted to the prestigious journal Science only to be rejected after ten days
without having undergone the usual peer review process because the edi-
tors believed that the paper did not meet the journal’s standards of novelty
and wide interest. By then I was in Transylvania, visiting my family and
friends in the heart of the Carpathian Mountains. Disappointed but con-
vinced that the paper was important, I did something that I had never
done before: I called the editor who rejected the paper in a desperate at-
tempt to change his mind. To my great surprise, I succeeded.

1.

The random model of Erdés and Rényi rests on two simple and often
disregarded assumptions. First, we start with an inventory of nodes. Hav-
ing all the nodes available from the beginning, we assume that the num-
ber of nodes is fixed and remains unchanged throughout the network’s
life. Second, all nodes are equivalent. Unable to distinguish between the
nodes, we link them randomly to each other. These assumptions were
unquestioned in over forty years of network research. But the discovery
of hubs—and the power laws that describe them—forced us to abandon
both assumptions. The manuscript submitted to Science was the first step
along this path.

2.

There is one thing about the Web that everybody agrees on: It is grow-
ing. Each day new documents are added by individuals detailing their
latest hobby or interest; by corporations expanding their online products



82 LINKED

and services; by governments increasingly reliant on the Web to dis-
seminate information to citizens; by college professors publishing their
lecture notes; by nonprofit organizations trying to reach those who
could benefit from their services; and by thousands of dot.com compa-
nies designing flashy pages to compete for your wallet. It is estimated
that within ten years the Web will host about an exabyte (1018) of in-
formation spread across the planet in numerous formats, most of which
are presently unknown. While the rate of this explosion will likely ta-
per as the majority of information collected by humanity lands online,
so far there are no signs of a slowdown.

With over a billion documents available today, it is hard to believe
the Web emerged one node at a time. But it did. Barely a decade ago it
had only one node, Tim Berners-Lee’s famous first Webpage. As physi-
cists and computer scientists started creating pages of their own, the
original site gradually gained links pointing to it. This modest Web of a
dozen primitive documents was the precursor to the planet-sized self-as-
semblage the Web is today. Despite its overwhelming dimensions and
complexity, it continues to grow incrementally, node by node. This ex-
pansion is in stark contrast to the assumption of the network models
described so far in this book, which assume the number of nodes in a
network is constant over time.

The Hollywood network also started with a tiny core, the actors
of the first silent movies back in the 1890s. According to the
IMDb.com database, Hollywood had only 53 actors in 1900. With
increasing demand for motion pictures, this core slowly expanded,
adding a few new faces with each movie. Hollywood experienced its
first boom between 1908 and 1914, when the number of actors join-
ing the trade went from under 50 to close to 2,000 a year. A second
spectacular boom starting in the 1980s turned moviemaking into the
entertainment megaindustry we know today. From a tiny cluster of
silent actors grew a gigantic network of over a half-million nodes,
and it continues to grow at an incredible rate. In the period of only
one year, 1998, as many as 13,209 names of actors appearing for the
first time on the wide canvas of the movie screen were added to the

IMDb.com database.
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Despite their diversity most real networks share an essential feature:
growth. Pick any network you can think of and the following will likely
be true: Starting with a few nodes, it grew incrementally through the ad-
dition of new nodes, gradually reaching its current size. Obviously,
growth forces us to rethink our modeling assumptions. Both the Erdés-
Rényi and Watts-Strogatz models assumed that we have a fixed number
of nodes that are wired together in some clever way. The networks gener-
ated by these models are therefore static, meaning that the number of
nodes remains unchanged during the network’s life. In contrast, our ex-
amples suggested that for real networks the static hypothesis is not appro-
priate. Instead, we should incorporate growth into our network models.
This was the initial insight we gained while trying to explain the hubs. In
so doing, we ended up dethroning the first fundamental assumption of
the random universe—its static character.

3.

It is relatively easy to model a growing network. We start from a tiny
core and keep adding nodes, one after the other. Let us assume that
each new node has two links. Thus, if we start with two nodes, our third
node will link to both of them. The fourth node has three nodes from
which to choose. How do we pick which two we should link to? For the
sake of simplicity, let’s follow the lead of Erd&s and Rényi and randomly
select two of the three nodes and link the new node to them. We can
continue this process indefinitely, so that each time we add a new node,
we connect it to two randomly selected nodes. The network generated
by this simple algorithm, called Model A, differs from the random net-
work model of Erd6s and Rényi only in its growing nature. This differ-
ence, however, is significant. Despite the fact that we choose the
links randomly and democratically, the nodes in Model A are not
equivalent to each other. We have easily identifiable winners and los-
ers. At each moment all nodes have an equal chance to be linked to,
resulting in a clear advantage for the senior nodes. Indeed, apart from
some rare statistical fluctuations, the first nodes in Model A will be the
richest, since these nodes have had the longest time to collect links.
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The poorest node will be the last one to join the system, with two links
only, because nobody has had time to link to it yet. Model A was
among our first attempts to explain the power laws we observed on the
Web and in Hollywood. The computer simulations quickly convinced
us that we had not yet found the answer. The degree distribution, the
function that distinguishes scale-free networks from random models,
decayed too fast, following an exponential. While the early nodes were
clear winners, the exponential form predicted that they are too small
and there are too few of them. Therefore, Model A failed to account for
the hubs and the connectors. It demonstrated, however, that growth
alone cannot explain the emergence of power laws.

4.

During the 1999 Super Bowl numerous neverheardof.com companies
such as OurBeginning.com, WebEx.com, and Epidemic Marketing
blew $2 million per advertising spot to bring their name to millions of
Americans following the duel between Denver and St. Louis. In one
year alone E*Trade spent $300 million promoting itself. AltaVista, one
of the most popular search engines, had an advertising budget close to
$100 million. America Online, the Goliath of the online world, effec-
tively matched that with $75 million. In 1999 over $3.2 billion was
spent on online marketing, about half the amount spent during the
same period on cable television advertising, a medium whose history
spans over two decades.

What did these companies want to achieve? The answer is simple,
if unconventional. Startups and established companies alike had been
burning venture capital and hard-earned cash, millions a day, to defeat
the random universe of Erdés and Rényi. They knew that we do not
link randomly on the Web. They wanted to take advantage of this non-
randomness by begging us to link to them.

How do we in fact decide which Websites to link to on the World
Wide Web? According to the random network models, we would ran-
domly link to any of the nodes. A bit of reflection as to how we make our
choices, however, indicates otherwise. For example, choices of Webpages
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with links to news outlets abound. A quick search for “news” on Google
returns about 109,000,000 hits. Yahoo's manually ordered directory offers
a choice of over 8,000 online newspapers. How do we pick one? The ran-
dom network models tell us that we select randomly from the list. Frankly,
I do not think that anybody ever does that. Rather, most of us are familiar
with a few major news outlets. Without giving the matter much thought
we link to one of them. As a longtime reader of the New York Times, it is
a no-brainer for me to choose nytimes.com. Others might prefer
CNN.com or MSNBC.com. Significantly, however, the Webpages to
which we prefer to link are not ordinary nodes. They are hubs. The better
known they are, the more links point to them. The more links they at-
tract, the easier it is to find them on the Web and so the more familiar we
are with them. In the end we all follow an unconscious bias, linking with
a higher probability to the nodes we know, which are inevitably the more
connected nodes of the Web. We prefer hubs.

The bottom line is that when deciding where to link on the Web,
we follow preferential attachment: When choosing between two pages,
one with twice as many links as the other, about twice as many people
link to the more connected page. While our individual choices are
highly unpredictable, as a group we follow strict patterns.

Preferential attachment rules in Hollywood as well. The producer
whose job it is to make a movie profitable knows that stars sell movies.
Thus casting is determined by two competing factors: the match between
the actor and the role, and the actor’s popularity. Both introduce the same
bias into the selection process. Actors with more links have a higher
chance of getting new roles. Indeed, the more movies an actor has made,
the more likely it is that he or she will appear again on the casting direc-
tor’s radar screen. This is where aspiring actors have a huge disadvantage,
a Catch-22 everybody knows both in and out of Hollywood. You need to
be known to get good roles, but you need good roles in order to be known.

The World Wide Web and Hollywood force us to abandon the sec-
ond important assumption inherent in random networks—their demo-
cratic character. In the Erd&s-Rényi and Watts-Strogatz models there
is no difference between the nodes of a network; thus all nodes are
equally likely to get links. The examples just discussed suggest other-
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wise. In real networks linking is never random. Instead, popularity is at-
tractive. Webpages with more links are more likely to be linked to again,
highly connected actors are more often considered for new roles, highly
cited papers are more likely to be cited again, connectors make more new
friends. Network evolution is governed by the subtle yet unforgiving law
of preferential attachment. Guided by it, we unconsciously add links at a
higher rate to those nodes that are already heavily linked.

5.

Putting the pieces of the puzzle together, we find that real networks are
governed by two laws: growth and preferential attachment. Each network
starts from a small nucleus and expands with the addition of new nodes.
Then these new nodes, when deciding where to link, prefer the nodes
that have more links. These laws represent a significant departure from
earlier models, which assumed a fixed number of nodes that are ran-
domly connected to each other. But are they sufficient to explain the
hubs and power laws encountered in real networks?

To answer this, in the 1999 Science paper we proposed a network
model that incorporates both laws. The model is very simple, as growth
and preferential attachment naturally lead to an algorithm defined by
two straightforward rules (Figure 7.1):

A. Growth: For each given period of time we add a new node to the
network. This step underscores the fact that networks are assem-
bled one node at a time.

B. Preferential attachment: We assume that each new node connects
to the existing nodes with two links. The probability that it will
choose a given node is proportional to the number of links the
chosen node has. That is, given the choice between two nodes,
one with twice as many links as the other, it is twice as likely that
the new node will connect to the more connected node.

Each time we repeat (a) and (b), we add a new node to the net-

work. Therefore, node by node we generate a continuously expanding
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Figure 7.1 The Birth of a Scale-Free Network. The scale-free topology is a
natural consequence of the ever-expanding nature of real networks. Starting from
two connected nodes (top left), in each panel a new node (shown as an empty circle)
1s added to the network. When deciding where to link, new nodes prefer to attach to
the more connected nodes. Thanks to growth and preferential attachment, a few

highly connected hubs emerge.

web (Figure 7.1). This model, combining growth and preferential at-
tachment, was our first successful attempt to explain the hubs. Réka’s
computer simulations soon indicated that it generated the elusive
power laws. As the first model to explain the scale-free power laws seen
in real networks, it quickly became known as the scale-free model.

6.

Why do hubs and power laws emerge in the scale-free model? First,
growth plays an important role. The expansion of the network means
that the early nodes have more time than the latecomers to acquire
links: If a node is the last to arrive, no other node has the opportunity
to link to it; if a node is the first in the network, all subsequent nodes
have a chance to link to it. Thus growth offers a clear advantage to the
senior nodes, making them the richest in links. Seniority, however, is
not sufficient to explain the power laws. Hubs require the help of the
second law, preferential attachment. Because new nodes prefer to link



88 LINKED

to the more connected nodes, early nodes with more links will be se-
lected more often and will grow faster than their younger and less con-
nected peers. As more and more nodes arrive and keep picking the
more connected nodes to link to, the first nodes will inevitably break
away from the pack, acquiring a very large number of links. They will
turn into hubs. Thus preferential attachment induces a rich-get-richer
phenomenon that helps the more connected nodes grab a dispropor-
tionately large number of links at the expense of the latecomers.

This rich-get-richer phenomenon naturally leads to the power laws
observed in real networks. Indeed, the computer simulations we per-
formed indicated that the number of nodes with exactly k links follows
a power law for any value of k. The precise value of the degree expo-
nent, the parameter that characterizes the power law distribution, was
no longer a mystery either. We were able to calculate it analytically, us-
ing a mathematical tool, called a continuum theory, that we developed
for this purpose. Indeed, thanks to preferential attachment, each node
attracts new links at a rate proportional to the number of its current
links. Using this simple observation, we were able to propose a simple
equation predicting how nodes acquire links as the network expands.
The solution allowed us to calculate analytically the degree distribu-
tion, confirming that indeed it follows a power law.!

Could either growth or preferential attachment alone explain the
power laws? Computer simulations and calculations convinced us that
both are necessary to generate a scale-free network. A growing network
without preferential attachment has an exponential degree distribution,
which is similar to a bell curve in that it forbids the hubs. In the absence of
growth we are back to the static models, unable to generate the power laws.

7.

Our purpose with the scale-free model was rather modest: to demon-
strate that two simple laws of growth and preferental attachment could
solve the puzzle of hubs and power laws. Therefore, the model’s great

I The degree exponent for the scale free model is v = 3, i.e. the degree distribution

follows P(k) ~ k-3.
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influence on subsequent research was a pleasant surprise for us, particu-
larly since it was clear from the beginning that the topology of real net-
works was shaped by many effects that we had ignored for the purpose
of simplicity and transparency. One of the most obvious of these is the
fact that, whereas all links present in the scale-free model are added
when new nodes join the network, in most networks new links can
emerge spontaneously. For example, when [ add to my Webpage a link
pointing to nytimes.com, | create an internal link connecting two old
nodes. In Hollywood, 94 percent of links are internal, formed when two
established actors work together for the first time. Another feature ab-
sent from the scale-free model is that in many networks nodes and links
can disappear. Indeed, many Webpages go out of business, taking with
them thousands of links. Links can also be rewired, as when we decide
to replace our link to CNN.com with a new one pointing to
nytimes.com. These and other phenomena frequent in some networks
but absent from the scale-free model illustrate that the evolution of real
networks is far more complex than the scale-free model predicts. To un-
derstand networks in the complex world around us, we would have to
incorporate these mechanisms into a consistent network theory and ex-
plain their impact on the network structure.

After submitting our paper on the scale-free model, Réka Albert
and I started to investigate the effects of processes like internal links
and rewiring on the structure of scale-free networks. We were no longer
alone, however. A month after our paper’s publication in Science, |
learned of similar work going on in several research laboratories world-
wide. Luis Amaral, my longtime collaborator, currently a research pro-
fessor at Boston University, was in the process of generalizing the scale-
free model to include aging, incorporating the possibility that actors
stop acquiring links after retirement. Amaral, working together with
Gene Stanley and two students, Antonio Scala and Mark Barthélémy,
demonstrated that if nodes fail to acquire links after a certain age the
size of the hubs will be limited, making large hubs less frequent than
predicted by a power law. At the same time, José Mendes and Sergey
Dorogovtsev were working independently on a similar problem in
Porto; they soon published the first in a string of very influential papers
on scale-free networks. Assuming that nodes slowly lose their ability to
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attract links as they age, Mendes and Dorogovtsev showed that gradual
aging does not destroy the power laws, but merely alters the number of
hubs by changing the degree exponent. Paul Krapivsky and Sid Redner,
also from Boston University, working with Francois Leyvraz from Mex-
ico, generalized preferential attachment to account for the possibility
that linking to a node would not be simply proportional to the number
of links the node has but would follow some more complicated func-
tion. They found that such effects can destroy the power law character-
izing the network.

These were the first of numerous subsequent results obtained by
physicists, mathematicians, computer scientists, sociologists, and biolo-
gists who scrutinized the scale-free model and its various extensions.
Thanks to their efforts, we currently have a rich and consistent theory
of network growth and evolution, something that would have been un-
thinkable just a few years ago. We understand that internal links,
rewiring, removal of nodes and links, aging, nonlinear effects, and
many other processes affecting network topology can be seamlessly in-
corporated into an amazing theoretical construct of evolving networks,
which contain as a particular case the scale-free model. These processes
alter the way networks grow and evolve, inevitably changing the num-
ber and the size of the hubs. But in most cases when growth and prefer-
ential attachment are simultaneously present, hubs and power laws
emerge as well. In complex networks a scale-free structure is not the ex-
ception but the norm, which explains its ubiquity in most real systems.

8.

The theory of evolving networks, developed in the past three years,
represents a one-way sign in network modeling. By viewing networks as
dynamical systems that change continuously over time, the scale-free
model embodies a new modeling philosophy. The classic static models
starting with ErdGs-Rényi sought simply to arrange a fixed number of
nodes and links such that the final web conforms to the network being
modeled. This process is similar to drawing. Seated in front of a Ferrari,
our task is to draw a picture that will allow anyone to recognize the car.
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Having a faithful drawing, however, doesn’t bring us any closer to un-
derstanding the processes that created the car in the first place. For that
we need to know how to build one just like the original. This is exactly
what the various evolving network models aim to accomplish. They
capture how networks are assembled by reproducing the steps followed
by nature when it created its various complex systems. If we correctly
model the network assembly, our final network should closely match
the reality. Thus our goals have shifted from describing the topology to
understanding the mechanisms that shape network evolution.

This shift in focus resulted in a dramatic change in the language of
networks, as well. The static nature of the classical models had gone
unnoticed until we were forced to incorporate growth. Similarly, ran-
domness had not been a problem until the power laws required us to in-
troduce preferential attachment. Understanding that structure and net-
work evolution couldn’t be divorced from one another made it difficult
to revert to the static models that dominated our thinking for decades.
These shifts in thinking created a set of opposites: static versus growing,
random versus scale-free, structure versus evolution.

At the end of the previous chapter we came to an important ques-
tion: Does the presence of power laws imply that real networks are the re-
sult of a phase transition from disorder to order? The answer we've ar-
rived at is simple: Networks are not en route from a random to an ordered
state. Neither are they at the edge of randomness and chaos. Rather, the
scale-free topology is evidence of organizing principles acting at each
stage of the network formation process. There is little mystery here, since
growth and preferential attachment can explain the basic features of the
networks seen in nature. No matter how large and complex a network
becomes, as long as preferential attachment and growth are present it will
maintain its hub-dominated scale-free topology.

The scale-free model would have remained an interesting aca-
demic exercise if there hadn’t been several subsequent discoveries.
The most important was the realization that most complex networks
of scientific and practical importance are scale-free. The Web data was
large and detailed enough to convince us that power laws can describe
real networks. This realization started an avalanche of discoveries that
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continues to this day. As Hollywood, the metabolic network within
the cell, citation networks, economic webs, and the network behind
language? joined the list, suddenly the origins of scale-free topology
became important for many scientific fields. The two laws governing
network evolution built into the scale-free model offered a good start-
ing point for exploring these diverse systems.

First, power laws gave legitimacy to the hubs. Then the scale-free
model elevated the power laws seen in real networks to a mathemati-
cally backed conceptual advance. Supported by a sophisticated theory
of evolving networks that allows us to precisely predict the scaling ex-
ponents and network dynamics, we have reached a new level of com-
prehension about our complex interconnected world, bringing us closer
than ever to understanding the architecture of complexity.

But the scale-free model raised new questions. One in particular
kept resurfacing: How do latecomers make it in a world in which only
the rich get richer? The quest for the answer took us to a very unlikely
place: the birth of quantum mechanics at the beginning of the twenti-
eth century.

2. The scale-free nature of language has been shown by various research groups. In this
network the nodes are words, and links represent significant cooccurences in texts, or
semantic relationships (synonyms, antonyms).




THE EIGHTH LINK

Einstein’s Legacy

UNLESS YOU ARE A COMPUTER SCIENTIST specializing in search engines or
have paid close attention to the fortunes of dot.coms, you probably have
never heard of Inktomi, the company which used to run the search engine
behind the Web'’s most popular site, Yahoo!. Contrary to popular belief,
Yahoo!, America Online, Microsoft, and many other high-profile compa-
nies don’t do searches on their own. Instead, they subscribe to an enot-
mous database such as Inktomi’s, which is one of the most extensive de-
positories of the Web. Because Inktomi chose not to create its own portal,
it never had the name recognition enjoyed by its customers and rarely
made headlines. That suddenly changed during June of 2000, when the
press noticed that the company’s stock market value had dropped by $2.8
billion overnight. The reason? Yahoo! had fired Inktomi as its search en-
gine, replacing it with a two-year-old startup called Google.

I met Larry Page, the Stanford dropout and cofounder of Google, in
March 2000 when few people had heard of his search engine. We were
speakers at a workshop sponsored by the Internet Archives in San
Francisco. The event attracted an eclectic mix of computer scientists,
physicists, mathematicians, librarians, lawyers, and a handful of
dot.com millionaires, united in their fascination with the newly emerg-
ing online universe. Larry Page gave a short talk about his search en-
gine and dropped a box of T-shirts in the middle of the room that
proclaimed Google’s signature line, “I'm Feeling Lucky.” After getting
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home I tried 'mine on. I also logged onto Google and in no time became
an addict. It was no surprise to me that Yahoo! wanted a part of it.

1.

Google intrigued me because it violated the basic prediction of the
scale-free model, that the first mover has an advantage. In the scale-
free model the most connected nodes are those that appeared first.
They have had the longest time to collect links and develop into hubs.
Google, launched only in 1997, was a latecomer to the Web. Popular
search engines like AltaVista or Inktomi had been dominating the mar-
ket long before Google’s arrival, clearly making it a second mover. In
less than three years, however, Google became both the biggest node
and the most popular search engine.

Of course the history of business is full of stories of companies with
innovative products whose consumers were hijacked by a more success-
ful latecomer. A famous example in the computer industry is Apple,
whose ingenious Newton handheld was completely obliterated by the
upstart Palm. If we view products as nodes in a complex business net-
work and consumers as links to them, we can say that Apple’s links
were in a short time rewired to Palm.

The aircraft industry offers a less well known example. Boeing did
not invent the jet-powered passenger plane: The glory for that achieve-
ment goes to a British company, De Havilland, which started marketing
the first jet, named Comet, in 1949. With a record speed of 450 miles an
hour Comet captured both the European and the American markets. It
did not dominate for too long, however. A year after the first commer-
cial flights, De Havilland’s planes started dropping from the sky, killing
all passengers aboard. Metals wear differently on jets because of the
higher speeds and altitudes. Boeing took De Havilland’s tragic oversight
into consideration in the design of its first jet, and five years after
Comet’s first flight it introduced the Boeing 707, which soon overtook
De Havilland’s market. Four decades later, Boeing is watching in dismay
as a third mover, the European Airbus, impinges on its worldwide domi-
nance, shrinking Boeing’s market share at an unprecedented rate.
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The “new kid on the block” effect appears to be present in most net-
works. But the scale-free model has no place for such dominant latecom-
ers, because in the scale-free model, as in the other models we’ve dis-
cussed so far, all nodes are identical. To be sure, the scale-free model
does differentiate between nodes based on the number of links they
have acquired, which is a function of the timing of their entry into the
network. But in most complex systems each node has unique character-
istics that are apparent even if we do not know its connectivity. Web-
pages, companies, and actors have intrinsic qualities that influence the
rate at which they acquire links in a competitive environment. Some
show up very late and nevertheless grab all the links within a short time
frame. Others rise early yet never quite make it, failing to turn their first-
mover status into a hub. If we wanted to account for the fierce competi-
tion witnessed in most networks, we had to acknowledge that each node
is different.

2.

Some people have a knack for turning each random encounter into a last-
ing social link. Some companies make a loyal partner out of every con-
sumer. Some Webpages turn surfers into addicts. What do these nodes of
society, business, and the Web have in common? Clearly, each has some
intrinsic property propelling it to the head of the pack. Though it is be-
yond us to find a universal secret of success, we can address the process that
separates the winners from the losers: competition in complex systems.

In a competitive environment each node has a certain fitness. Fit-
ness is your ability to make friends relative to everybody else in your
neighborhood; a company’s competence in luring and keeping con-
sumers compared to other companies; an actor’s aptitude for being liked
and remembered relative to other aspiring actors; a Webpage’s ability to
bring us back on a daily basis relative to the billions of other pages com-
peting for our attention. It is a quantitative measure of a node’s ability
to stay in front of the competition. Fitness may have genetic roots in
people; it may be related to product and management quality for com-
panies, to talent for actors, or to content for Websites.
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We can assign a fitness to each node in a network, mimicking its
ability to compete for links. For example, on the Web my Webpage
would have a fitness of 0.00001, while Google’s would be 0.2. The actual
magnitude of these numbers is irrelevant; but their ratio reflects our rela-
tive potential to lure visitors. Indeed, an average person would easily find
Google about 20,000 times more useful than my personal Website.

The introduction of fitness does not eliminate growth and preferential
attachment, the two basic mechanisms governing network evolution. It
changes, however, what is considered attractive in a competitive environ-
ment. In the scale-free model, we assumed that a node’s attractiveness was
determined solely by its number of links. In a competitive environment,
fitness also plays a role: Nodes with higher fitness are linked to more fre-
quently. A simple way to incorporate fitness into the scale-free model is
to assume that preferential attachment is driven by the product of the
node’s fitness and the number of links it has. Each new node decides
where to link by comparing the fitness connectivity product! of all available
nodes and linking with a higher probability to those that have a higher
product and therefore are more attractive. Between two nodes with the
same number of links, the fitter one acquires links more quickly. If two
nodes have the same fitness, however, the older one still has an advantage.

This simple fitness model, incorporating competition and growth, was
our first attempt to account for Google. It was designed as a quick fix to al-
low us to distinguish between nodes and give a chance to latecomers. We
soon learned that fitness has far more consequences than that. Our quick
fix opened an unexpected window to a rich family of phenomena that are
completely invisible in an egalitarian, fithess-free universe.

3.

Ginestra Bianconi was a first-year graduate student a few months into her
Ph.D. studies when [ asked her to study the properties of the fitness model,

1. In the scale-free model the probability that a new node connects to a node with k
links is given by k/%; k. In the fitness model cach node has an additional characteristic,
its fitness, 7. The probability to attach to a node with k links and fitness 1 is kn/Z k. 1,
In both expressions the sum, taken over all nodes present in the network, normalizes
the probability distribution.
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hoping to understand how Google turned into a hub almost overnight.
Born and educated in Rome, Bianconi brought to our research group an
unusual fascination for physics and a very solid background in statistical
mechanics. The fitness model appeared to me to be an assignment that
was relatively interesting but mathematically not terribly challenging, safe
for a new student. Bianconi quickly showed me how wrong | was. First,
the math behind it was far from routine. Second, it turned out to be far
more interesting than anticipated. She uncovered uncountable layers of
deep and surprising properties of complex networks that significantly en-
riched our understanding of network assembly and evolution.

Bianconi’s calculations first confirmed our suspicion that in the
presence of fitness the early bird is not necessarily the winner. Rather,
fitness is in the driver’s seat, making or breaking the hubs. In the
scale-free model the connectivity of nodes in the network increases as
a square root of time. The fitness model predicts a very different be-
havior. It tells us that nodes still acquire links following a power law,
tB. But the dynamic exponent, B, which measures how fast a node
grabs new links, is different for each node. It is proportional to the
node’s fitness, such that a node that is twice as fit as any other node
will acquire links faster because its dynamic exponent is twice as
large. Therefore, the speed at which nodes acquire links is no longer a
matter of seniority. Independent of when a node joins the network, a
fit node will soon leave behind all nodes with smaller fitness. Google
is the best proof of this: A latecomer with great search technology, it
acquired links much faster than its competitors, eventually outshining
all of them. Beauty over age.

The dynamic picture behind the scale-free model is similar to a con-
gested one-lane highway on which each car must follow the car ahead of
it. The car that enters the highway first is the inevitable winner, senior-
ity winning over speed. The competition in the fitness model, where
nodes have different fitnesses and so acquire links at different rates, is far
richer. This is similar to a car race on a wide, multilane highway where
cars of all different makes and models compete. The cars enter the race
one after the other, each with a different engine under the hood and a
driver with unique talents behind the wheel. Inevitably the race cars
leave the minivans and sport utility vehicles in the dust.
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The fitness model incorporating competition: in complex networks
posed new questions. The power law observed in the scale-free model is
rooted in the fact that all nodes follow the same dynamic rule when
they acquire links; in a network where some nodes grow slowly while
others grab links very quickly, this careful balance is significantly dis-
turbed. Would the power laws be present in such a competitive envi-
ronment—would they apply to the fitness model? Would networks
driven by competition continue to be scale-free? Or would the fierce
competition for links destroy the signature of order that we had uncov-
ered? Our search to understand how competition shapes the network’s
topology took us on a very unlikely detour, back in time to three giants
of quantum theory: Bose, Einstein, and Planck.

4.

In June 1924 Albert Einstein received a letter and a brief manuscript,
written in English, from an unknown Indian physicist from Dacca
named Satyendranath Bose. Unknown to Einstein, the manuscript had
been recently rejected by the Philosophical Magazine of the Royal Society
in London. Einstein liked the manuscript so much that he set aside his
own work and translated it into German, arranging for its publication
in Zeitschrift fiir Physik. He even added a praising note: “In my opinion,
Bose’s derivation of the Planck formula signifies an important advance.
The method used also yields the quantum theory of an ideal gas as I will
work out in detail elsewhere.”

What could get Einstein, already a Nobel prizewinner, excited
enough to start work on a new problem based on an unknown physicist’s
unpublished manuscript? To fully understand this we have to go back
two decades further. At the turn of the nineteenth century the German
physicist Max Planck wanted to solve a problem of much interest to the
physics community: How do objects emit light and heat? There were
two competing theories, each accounting for different parts, but not all,
of the experimental data. To date, the many attempts to reconcile the
two approaches had been futile. Planck, in 1900, was the first to derive
an expression that perfectly fit all experiments, known today as Planck’s
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formula. He paid a very high price, however, as he had to introduce the
ad hoc assumption that light and heat are emitted in small packets, or
discrete quanta, an idea that disregarded his contemporaries’ view that
light and electromagnetic radiation are waves and are not made of dis-
crete particles. Einstein was among the first to take Planck’s hypothesis
seriously. Assuming that light is indeed made of tiny particles, called
photons, he predicted the photoelectric effect, a discovery for which he
was awarded the Nobel prize in 1922. Planck, nominated by Einstein,
received a Nobel in 1919 for the quantum hypothesis.

In 1924, the quantum hypothesis of light was still troublesome: A
quantum mechanical derivation of Planck’s formula was nonexistent.
While it is a straightforward problem for undergraduate physics majors
these days, at that time all attempts to derive it were unsuccessful—un-
til Bose offered a bold solution.

What could Bose whisper from Dacca that was unknown to such ti-
tans of physics as Einstein and Planck? In the nineteenth century, physi-
cists believed that atoms could be distinguished and numbered individu-
ally. Think of the numbered balls bouncing in a rotating drum used to
pick the winning numbers in a lottery. If you pick a ball from the drum,
millions of ticket holders will know exactly which one has been se-
lected, since the numbers are painted on them. But our ability to distin-
guish certain subatomic particles is an illusion borrowed from daily life,
argued Bose. Light particles are truly alike, unnumbered, perfectly indis-
tinguishable. Bose showed that once statistical mechanics and thermo-
dynamics are modified to incorporate the fact that certain subatomic
particles are truly identical, Plank’s law can be easily derived.

Bose’s paper was still at the publisher when Einstein appeared at
the Prussian Academy to present his own results, titled Quantum The-
ory of Single-Atom Gases, in which he extended Bose’s method to gas
molecules. Six months later he was ready with yet another publication,
the Second Treatise. In these papers Einstein predicted a very strange
phenomenon, known today as Bose-Einstein condensation.

At ordinary temperatures gas atoms bounce into each other at differ-
ent speeds. Some are fast, others are slow. In the language of physics,
some of them have high energy, others have low. If you cool the gas all
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the atoms slow down. To bring them to a halt, you would have to cool
the gas to absolute zero, an unattainable temperature. Einstein predicted
that if a gas made of indistinguishable atoms is sufficiently chilled, a sig-
nificant fraction of the particles will settle to the lowest energy. That is,
atoms can be forced into their lowest energy state at a critical tempera-
ture above absolute zero. When particles reach this state, they form a new
form of matter called a Bose-Einstein condensate.

Einstein’s 1925 prediction was greeted with great skepticism. Even
the coldest spots of intergalactic space are way too hot for Bose conden-
sation. The impossibility of reaching the required temperature—one
millionth of a degree Kelvin for most atoms—made the prediction of
little physical significance and questionable validity. Although spotted
briefly in various systems ranging from superfluid helium to supercon-
ductors, for seventy years Einstein’s predictions remained unconfirmed.
Then in 1995 a group from the National Institute of Standards in Boul-
der, Colorado, led by Eric A. Cornell and Carl E. Weiman, cooled ru-
bidium atoms to low enough temperatures to form a Bose-Einstein
condensate.

The magnitude of Cornell and Weiman’s discovery was recognized by
their being awarded the Nobel prize for physics only six years later, in
2001. Their discovery not only proved in minuscule detail Einstein’s pre-
diction; it also started a revolution in atomic physics. Today we under-
stand that Einstein’s discovery applies beyond gases. Events analogous to
the condensation of particles to the lowest energy level are present in
many quantum systems that have little resemblance to an actual gas.
Bose-Einstein condensation became a standard element of the theoretical
physicists’ toolkit, helping us to understand such disparate phenomena as
star formation and superconductivity. It was this toolkit Bianconi reached
into when she tried to understand the behavior of the fitness model.

5.

We have no subatomic particles in the World Wide Web, and networks
don’t have “energy levels,” at least in the physicist’s sense of the term. So
why talk about Bose-Einstein condensation? This was the question [ asked
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Ginestra Bianconi on a Sunday afternoon in 2000 when I stopped briefly
at the university to pick up some papers. As | was leaving my office she
rather excitedly told me that she found something that might be interest-
ing. “No time now,” | had to tell her as my four-year-old son waited in the
car. “See you on Monday.” Bose-Einstein condensation? Who ever heard
of a condensate apart from quantum mechanics? She was supposed to be
working on the fitness model, ruled by the all-familiar laws of classical
physics. What would quantum mechanics have to do with the Web or so-
cial networks? This was my train of thought during my two-hour drive
from Notre Dame to Chicago. But I was in for a surprise on Monday.

Using a simple mathematical transformation,? Bianconi substituted
fitness for energy, assigning an individual energy level to each node in
the fitness model. Suddenly the calculations took on an unsuspected
meaning: They started to resemble those that Einstein ran across eighty
years earlier when he discovered the condensate. This could have been
coincidental but of no consequence. But there was indeed a precise
mathematical mapping between the fitness model and a Bose gas. Ac-
cording to this mapping, each node in the network corresponds to an
energy level in the Bose gas. The larger the node’s fitness, the smaller its
corresponding energy level. The links of the network turned into parti-
cles in the gas, each assigned to a given energy level. Adding a new
node to the network is like adding a new energy level to the Bose gas;
adding a new link to the network is the same as injecting a new Bose
particle into the gas. In this mapping, complex networks are like a huge
quantum gas, their links behaving like subatomic particles.

This correspondence between networks and a Bose gas was highly
unexpected. After all, a Bose gas is a unique creature of quantum me-
chanics. It is ruled by the peculiar laws of subatomic physics, which al-
low for a series of counterintuitive phenomena without counterparts in
the macroscopic world. These laws are very different from those ruling
the networks encountered throughout this book. For example, the Inter-
net’s nodes and links are macroscopic objects, routers and cables that we

2. The transformation required us to assign an energy level € to each node with fitness
N, using the expression € = (—1/B)log N, where B is a parameter that in Bose-Einstein
condensation plays the role of inverse temperature.
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can touch and cut if we wish to. Nobody would seriously believe that
they are ruled by quantum mechanics. Yet for decades we had treated
networks as geometric objects belonging strictly to the realm of mathe-
matics. The finding that real networks are rapidly evolving dynamical
systems had catapulted the study of complex networks into the arms of
physicists as well. Perhaps we are in for yet another such cultural shift.
Indeed, Bianconi’s mapping indicated that in terms of the laws govern-
ing their behavior, networks and a Bose gas are identical. Some feature
of complex networks bridges the micro- and macroworld, with conse-
quences as intriguing as the bridge’s very existence.

The most important prediction resulting from this mapping is that
some networks can undergo Bose-Einstein condensation. The conse-
quences of this prediction can be understood without knowing any-
thing about quantum mechanics: It is, simply, that in some networks
the winner can take dll. Just as in a Bose-Einstein condensate all parti-
cles crowd into the lowest energy level, leaving the rest of the energy
levels unpopulated, in some networks the fittest node could theoreti-
cally grab all the links, leaving none for the rest of the nodes. The win-
ner takes all.

6.

Every network has its own fitness distribution, which tells us how similar
or different the nodes in the network are. In networks where most of the
nodes have comparable fitness, the distribution follows a narrowly
peaked bell curve. In other networks, the range of fitnesses is very wide
such that a few nodes are much more fit than most others. Google, for
example, is easily tens of thousands times more interesting to all Web
surfers than any personal Webpage. Indeed, the mathematical tools de-
veloped decades earlier to describe quantum gases enabled us to see that,
independent of the nature of links and nodes, a network’s behavior and
topology are determined by the shape of its fitness distribution. But even
though each system, from the Web to Hollywood, has a unique fitness
distribution, Bianconi’s calculation indicated that in terms of topology
all networks fall into one of only two possible categories. In most net-



Einstein's Legacy 103

works the competition does not have an easily noticeable impact on the
network’s topology. In some networks, however, the winner takes all the
links, a clear signature of Bose-Einstein condensation.

The first category includes all networks in which, despite the fierce
competition for links, the scale-free topology survives. These networks
display a fit-get-rich behavior, meaning that the fittest node will in-
evitably grow to become the biggest hub. The winner’s lead is never sig-
nificant, however. The largest hub is closely followed by a smaller one,
which acquires almost as many links as the fittest node. At any moment
we have a hierarchy of nodes whose degree distribution follows a power
law. In most complex networks, the power laws and the fight for links
thus are not antagonistic but can coexist peacefully.

In networks belonging to the second category, the winner takes all,
meaning that the fittest node grabs dll links, leaving very little for the
rest of the nodes. Such networks develop a star topology, in which all
nodes are connected to a central hub. In such a hub-and-spokes net-
work there is a huge gap between the lonely hub and everybody else in
the system. Thus a winner-takes-all network is very different from the
scale-free networks we encountered earlier, where there is a hierarchy
of hubs whose size distribution follows a power law. A winner-takes-all
network is not scale-free. Instead there is a single hub and many tiny
nodes. This is a very important distinction. In fact, Google’s rapid rise
is not an indication of winner-takes-all behavior; it only tells us that
the fit get rich. To be sure, Google is one of the fittest hubs. But it
never succeeded in grabbing all links and turning into a star. It shares
the spotlight with several nodes whose number of links is comparable
to Google’s. When the winner takes all, there is no room for a poten-
tial challenger.

Are there any real networks that display true winner-takes-all be-
havior? We can now predict whether a given network will follow the
fit-get-rich or winner-takes-all behavior by looking at its fitness distri-
bution. Fitness, however, remains a somewhat elusive quantity, since
the tools to precisely measure the fitness of an individual node are still
being developed. But winner-takes-all behavior has such a singular and
visible impact on a network’s structure that, if present, it is hard to miss.
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[t destroys the hierarchy of hubs characterizing the scale-free topology,
turning it into a starlike network, with a single node grabbing all the
links. And there is a network in which we cannot fail to notice one
node that carries the signature of a Bose-Einstein condensate. The
node is called Microsoft.

7.

The most visible product of the Bill Gates and Paul Allen partnership
is unquestionably Microsoft Windows. Its impact on our computer-
dominated world is almost impossible to quantify. It marked the begin-
ning of a cultural divide: You either love Windows or you hate it. You
cannot be in between. Regardless of which camp you are in, however,
you are most likely using it. But despite its ubiquity, Windows is not Bill
Gates’s most important invention. Far and away the most enduring
legacy of the Gates-Allen collaboration was their idea of selling soft-
ware. This was simply unimaginable before them. While a computer is
a physical entity, software is only information, a never-ending string of
zeroes and ones on a disk or a CD-ROM. Weirdest of all is the operat-
ing system, which does nothing but operate other strings of zeros and
ones, forming a nonessential bridge between various applications and
the hardware. Therefore, initially, Microsoft’s business plan was opposed
by everyone. Hackers who thought information and programs should be
free to all hated it. Businesspeople were appalled by the notion of mar-
keting something so easily copied.

As everyone knows, Windows prevailed despite the fact that Mi-
crosoft was not the first mover. When the first version of Windows
came out, it looked like an ugly rip-off of Apple’s revolutionary operat-
ing system. Apple, however, kept a rigid monopoly on its hardware,
while the PC offered a free ride to all computer makers. Therefore PCs
became the dominating platform in our computer-driven world, lifting
Bill Gates and his Windows along with the tide.

Think of operating systems as nodes that compete for links—that is,
users. Each time a user installs Windows on her or his computer, a link is
added to Microsoft. The scale-free model would predict that the oldest
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operating system should also be the most popular. In that case, we
should all be running the primitive DOS. In the more realistic fitness
model, fitter operating systems would grab consumers from less fit oper-
ating systems, independent of their age.

If a fit-get-rich behavior of scale-free networks prevails in the mar-
ketplace, there should be a hierarchy of operating systems such that the
most popular is followed closely by several less popular competitors.
Such hierarchy is indeed present in most industries. Take, for example,
computer makers. Based on worldwide shipments in the second quarter
of 2000, Compaq had a 13 percent market share, closely trailed by Dell
with 11 percent. Hewlett-Packard and IBM each had 7 percent, and
Fujitsu-Siemens captured 4 percent of all sales. Other manufacturers
accounted for a whopping 55 percent of sales, breaking the market into
ever smaller segments. As most surveys list only the first five largest
computer makers, it is hard to check if the distribution of their market
share indeed follows a power law. I would not be surprised, however, to
find that it does. The tight hierarchy suggests that computer makers are
described by the fit-get-rich phase, in which no single node dominates
the market.

In the operating systems market, however, such healthy competi-
tion and hierarchy is completely absent. True, Windows is not the only
operating system out there. All Apple products continue to run Mac
OS. DOS, the precursor of Windows, is still installed on a large number
of PCs. Linux, the free-for-all operating system and the only serious
challenger to Microsoft’s domination, is increasingly gaining market
share. UNIX continues to run most computers devoted to number
crunching, used exclusively by scientists and network engineers. But all
these operating systems are dwarfed by Windows’s shadow, as its differ-
ent versions are humming on a whopping 86 percent of all PCs. The
second most popular operating system, Mac OS by Apple, has only a 5
percent market share. The ancient DOS follows closely with 3.8 per-
cent, followed by Linux with 2.1. All other operating systems, including
UNIX, capture less than 1 percent of the market.

Essentially Microsoft takes it all. Asa node, it is not just slightly big-
ger than its next competitor. In the number of its consumers it simply
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cannot be compared. We all behave like extremely social Bose particles,
convenience condensing us into a faceless mass of Windows users. As we
purchase new computers and install Windows, we carefully feed and
maintain the condensate developed around Microsoft. The operation
systems market carries the classic signatures of a network that has under-
gone Bose-Einstein condensation, displaying clear winner-takes-all be-
havior. While many operating systems compete for visibility and market
share, Microsoft is locked in the position of a condensate, a star domi-
nating the vast majority of links to consumers.

8.

Nodes always compete for connections because links represent survival
in an interconnected world. In most cases this competition is overt, as
when companies compete for consumers, actors strive for opportunities
to perform, people vie for social links. In other systems the dynamic is
subtler. Molecules in a cell, for example, gain links for the benefit of the
organism as a whole. But, like it or not, we are all part of a complex
competitive game. As we hail some nodes and vote others out, there
will always be winners and losers. The networks around us carry the sig-
nature of this competition in the stratum of links and nodes.

As long as we thought of networks as random, we modeled them as
static graphs. The scale-free model reflects our awakening to the reality
that networks are dynamic systems that change constantly through the
addition of new nodes and links. The fitness model allows us to describe
networks as competitive systems in which nodes fight fiercely for links.
Now Bose-Einstein condensation explains how some winners get the
chance to take it all.

Do the advances obtained by acknowledging fitness toss out the
scale-free model? By no means. In networks that display fit-get-rich be-
havior, competition leads to a scale-free topology. Most networks we
have studied so far—the Web, the Internet, the cell, Hollywood, and
many other real networks—belong to this category. The winner shares
the spotlight with a continuous hierarchy of hubs.
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Yet Bose-Einstein condensation offers the theoretical possibility
that in some systems the winner can grab all the links. When that hap-
pens, the scale-free topology vanishes. So far among real systems, only
the operations systems market, with Microsoft as its dominating hub,
appears to fit the bill. Are there other systems out there displaying a
similar behavior? Very likely. [t will take some time, however, to recog-
nize them all.

In just the last few years our path has led us to discover new and fas-
cinating features of our weblike universe. By uncovering the mecha-
nisms that govern network evolution we have grasped the universality of
the arsenal of tools nature uses to create the complex world around us.
Now scientists in fields ranging from cell biology to business have begun
to explore the consequences of the complex topologies discovered. How
do these topologies affect the stability of complex systems? How do
viruses spread on real networks? How do failures cascade in emergencies?
Although there is much left to learn about the structure and behavior of
networks, we have started to put our recent intellectual breakthroughs
to work in some truly fascinating and creative ways.



THE NINTH LINK

Achilles’ Heel

THE AFTERNOON TEMPERATURE IN DENVER had soared to above 100,
and hundreds of office workers were rushing from office towers to the
cold breeze of their cars’ air conditioners. Long lines formed at gas sta-
tions for fuel and ice, trafhc lights were blank, hospitals and air traffic
controllers were operating on an emergency basis only, and people
trapped in elevators were pushing the alarm button in vain. “On a hot
day it takes no time to turn a modern office building into an incubator,”
remarked an office worker. “There is no ventilation, and you can’t open
any windows.”

It is easy to forget how dependent we are on modern technology. To
appreciate it, we must witness its occasional failure, like this one in the
summer of 1996, when everything powered by electricity went silent
between the crest of the Rockies and the Pacific. Experts had long
feared a repeat of the Great Northeast Blackout of 1965, which left 30
million people without electricity for thirteen hours. In terms of finan-
cial impact, the 1996 failure of the western power system was much
more devastating. Some worry that the direction in which the power
industry has been evolving might make such outages more frequent
than we might expect. The California electricity crises in 2001 did
little to calm these fears.

Compared to today’s system, the 1965 power grid was much less
connected. The state of Maine survived the northeast blackout because
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it operated as an island with only weak ties to the rest of powerless New
England. But as the nation’s electricity dependency deepened over the
years, people panicked whenever the power went out. According to
Alan Weisman, who wrote about this in Harper’s, utilities learned to in-
crease stability and decrease costs by sharing facilities and bailing one
another out in emergencies. As a result, formerly islanded systems began
to link up, giving rise to the biggest human-made structure on Earth,
containing enough wire to reach to the moon and back.

With thousands of generators, millions of miles of lines, and over a
billion loads, this huge electric animal is now so interconnected and
sensitive that a single disturbance can be detected thousands of miles
away. But the 1996 blackout has highlighted the underlying vulnerabil-
ity of this formidable system. “Having an interconnected system really
makes for more efficient use of our natural resources and keeps the cost
down,” said spokeswoman Lynn Baker for the Bonneville Power Ad-
ministration, which oversees the power grid in the Pacific Northwest.
“But it means when something goes wrong, it can cascade through the
system.” With over $1.5 billion in damages and lost productivity, the
western blackout highlighted an often ignored property of complex
networks: vulnerability due to interconnectivity.

1.

Errors and failures typically corrupt all human designs. Indeed, the fail-
ure of a single component of your car’s engine could easily force you to
call for a tow truck. Similarly, a tiny wiring error in your computer’s cir-
cuits can mean throwing the whole computer out. Natural systems beg
to be different, however. Throughout Earth’s geological history, species
have disappeared at a rate of one per million each year. With an esti-
mated 3 million to 100 million species living on Earth, this means that
this year somewhere between three and a hundred species will vanish.
Such natural extinctions appear to cause little harm, however. Over mil-
lions of years the ecosystem has developed an amazing insensitivity to
errors and failures, surviving even such drastic events as the impact
of the Yucatan meteorite, which killed tens of thousands of species,
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including the dinosaurs. The ecosystem, therefore, displays a tolerance
to errors rarely seen in human-made systems.

In general, natural systems have a unique ability to survive in a
wide range of conditions. Although internal failures can affect their
behavior, they often sustain their basic functions under very high er-
ror rates. This is in stark contrast to most products of human design,
in which the breakdown of a single component often handicaps the
whole device. Lately, scientists from all disciplines have recognized
the resilience of nature’s designs, raising the hope that we can exploit
that convenience in human-made structures. Therefore, robustness—
rooted in the Latin word robus, meaning “oak,” the symbol of strength
and longevity in the ancient world—is an increasingly investigated
topic in many fields.

Robustness is of major concern for biologists, who want to under-
stand how a cell survives and functions under extreme conditions
and frequent internal errors. It concerns social scientists and econo-
mists addressing the stability of human organizations in the face of
famine, war, and changes in social and economic policy. It is a seri-
ous issue for ecologists and environmental scientists, motivating am-
bitious worldwide projects to preserve the sustainability of an ecosys-
tem threatened by the disruptive effects of industrial development.
Achieving robustness is the ultimate goal for specialists in increas-
ingly interdependent communications systems, which must maintain
a high degree of readiness despite inevitable malfunctions of their
components.

Most systems displaying a high degree of tolerance against failures
share a common feature: Their functionality is guaranteed by a highly
interconnected complex network. A cell’s robustness is hidden in its in-
tricate regulatory and metabolic network; society’s resilience is rooted
in the interwoven social web; the economy’s stability is maintained by a
delicate network of financial and regulatory organizations; an ecosys-
tem’s survivability is encoded in a carefully crafted web of species inter-
actions. It seems that nature strives to achieve robustness through inter-
connectivity. Such universal choice of a network architecture is perhaps
more than mere coincidence.
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2.

In the fall of 1999 the Defense Advanced Research Projects Agency, or
DARPA, circulated a call for proposals to study fault-tolerant networks.
As stated in the solicitation, “the program will focus primarily on the de-
velopment of new network technologies that will allow the networks of
the future to be resistant to attacks and continue to provide network serv-
ices.” A few months after the publication of our work on the World Wide
Web and scale-free networks, [ was looking for funding for our research in
this area. The DARPA solicitation seemed an excellent opportunity for
us, since the goals of the program were along the same lines as our in-
tended research. We were hoping that scale-free networks could play a
role in understanding network robustness as well. After preparing the re-
quired proposal by the November 1 deadline, I sat down with Réka Albert
and Hawoong Jeong and suggested that we not wait for DARPA’s answer
to start work on some of the questions we formulated in the proposal.
Node failures can easily break a network into isolated, noncommuni-
cating fragments. For example, simultaneously closing all highways going
in and out of Jacksonville and Lake City, Florida, would not only isolate
these cities but make the whole Florida peninsula unreachable via high-
way to the rest of the United States. Such fragmentation is a well-known
property of networks affected by failures, a much studied topic among
mathematicians and physicists alike. In general the question is, how long
will it take a network to break into pieces once we randomly remove
nodes? How many routers must we remove from the Internet to break it
into isolated computers that cannot communicate with each other?
Clearly, the more nodes we remove, the more likely it would be
that we would isolate large chunks of nodes. Decades of research on
random networks, however, had indicated that network breakdown is
not a gradual process. Removing only a few nodes will have little im-
pact on the network’s integrity. Yet, if the number of removed nodes
reaches a critical point, the system abruptly breaks into tiny uncon-
nected islands. Failures in random networks offer an example of an in-
verse phase transition: There is a critical error threshold below which
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the system is relatively unharmed. Above this threshold, however, the
network simply falls apart.

Motivated by the DARPA proposal, in January 2000 we performed
a series of computer experiments to test the Internet’s resilience to
router failures. Starting from the best available Internet map, we re-
moved randomly selected nodes from the network. Expecting a critical
point, we gradually increased the number of removed nodes, waiting for
the moment when the Internet would fall to pieces. To our great aston-
ishment the network refused to break apart. We could remove as many
as 80 percent of all nodes, and the remaining 20 percent still hung to-
gether, forming a tightly interlinked cluster. This finding agreed with
the increasing realization that the Internet, unlike many other human-
made systems, displays a high degree of robustness against router fail-
ures. Indeed, a University of Michigan-Ann Arbor study had found
that at any moment hundreds of Internet routers malfunction. Despite
these frequent and unavoidable breakdowns, users rarely notice signifi-
cant disruptions of Internet services.

Soon it became clear that we were not witnessing a property unique
to the Internet. Computer simulations we performed on networks gen-
erated by the scale-free model indicated that a significant fraction of
nodes can be randomly removed from any scale-free network without its
breaking apart. The unsuspected robustness against failures is that
scale-free networks display a property not shared by random networks.
As the Internet, the World Wide Web, the cell, and social networks are
known to be scale-free, the results indicate that their well-known re-
silience to errors is an inherent property of their topology—good news
for the people who depend on them.

3.

What is the source of this amazing topological robustness? The distin-
guishing feature of scale-free networks is the existence of hubs, the few
highly connected nodes that keep these networks together. Failures,
however, do not discriminate between nodes but affect small nodes and
large hubs with the same probability. If I blindly pick ten balls from a
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bag in which there are 10 red and 9,990 white balls, chances are ninety-
nine in a hundred that I will have only white balls in my hand. Therefore,
if failures in networks affect with equal chance all nodes, small nodes are
far more likely to be dismantled, since there are many more of them.

Small nodes contribute little to a network’s integrity. If I close a
randomly chosen airport, I will most likely be shutting down one of
the numerous small sites, such as the South Bend, Indiana, airport. Its
absence will hardly be noticed elsewhere in America: Without it you
can still travel from New York to Los Angeles or from Santa Fe to De-
troit. Only the few passengers that fly in or out of South Bend will be
inconvenienced. Even if as many as ten or twenty smaller airports are
simultaneously closed, only a small fraction of air travel is significantly
affected.

Similarly, in scale-free networks, failures predominantly affect the
numerous small nodes. Thus, these networks do not break apart under
failures. The accidental removal of a single hub will not be fatal either,
since the continuous hierarchy of several large hubs will maintain the
network’s integrity. Topological robustness is thus rooted in the struc-
tural unevenness of scale-free networks: Failures disproportionately af-
fect small nodes.

Our computer simulations left a crucial question unanswered: Do all
scale-free networks display the same degree of error tolerance? We did
not have to wait long for an answer. A week before our paper’s publica-
tion I received an e-mail from Shlomo Havlin, a professor of physics at
Bar-Ilan University in Ramat Gan, Israel, presenting the solution. The
former president of the Israeli Physical Society, Havlin is one of the
world’s experts on percolation theory, the field of physics that developed
a set of tools that now are widely used in studies of random networks. In-
deed, many of the results obtained by Erdés and Rényi have since been
independently discovered by physicists studying percolation.

Havlin quickly realized that scale-free networks must have a
unique response to failures. Together with his students Reuven Co-
hen and Keren Erez and his former student Daniel ben-Avraham,
currently a physics professor at Clarkson University, they set out to

calculate the fraction of nodes that must be removed from an arbitrarily
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chosen network, random or scale-free, to break it into pieces. On
one hand, their calculation accounted for the well-known result that
random networks fall apart after a critical number of nodes have
been removed. On the other hand, they found that for scale-free net-
works the critical threshold disappears in cases where the degree ex-
ponent is smaller or equal to three. Amazingly, most networks of in-
terest, ranging from the Internet to the cell, are scale-free and have a
degree exponent smaller than three. Therefore, these networks break
apart only after all nodes have been removed—or, for all practical
purposes, never.

4.

MafiaBoy, the Montreal teen responsible for the attacks on Yahoo!,
eBay, and Amazon.com, was sentenced a day after the September 11
terrorist attacks on the World Trade Center and the Pentagon. He was
ordered to spend eight months in a youth detention center and to make
a $250 donation to charity. Prior to the sentencing, Judge Gilled Qullet
argued that “this attack weakened the entire electronic communication
system.” But despite this and many similar claims, MafiaBoy was at no
time a threat to the Internet. While temporarily denying access to sev-
eral prominent Websites, his actions never harmed the infrastructure.
The consequences of his attacks could not begin to compare to the po-
tential destruction of “Operation Eligible Receiver” two years before.

In the summer of 1997, accounts began surfacing of a National Se-
curity Agency (NSA) war game developed to test the security of the
United States’ electronic infrastructure. Conflicting publicity sug-
gested that the NSA had hired anywhere from twenty-five to fifty
computer specialists to execute a coordinated attack on the nation’s
unclassified systems, sabotaging power grids, 911 systems, and the like.
Purportedly, the exercise, named “Eligible Receiver,” illustrated that
such concerted assaults by moderately sophisticated adversaries using
readily accessible tools were plausible and potentially devastating, ca-
pable of toppling U.S. military communication systems and other crit-
ical infrastructures completely.
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The fallout from MafiaBoy’s actions was annoying at most, deny-
ing users Web access to the most popular online sites. Eligible Re-
ceiver’s attack, on the other hand, demonstrated frightening vulnera-
bilities in the vital arteries of the U.S. economic and security systems.
Neither attack targeted nodes at random. They aimed intuitively to
decimate the hubs.

5.

Mimicking the actions of a cracker who brings down the Internet’s
largest hubs one after the other,! we embarked on a new set of experi-
ments. Like MafiaBoy and those involved in Eligible Receiver, we no
longer selected the nodes randomly but attacked the network by target-
ing the hubs. First, we removed the largest hub, followed by the next
largest, and so on. The consequences of our attack were evident. The
removal of the first hub did not break the system, because the rest of the
hubs were still able to hold the network together. After the removal of
several hubs, however, the effect of the disruptions was clear. Large
chunks of nodes were falling off the network, becoming disconnected
from the main cluster. As we pushed further, removing even more hubs,
we witnessed the network’s spectacular collapse. The critical point,
conspicuously absent under failures, suddenly reemerged when the net-
work was attacked. The removal of a few hubs broke the Internet into
tiny, hopelessly isolated pieces.

Though the simultaneous absence of the Santa Fe and South Bend
airports would be hardly noticed, the closing of Chicago’s O'Hare for a few
hours would be headline news, affecting the entire nation’s air travel.
Should some event simultaneously shut down the airports in Atlanta,
Chicago, Los Angeles, and New York, even if all other airports stayed
open, air travel within the United States would come to a halt within

1. Lately the word cracker is used to distinguish individuals who use their expertise to
break into computer systems for malicious purposes, such as shutting them down or
causing other harm. In contrast, use of the word hacker is positive, denoting individuals
with excellent computer skills who test the limits of our online universe without harm-
ing other computers or interfering with other users.
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hours. Our computer simulations indicated that we face similar problems
on the Internet as well. If crackers launched a successful attack against the
largest Internet hubs, the potential damage could be tremendous. This is
not a consequence of bad design or flaws in Internet protocols. Such vul-
nerability to attack is an inherent property of all scale-free networks.

Indeed, our group observed an equally spectacular breakdown when
we removed the highly connected proteins from the protein interaction
network of the yeast cell. The same collapse was seen by ecologists
when they deleted highly connected nodes from food webs. Two subse-
quent papers, one by Havlin’s research group and another by Duncan
Callaway from Cornell University, working together with Mark New-
man, Steven Strogatz, and Duncan Watts, provided the analytical
backing for this observation. They demonstrated that, when the largest
nodes are removed, there is a critical point beyond which the network
breaks apart. Therefore, the response of scale-free networks to attacks is
similar to the behavior of random networks under failures. There is a
crucial difference, however. We do not need to remove a large number
of nodes to reach the critical point. Disable a few of the hubs and a
scale-free network will fall to pieces in no time.

6.

A few days after we submitted our manuscript describing the error and
attack tolerance of complex networks, DARPA rejected our proposal.
Our paper, however, was rapidly published by Nature and featured on
the journal’s cover. While disappointed by DARPA’s decision, I could
not blame them. In early 2000 nobody could foresee the important
role scale-free networks would play in our understanding of attack sur-
vivability and fault tolerance. At that time even the fact that the In-
ternet was a scale-free network was known only to a few researchers,
and its consequences were clearly unexplored. Only today, dozens of
research projects later, are we beginning to understand the ramifica-
tions of these discoveries.

Taken together, the findings indicate that scale-free networks are
not vulnerable to failures. The price of this unprecedented resilience
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comes in their fragility under attack. The removal of the most con-
nected nodes rapidly disintegrates these networks, breaking them into
tiny noncommunicating islands. Therefore, hidden within their struc-
ture, scale-free networks harbor an unsuspected Achilles’ heel, cou-
pling a robustness against failures with vulnerability to attack.

The coexistence of robustness and vulnerability plays a key role in
understanding the behavior of most complex systems. Simulations have
shown that the protein network refuses to break apart under random ge-
netic mutations. Indeed, one can remove many nodes from this key cel-
lular network without risk of killing the organism. If, however, a drug or
an illness shuts down the genes encoding the most connected proteins,
the cell will not survive. Similarly, simulations performed on food webs
by Ricard V. Solé and José M. Montoya from Universitat Politecnica de
Catalunya in Barcelona have shown that ecosystems can easily survive
random species deletions. If, however, the highly connected keystone
species are removed, the ecosystem dramatically collapses.

A much studied example is the sea otter in California. The otter all
but disappeared during the nineteenth century because of excessive
hunting for its pelts. After federal regulators in 1911 forbade further
hunting of this lovely creature, the otter made a dramatic comeback.
Because it feeds on urchins, with the increase in otters the urchin pop-
ulation went down. With fewer urchins around, the number of kelps, a
favorite food of urchins, increased dramatically. This increased the sup-
ply of food for fish and protected the coast from erosion. Therefore, pro-
tection of only one species, a hub, drastically altered both the economy
and the ecology of the coastline. Indeed, finfish dominate in coastal
fisheries once dedicated to shellfish.

Although scale-free networks are vulnerable to attack, several of the
Jargest hubs must be simultaneously removed to crush them. This often
requires taking out as many as 5 to 15 percent of all hubs at the same
time. Thus crackers might need to attack and disable several hundred
Internet routers, which would be quite time-consuming. It might appear,
then, that despite its Achilles’ heel, the Internet’s topology harbors
strong defenses against both random breakdowns and malicious assaults.
Unfortunately, upon close inspection it turns out that this is not really
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the case. As we will see next, banking on topological stability against at-
tacks is a false insurance.

7.

Though early speculations included everything from UFOs to terrorists,
the 1996 summer blackout turned out not to be the result of an organ-
ized attack. Power lines expand when heated. Heating can be caused by
unusually warm weather, but power lines also easily heat up and elon-
gate if too much power is rushed across them. On a day of record tem-
peratures, at 15:42:37 on August 10, 1996, the Allston-Keeler line in
Oregon expanded and sagged close to a tree. There was a huge flash and
the 1,300-megawatt line went dead. Because electricity cannot be
stored, this enormous amount of power had to be suddenly shifted to
neighboring lines. The shift took place automatically, funneling the
current over to lower-voltage lines, of 115 and 230 kilovolts, east of the
Cascade Mountains.

These power lines were not designed, however, to carry this ex-
cess power for an extended time. Loaded up to 115 percent of their
thermal ratings, they too failed. A relay broke down in the 115-kilo-
volt line, and the excess current overheated the overloaded Ross-Lex-
ington line, causing it too to drop into a tree. From this moment
things could only keep deteriorating. Thirteen generators at the Mc-
Nary Dam malfunctioned, causing power and voltage oscillations, ef-
fectively separating the North-South Pacific Intertie near the Califor-
nia-Oregon border. This shattered the Western Interconnected
Network into isolated pieces, creating a blackout in eleven U.S. states
and two Canadian provinces.

The 1996 blackout is a typical example of what scientists often
call a cascading failure. When a network acts as a transportation system,
a local failure shifts loads or responsibilities to other nodes. If the extra
load is negligible, it can be seamlessly absorbed by the rest of the sys-
tem, and the failure remains effectively unnoticed. If the extra load is
too much for the neighboring nodes to carry, they will either tip or
again redistribute the load to their neighbors. Either way, we are faced
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with a cascading event, the magnitude and reach of which depend on
the centrality and capacity of the nodes that have been removed in
the first round.

Cascading failures are not unique to power networks. A malfunc-
tioning router will automatically prompt Internet protocols to bypass
the missing node by sending packets to other routers. If the broken
router carries a large amount of traffic, its absence will place a signifi-
cant burden on its neighbors. Routers do not break down under too
much traffic. They simply create a queue, processing as many packets as
they can and dropping the rest. Therefore, too much traffic sent to a
router amounts to a denial-of-service attack. Only a small percentage of
the packets will make it through. Because the sender of lost packets
does not get a confirmation that its message arrived, it sends it again,
escalating the congestion. Therefore, the removal of several large nodes
could easily create the same catastrophic disruption on the Internet as
the dropping power line in Oregon did to the power system.

Cascading failures are frequent phenomena in the economy. In-
deed, many attribute the East Asian economic crisis of 1997, to be dis-
cussed in more detail in Chapter 14, to the pressure the International
Monetary Fund (IMF) put on the central banks of several Pacific na-
tions, limiting their ability to provide emergency credit to troubled
banks. These banks, in turn, called their loans in from companies, turn-
ing the IMF decision, arguably the biggest financial hub, into a cascade
of bank and corporation failures.

Cascading failures are a well-known phenomenon in living systems as
well, affecting to an equal degree ecological habitats and the cell. Indeed,
as we already saw with the sea otter, the removal of some species can initi-
ate a chain of events that can lead to a significant reorganization of the
ecosystem. Similarly, the abrupt change in the concentration of a mole-
cule can result in a cascade of events that could result in the cell’s death.

Obviously, the likelihood that a local failure will handicap the
whole system is much higher if we perturb the most-connected
nodes. This was supported by the findings of Duncan Watts, from
Columbia University, who investigated a model designed to capture
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the generic features of cascading failures, such as power outages, and
the opposite phenomenon, the cascading popularity of books,
movies, and albums, which can also be described within the same
framework. His simulations indicated that most cascades are not in-
stantaneous: Failures can go unnoticed for a long time before starting
a landslide. Attempting to decrease the frequency of such cascades
has inevitable consequences, however, as those cascades that do suc-
ceed are then more disruptive.

Despite these advances, our understanding of cascading failures is
rather limited. Topological robustness is a structural feature of net-
works. Cascading failures, however, are a dynamic property of complex
systems, a relatively uncharted territory. I would not be surprised to
learn that there are still undiscovered laws that govern cascading fail-
ures. The discovery of those laws could have profound implications for
many fields, ranging from the Internet to marketing.

8.

The error tolerance discussed in this chapter is truly good news. Net-
work robustness implies that, when some chemicals in our body mal-
function, resulting in a rash or some other minor irritation, we will
be able to carry on our normal daily functions. Network robustness
explains why we rarely notice the effect of router errors and why the
disappearance of a few species does not lead to an environmental ca-
tastrophe.

The price of this topological robustness, however, is extreme expo-
sure to attacks. Taking out a hierarchy of highly connected hubs will
break any system. This is bad news for the Internet, since it allows
crackers to design strategies that can harm the whole infrastructure. It
is bad news for our economic establishment as well, for it indicates that,
by focusing on the networks behind the economy, one can design
strategies to cripple it. The results of the research described in this
chapter thus forced us to acknowledge that topology, robustness, and
vulnerability cannot be fully separated from one another. All complex
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systems have their Achilles’ heel. We have learned that topology mat-
ters, prompting us to better appreciate the hubs. This is the first step to-
wards defending them.

The September 11, 2001 terrorist attacks simultaneously illustrate
the power of hubs and the resilience of networks. The targets were
clearly not chosen at random: They were the most visible symbols of
the United States’ economic power and security. Targeting them, the
terrorists aimed to disrupt the hubs of global capitalism. While causing
a human tragedy far greater than any other event experienced by the
United States in the past two decades, the terrorists did not succeed in
their biggest goal: to topple the network. They started, however, a cas-
cade of failures that continue to ripple through the world as I write. Yet
despite the decimation of the twin towers of the World Trade Center,
all networks, ranging from the Internet to the tangled economic web,
survived—a vivid demonstration of the fundamental differences be-
tween the vulnerability of centralized human planning and the re-
silience of self-organized network design.

If there is any scientific lesson to learn from the events of Septem-
ber 11, it is that we are still far from truly understanding the interplay
between robustness and vulnerability. To be sure, scientists have re-
cently uncovered the basic principles of robustness. We now under-
stand the fundamental role networks play in ensuring resilience, a
breakthrough that is here to stay. The crucial step, however, of turning
this knowledge into practical expertise has so far eluded us. Nobody
could have predicted the degree of the cascading damage that the ter-
rorist attacks would cause. As the events unfolded, everyone watched
in horror, asking the same question: What'’s next? How vulnerable are
we? Fortunately, our understanding of failures and attacks indicates
that cascading failures and local breakdowns can be addressed in the
language of science. Understanding these problems thus is only a mat-
ter of focusing resources on the right questions. With the increased
awareness toward issues of robustness and attacks prompted by the
September 11 events, unquestionably our understanding of these issues
will drastically improve.



THE TENTH LINK

Viruses and Fads

GAETAN DUGAS HAD EVERYTHING he could wish for, and he knew it.
With a wardrobe culled from the trendiest shops in London and Paris,
and a well-built but not muscle-bound body, he was a standout in any
club. He had only to proposition in his charming French Canadian
accent and he could seduce anybody he wanted. “I am the prettiest,” he
used to say, and his friends agreed. Lately, however, he had been avoid-
ing the popular discos and the hottest nightclubs. His preference had
shifted to the steamy mirrors and heavy air of the Bay Area bathhouses.
Despite his narcissistic perfection, Dugas began developing a taste for
the darker houses that revealed little of his mesmerizing physical char-
acteristics. The long hallways of shady cubicles now made him most
comfortable. One night in 1982, as he prepared to exit one of those
cubicles, he switched on the lights, slowly turned towards the man he
had first met a few minutes before and immediately had sex with, and
pointed to the purplish spots and bumps on his face. “I've got gay
cancer,” he said. “I'm going to die and so are you.”

Dugas, once a French Canadian flight attendant, is often called
Patient Zero of the AIDS epidemic. This is not because he was the first
to be diagnosed with the disease but rather because at least 40 of the
248 people diagnosed with AIDS by April 1982 had either had sex with
him or with someone who had. He was at the center of an emerging
complex sexual network among gay men, a web anchored between the

123
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East and West Coasts of North America, spanning San Francisco, New
York, Florida, and Los Angeles.

His central role is far from coincidental. Dugas was one of the first
gay men in North America to be diagnosed with Kaposi’s sarcoma. By
1983 it was increasingly clear that the illness Dugas and several hun-
dred other gay men came down with had some infectious source, and
Dugas was again one of the first patients to be told that. But he contin-
ued to insist that he had skin cancer only. As cancer is not contagious,
for many years he never admitted to himself that he would pose any risk
to his sexual partners. Proud of his attractiveness and sexual conquests,
he later confided to health care workers the intimate details of his sex-
ual habits. He figured that he had about 250 sexual partners a year.
While some estimates put the total number of his partners as high as
20,000, his decade of promiscuity in gay clubs and bathhouses clearly
put him in sexual contact with at least 2,500 people.

It is not clear whether Dugas brought AIDS to North America. He
traveled frequently to France, where some of the earliest cases have
been discovered, but we will never know for sure if he was infected
there or in the United States. What we do know, however, is that
many of the earliest cases in North America were linked to him, plac-
ing him at the root of an epidemic that by now has killed almost 20
million people.

Dugas played an important role in turning the AIDS epidemic in a
few short years from an obscure and rare “gay cancer” to a North Amer-
ican health care crisis. He is a terrifying example of the failure of classi-
cal epidemic models and evidence of the power of hubs in our highly
mobile and connected society. Indeed, when it comes to viruses and
epidemics, hubs make a deadly difference.

1.

Like millions of other Americans, Mike Collins saw a picture of the
controversial Florida butterfly ballot on TV the night of November
8, 2000. “Jeez, how could they not follow the arrows to the dots?” was
his first reaction. “Maybe I'll draw something up that will make it
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Official Florida Presidential Ballot

Follow the arrow and Punch the appropriate dot.

Bush —> .

Buchanan _—> @

Gore P ®
Nader -_—
o

Figure 10.1 Florida’s Presidential Ballot. Mike Collins’s cartoon satirizing the
confusing butterfly ballots used in the 2000 presidential elections. (Reproduced
with permission of Mike Collins.)

more confusing.” Collins, a twenty-six-year-old municipal water
board engineer and amateur cartoonist from Elmira, New York, drew
a cartoon of four lines and e-mailed it to thirty friends. The next day
was his birthday and the day his sister gave birth to a daughter, so he
was out all day. When he returned home that evening, a huge pres-
ent awaited: 17,000 new hits on his Webpage and several hundred e-
mails. While he was away his cartoon perfectly expressing every-
body’s frustration with the 2000 presidential election had circled the
globe. Anybody who spotted it wanted a copy. Newspapers and Web-
sites from the United States to Japan were bombarding him with re-
quests for permission to publish. In a few hours he went from “Mike”
to an instant celebrity, with girls hirting on him and parents wanting
to fix him up with their daughters. While the election debate even-
tually died down, Collins’s signature drawing became perhaps the
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most recognized cartoon of the decade, popping up on everything
from T-shirts, which he sells through his Website, to greeting cards.
It is probably the single most enduring image of the ill-fated 2000
Florida ballot.

Mike Collins’s instant path to celebrity is a replay of the classic
American dream. But what is unusual is the speed with which it took
place. A few decades ago it was impossible to gain worldwide fame liter-
ally overnight, even in America. Something has changed. We normally
credit the Internet with these changes, and certainly the medium nur-
tures and spreads fame. But an explanation based entirely on technol-
ogy is not sufficient. We are witnessing something qualitatively new,
something that is allowing ideas and fads to reach everybody with the
speed of light.

2.

Gaetan Dugas and Mike Collins ostensibly have little in common. One
spread a cruel disease; the other was a small-town amateur who hit it
big with a clever idea. AIDS took a decade to escape its African source
and permeate the world, passing from partner to partner primarily
through sexual intercourse. Collins’s cartoon exploded overnight,
circling the world via clicks and e-mails. Nevertheless, they have some-
thing important in common. They are both examples of diffusion in a
complex network. AIDS spread following the links of the intricate sexual
network of the 1980s, aided by the emergence of a highly sexually active
gay culture. The ballot cartoon spread instantly through the entangled
network of computers, aided by our ability to reach our friends through
e-mail. Both, however, followed the same fundamental laws governing
the spread of fads, ideas, and epidemics in complex networks. These
laws have been intensively researched by marketing executives trying
to figure out how to get their product in your pocket; by sociologists
seeking to understand fads, fashions, and riots; by political scientists
tracking voting patterns and political fortunes; by doctors and epidemi-
ologist hoping to curb everything from the Ebola virus to the recurring
early winter flu; by teenagers writing computer viruses aiming to destroy
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all of Microsoft’s products overnight; and by system managers deter-
mined to prevent viruses from doing just that. These laws were be-
lieved to be universal, as indeed they are. But our emerging knowl-
edge about complex networks prorapts us to see them from a new

perspective.

3.

Whereas in 1933 hybrid corn was cultivated on only 40,000 acres
across North America, by 1939 it had reached 24 million acres, one
fourth of the nation’s corn acreage. It revolutionized and reshaped
American farming, eventually sweeping the wholé of Midwestern
agriculture in less than ten years. [owa was particularly quick to adopt
it. Though the new seed was not available before 1929, by 1939 as
much as 75 percent of lowa’s corn acreage was devoted to hybrid. This
rapid expansion, combined with the farmers’ good bookkeeping, of-
fered the first opportunity for researching how innovations spread.
Bryce Ryan and Neal C. Cross from lowa State College embarked on
this study in 1943.

Before adopting any innovation, we normally ask ourselves several
simple questions: Should I spend time evaluating the new product?
Should I spend money on it? How do I know that it will work for me as
promised? The questions were no different for the hybrid. To adopt it,
farmers had to invest in the new seeds to replace those they already
had. Though the switch promised a larger, heartier yield, there was
little guarantee that the extra benefits would offset the initial invest-
ment. The risk was particularly relevant for the first adopters. Never-
theless, the hybrid took root in lowa thanks to a small group of people
willing to take risks. Today we call such people innovators.

All of us know some innovators. They are our acquaintances who
jumped to buy the Apple Newton handheld computer, only to dis-
cover that the technology did not live up to its promises. A few years
later they were the first to scribble characters onto the gray screen of
the first Palm Pilots, this time jump-starting the handheld revolution.
They are the teens who pick up on new trends before they become
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mainstream, the artists and intellectuals who nurture ideas well be-
fore they reach the rest of us through books, movies, and magazines.
In Iowa they were the farmers for whom talking to the sales reps and
reading the documentation was enough to persuade them to try the
new seed.

Ryan and Cross found that plotting the number of farmers adopting
the seed each year yields a curve that increases rapidly until it reaches a
maximum, then drops equally fast afterwards. It is a bell curve. If a new
product passes the crucial test of the innovators, based on their recom-
mendation, the early adopters will pick it up. They are followed by the
numerous early majority, until half of the people who will eventually
adopt are already in the game. Beyond this point the number of new
adopters starts decreasing, the innovation attracting those who are slow
to make a decision but are persuaded by the overwhelming evidence in
its favor. This late majority is made up of farmers who have seen half of
the fields surrounding them turn over to the hybrid and are finally con-
vinced. The curve inevitably ends with the few laggards, who join only
after they have become a clear minority.

The bell curve observed by Ryan and Cross is not unique to Iowa
farmers. It characterizes the spread of most innovations, offering an excel-
lent tool by which marketing and planning experts foresee demand for a
new product. However, it fails to answer something that everybody from
epidemiologists to CEOs wants to know these days: What, if any, role is
played by the social network in the spread of a virus or an innovation?

4.

In 1954 Elihu Katz, a researcher in the Bureau of Applied Social Re-
search at Columbia University, circulated a proposal to study the effect
of social ties on behavior. It so happened that the director of market re- |
search for the pharmaceutical giant Pfizer was a Columbia alumnus.
Keen to understand how physicians adopt a new drug, he offered Katz
and his two colleagues, James Coleman and Herbert Menzel, $40,000
to track the spread of tetracycline, a powerful antibiotic introduced in

the mid-1950s.
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Coleman, Katz, and Menzel interviewed 125 doctors from a small
[llinois town, asking them to list separately the three doctors with
whom they most often discussed medical practices, three from whom
they sought advice regarding a medicine, and three whom they consid-
ered friends. These lists allowed them to reconstruct the complex net-
work of social ties and influence within the medical community.

The results indicated significant differences among doctors. A few
were named by a large fraction of their colleagues as playing an impor-
tant role in their day-to-day decisions. They were the hubs of the med-
ical community. The majority, however, played a much smaller role.
When it came to the spread of tetracycline, the doctors named by three
or more other doctors as friends were three times more likely to adopt
the new drug than those who had not been named by anybody.

Using prescription records from pharmacies, the researchers could
follow the spread of the drug’s use along the social links. It turned out
that the early adopters and early majority were predominantly doctors
with numerous social links. These highly connected doctors were more
likely to be in touch with innovators, thus learning about the new drug
more quickly. Once adopted by these doctors, the drug spread from
these hubs to their less connected colleagues, who formed the late ma-
jority. Finally came the laggards, doctors who resisted adopting the new
drug until the very end.

The Pfizer study demonstrated that innovations spread from inno-
vators to hubs. The hubs in turn send the information out along their
numerous links, reaching most people within a given social or profes-
sional network. Hubs, the integral components of scale-free networks,
are the statistically rare, highly connected individuals who keep social
networks together. In the AIDS epidemic, the gay flight attendant
Gaetan Dugas clearly qualified as a major hub. And the well-traveled
Paul, with his extended circle of friends and followers, was one of the
most influential hubs of early Christianity.

Hubs, often referred to in marketing as “opinion leaders,” “power

' are individuals who communicate with more

users,” or “influencers,’
people about a certain product than does the average person. With

their numerous social contacts, they are among the first to notice and
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use the experience of the innovators. Though not necessarily innova-
tors themselves, their conversion is the key to launching an idea or an
innovation. If the hubs resist a product, they form such an impenetra-
ble and influential wall that the innovation can only fail. If they accept
it, they influence a very large number of people.

Sociologists and marketing experts are fully aware of these opinion
leaders. But until recently they treated hubs as unique phenomena, with
little understanding of why and how many of them are out there. Social
network models did not support the existence of hubs. The framework of-
fered by scale-free networks has for the first time provided the legitimacy
hubs deserve. As we will see, hubs are changing nearly everything we
know regarding the spread of ideas, innovations, and viruses.

5.

Unveiled in 1993 as the brainchild of John Sculley, Apple’s Pepsi-bred
CEQ, the much promoted handheld computer Newton never made it.
Nevertheless, it started a revolution.

Today there are millions of pocket-sized devices in circulation. De-
spite this enormous number, many believe that we are still at the begin-
ning of the bell curve for market penetration. The problem for Apple is
that none of these handy devices is a Newton. Palm, Handspring, vari-
ous Pocket PCs, and their countless cousins have chewed up the Apple
vision, offering powerful proof that the first mover does not always have
the advantage. Newton pulled together many new technologies in a
“first-ever” device, promising a dream come true. It wasn’t that easy,
however. The nightmare started with a series of bad reviews ridiculing
Newton’s handwriting recognition capabilities. Critics pointed out that
it voraciously consumed batteries after a mere twenty minutes of use.
Disappointment followed disappointment, and sales of the MessagePad,
the redesigned version of Newton, peaked at a dismal 85,000 in 1995.
The product was discontinued three years later in an attempt to curtail
losses after Steve Jobs was reinstalled as Apple’s interim CEQO.

The failure of the Newton handheld and many other products begs

for an explanation. Why do some inventions, rumors, and viruses take
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over the globe, while others diffuse only partially or simply disappear?
Why and how are losers different from winners? Clearly advertisement
is not a sufficient explanation. After all, Newton failed despite Apple’s
enormous marketing machine. The billion-dollar question is, how does
one spot the rotten apples?

6.

Aiming to explain the disappearance of some fads and viruses and the
spread of others, social scientists and epidemiologists developed a very
useful tool called the threshold model. We all differ in our willingness to
accept innovation. In general, with sufficient positive evidence, each of
us can be convinced to adopt a new idea. However, the level of accept-
able testimony differs from one person to another. Acknowledging our
differences, diffusion models assign a threshold to each individual,
quantifying the likelihood that he or she will adopt a given innovation.
For example, those who bought the Newton right after its release had
close to a zero threshold for handheld devices. Before swiping our credit
cards, however, most of us want to see a new product working; thus
most of us display a higher threshold.

Despite significant differences in purpose and detail, all diffusion
models predict the same phenomenon: Each innovation has a well-de-
fined spreading rate, representing the likelihood that it will be adopted
by a person introduced to it. For example, the spreading rate incorpo-
rates the likelihood that after being shown a new handheld, you will be
prompted to buy it. Yet knowing the spreading rate alone is not suffi-
cient to decide the fate of an innovation. For that we must calculate
the critical threshold, a quantity determined by the properties of the net-
work in which the innovation spreads. If the spreading rate of the inno-
vation is less than the critical threshold, it will die out shortly. If it is
over the threshold, however, then the number of people adopting it
will increase exponentially until everybody who could use it does.

Recognizing that passing a critical threshold is the prerequisite for the
spread of fads and viruses was probably the most important conceptual ad-
vance in understanding spreading and diffusion. Currently the critical
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threshold is part of every diffusion theory. Epidemiologists work with it
when they model the probability that a new infection will turn into an
epidemic, as the AIDS virus did. Marketing textbooks talk about it when
estimating the likelihood that a product will make it in the marketplace or
to understand why some never do. Sociologists use it to explain the spread
of birth control practices among women. Political science exploits it to ex-
plain the life cycle of parties and movements or to model the likelihood
that peaceful demonstrations will turn into riots.

For decades, a simple but powerful paradigm dominated our treat-
ment of diffusion problems. If we wanted to estimate the probability
that an innovation would spread, we needed only to know its spreading
rate and the critical threshold it faced. Nobody questioned this para-
digm. Recently, however, we have learned that some viruses and inno-
vations are oblivious to it.

7.

Launched from the Philippines, Love Bug, the most damaging com-
puter virus ever, reached every computer-literate corner of the world in
hours. On May 8, 2000, the sun rose on continent after continent to
the fall of computers, thousands at a time—a global domino effect
sweeping from east to west. Computer security experts had hardly be-
gun assisting the first victims in Hong Kong when system administra-
tors of a major German newspaper watched in horror as the virus con-
sumed 2,000 digital photographs. Spreading to Belgium, it handicapped
ATM machines, denying customers vital currency. London, waking an
hour later, witnessed Parliament’s shutdown. Before moving on from
Europe, as many as 70 percent of Swedish, German, and Dutch com-
puters were in ruins. The carnage spread to the United States, where it
sneaked into the Capitol building’s computers in Washington D.C., in-
fected 80 percent of all federal agencies, including the defense and state
departments, and shut down the Bush presidential campaign’s e-mail
communications.

Love Bug, causing over $10 billion in damage from 45 million de-
stroyed computers worldwide, was a well-engineered psychological
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booby trap that nobody could resist. How could you not immediately
open a message entitled LOVE-LETTER-FOR-YOU? If you did yield to
the temptation, the activated virus then erased a series of documents
from your hard drive, with a particular appetite for jpeg and mp3 files
that encode digital pictures and music. Next it looked for a Microsoft
Outlook Express e-mail program. If it did find one, it sent new copies of
the love letter to all your friends and acquaintances whose e-mail ad-
dresses you stored there.

The carnage slowed when Richard Cheng and Maricel Soriano,
from the Philippines, created an antidote, a program that could immu-
nize a computer against the bug. What is amazing about Love Bug,
however, is that despite the widely and freely available antidote, the
virus still exists. According to Virus Bulletin, an online resource that
collects virus occurrences, Love Bug was still the seventh most active
virus in April 2001, a year after the release of the program that detects
and deactivates it. [ received a copy as late as July 2001.

It is tempting to speculate that perhaps Love Bug is so virulent that
it is virtually impossible to eradicate. But its continued presence cannot
be explained by virulence alone. This was the conclusion of two physi-
cists, Romualdo Pastor-Satorras and Alessandro Vespignani, who
showed that in contrast to the solid predictions of threshold models, in
real networks high virulence does not guarantee a virus’s spread.

8.

The unique northern Italian town of Trieste, with its mixed and tumul-
tuous historical heritage, is home to the prestigious International Center
for Theoretical Physics. Founded and directed for decades by the Nobel
prizewinning Pakistani physicist Abdus Salam, it offers a safe and intel-
lectually challenging haven for Third World physicists, bringing them in
contact with their colleagues from around the world. Romualdo Pastor-
Satorras, a Spanish physicist, finished a two-year postdoctoral position at
the center in 1999 before returning to Barcelona to assume a professor-
ship. In the summer of 2000 he went back to Trieste for a two-month visit,
planning to finish up several overdue projects that he and his former
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mentor Alessandro Vespignani had initiated during his earlier stay.
While compiling the bibliography of a new manuscript, they stumbled
across a computer science paper titled Open Problems in Computer Virus
Research by Steve R. White, a computer virus expert from IBM. The pa-
per argued that biologically inspired epidemic models do not properly de-
scribe the spread of Love Bug and other computer viruses.

Intrigued by this observation, the researchers decided to dissect the
problem more carefully. Using the records of the Virus Bulletin, an on-
line resource for computer virus prevention, they determined the likeli-
hood that a virus would still exist several months after its first occur-
rence. The results were astonishing: The characteristic life of most
viruses ranges between six and fourteen months. That is, viruses are in-
fecting computers more than a year after their first occurrence and sup-
posed eradication. As Pastor-Satorras and Vespignani put it, “these
characteristic times are impressively large if compared with the interval
in which antivirus software is available on the market (usually within
days or weeks after the first incident report).” Like the Mummy, viruses
are awakened over and over again from their sarcophagi, unable to rest.

Researchers normally use various versions of the standard threshold
models to describe how computer viruses spread. In these models each
computer can be either healthy or infected. During each time interval,
a healthy computer can be infected by the virus if it is in contact with
an already infected computer. As soon as an infected computer is cured,
it becomes susceptible to infection again. Assuming that computers are
connected randomly to each other, this model confirms the classical
scenario of virus spread: A virulent virus, with contagiousness larger
than a critical threshold, reaches most computers. In contrast, if the
virus's virulence is less than the threshold, the number of newly in-
fected computers decreases quickly, until the virus dies out.

By August 2000 Pastor-Satorras and Vespignani had concluded
that White was right: Computer viruses defy the predictions of the clas-
sical epidemic modecls. The source of this discrepancy, however, re-
mained unclear to them. As luck would have it, my research group’s pa-
per on the Internet’s Achilles’ heel was featured on the cover of Nature
that very week. Reading it, they suddenly found the missing piece. On
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the Internet, computers are not connected to each other randomly.
Rather, the underlying network has a scale-free topology. Thus, com-
puter viruses should be modeled on a scale-free network instead of the
random one used in all previous studies. Pastor-Satorras and Vespignani
rushed to do just that, investigating for the first time diffusion in a real-
istic scale-free network. The results were highly surprising: In scale-free
networks the epidemic threshold miraculously vanished! That is, even
if a virus is not very contagious, it spreads and persists. Defying all wis-
dom accumulated during five decades of diffusion studies, viruses travel-
ing in scale-free networks do not appear to notice any threshold. They
are practically unstoppable.

The source of this highly unexpected behavior lies in the uneven
topology of the Internet. Scale-free networks are dominated by hubs.
Because each hub is linked to a very large number of other computers,
it has a high chance of being infected by one of them. Once infected, a
hub can pass the virus to all the other computers it is linked to. Thus,
highly linked hubs offer a unique means by which viruses persist and
spread. Whereas virulent species quickly reach all nodes in any net-
work, in a scale-free environment their mildly contagious counterparts
also have a good chance for survival.

These results are not limited to computer viruses. The models used
by Pastor-Satorras and Vespignani, with some modifications, offer a
simple description of the spread of ideas, innovations, and new products
and the diffusion of infectious diseases. In a rough approximation, they
capture the process that aids the spread of religions as well: Paul, a
highly connected and mobile hub, helped the beliefs of early Christian-
ity reach as many people as possible. Ideas and innovations diffuse from
person to person along the links of the social web. Since the social net-
work appears to have a scale-free topology, the anomalies observed in
computer viruses should be present in these systems as well.

9.

Of the hundreds of social links each of us has, only a few are intimate
enough to transmit a sexual disease. Therefore, AIDS advances on a
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very sparse subnet of our highly interlinked social web. Add to this
the disease’s relatively low contagiousness, and you find that the epi-
demic should have slowed and died out by now. Despite the odds,
however, AIDS has already infected approximately 50 million
people, and the numbers continue to rise. It is tempting to take the
Trieste study at face value and attribute the rapid spread of the AIDS
epidemic to the scale-free topology of the social network. But be-
cause not all social ties represent sexually active links, we need to
ask, what is the topology of the sexual network that carries this
deadly disease?

During a late November day in 2000, Carina Mood Roman, a
Ph.D. student in sociology at the University of Stockholm, Sweden,
was trying to make sense of an extremely skewed error plot she received
while working on a class assignment. She had set out to predict the
number of sexual partners of a group of Swedish subjects. Sexual mores
in Sweden, one of the first countries to give legal rights to unmarried
couples living together, are comparatively liberal. Sweden also prides
itself on its remarkable and expansive health coverage and social serv-
ices. As AIDS started to take its toll in northern Europe, Swedish re-
searchers embarked on an extensive survey of sexual contacts, hoping
to find the means to slow the epidemic.

Obtaining a map of the sex web, which links people via sexual rela-
tionships, is simply impossible. Would you be willing to give me the
name of everybody with whom you have been intimately involved,
knowing that I would then have to contact them all to sketch out their
sexual links as well? Fortunately, we do not need a complete map of the
sex web to decide whether it is scale-free or random. We need only
measure the degree distribution by asking a representative subset of so-
ciety how many sexual partners each has had. Not requiring our sub-
jects to reveal the identity of their partners, we suddenly face a less
challenging job. In 1996 Swedish scientists conducted thousands of in-
terviews with a random sample of 4,781 individuals aged eighteen to
seventy-four, collecting information regarding their sexual habits. With
a response rate of 59 percent, they obtained the number of links for
2,810 nodes in the Swedish sex web.
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Today students often are given the collected data to test various
statistical methods. Roman had a copy of the data when she turned to
her roommate, Fredrik Liljeros, for help in interpreting her error plot.
Early in his sociology studies Liljeros was so favorably impressed during
a series of lectures on mathematical sociology that he had devoted him-
self to the field, focusing on the evolution of social organizations. This
research exposed him to a wide range of mathematical tools and con-
cepts, including self-organization and power laws. Though typically
Nordic in mien, when it comes to his passion, research, the twenty-
something Liljeros does not share the stereotypical calm and reserved
tone of his compatriots. “This looks like a power law!” he screamed to
his roommate after spotting the plot on Roman’s screen. Instead of
helping her with her assignment, he asked for the data, and proceeded
to verify his hunch. Next he e-mailed a copy to Luis Amaral at Boston
University, with whom he had previously collaborated. Amaral had re-
cently turned his attention to complex networks, authoring several
seminal papers on modeling scale-free topology. He immediately saw
that the data Liljeros e-mailed him contained the information key to
answering our earlier question: What is the topology of the sex web?

Each study on our sexual habits faces severe memory biases: Men
seem to remember more sexual partners than women do. Therefore, the
subjects of the Swedish study first were asked to reveal how many sex-
ual partners they’'d had in the previous year only, in hopes the answer
would be somewhat accurate. It was clear that their answers as to the
number of partners they remembered having in their lifetime would be
strongly affected by failing memories and expectations. Despite these
potential biases, the results were consistent. They indicated that the
majority of respondents had between one and ten sexual partners dur-
ing their lifetime. Some, however, had dozens or more. A few had sev-
eral hundred. The distribution followed a power law, regardless of

whether one examined the one-year interval, considered all sexual

partners, or focused only on either males or females. Taken together,
the data offered striking evidence that the network of our sexual rela-
tionships has a scale-free topology, a conclusion reinforced by a subse-
quent study focusing on the American population.
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Gaetan Dugas would seemingly hold the record with 250 sexual part-
ners a year. But Wilt Chamberlain’s claim that he’d had sex with a stag-
gering 20,000 women clearly surpassed that measure. “Yes, that’s correct,
twenty thousand different ladies,” he wrote. “At my age, that equals to
having sex with 1.2 woman a day, every day, since I was fifteen years old.”
The NBA Hall of Famer’s macho accounting made him a lighting rod for
criticism by those offended by his promiscuity. The Stockholm-Boston
collaboration, however, found that he is not that unique. The scale-free
topology implies that, though most people have only a few sexual links,
the web of sexual contacts is held together by a hierarchy of highly con-
nected hubs. They are the Wilt Chamberlains and the Gaetan Dugas,
collecting an astounding number of sexual partners.

In light of these results, the Trieste predictions offer a new perspec-
tive on the AIDS epidemic. The deadly virus must have followed the
route already spotted in the spread of innovation and computer viruses:
Hubs are among the first infected thanks to their numerous sexual con-
tacts. Once infected, they quickly infect hundreds of others. If our sex
web formed a homogeneous, random network, AIDS might have died
out long ago. The scale-free topology at AIDS’s disposal allowed the
virus to spread and persist.

10.
When in 1997 we saw the first decline of AIDS deaths in the United

States, we thought that the worst was over. We were wrong. Currently,
every day 15,000 people are infected worldwide. The majority of them
will die of the disease within a decade. If you are a fifteen-year-old in
Botswana today, your risk of contracting and dying of AIDS during your
lifetime is almost 90 percent. In fact we would be hard-pressed to pick a
teenager from this or several other sub-Saharan countries who sooner
or later will not be killed by the pandemic. This is despite the fact that
several relatively effective treatments for AIDS are already on the mar-
ket. To be sure, none of these treatments is a cure for the disease. But
each does render it a chronic illness with which most patients can live
almost indefinitely. The biggest problem is that these $15,000-a-year
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treatments are out of financial reach for most countries outside Europe
and North America.

The crisis faced by Africa is the most severe. The problem is not
only that most African countries cannot pay for the drugs. Even if
drug prices were to drop, these nations lack the infrastructure to dis-
tribute and administer the treatment. At twenty, the AIDS epidemic
has become a macabre celebrity. Through demonstrations and the
aid of high-profile backers ranging from Bill Gates to any number of
pop starts, AIDS activism has captured the spotlight, forcing the big
pharmaceutical companies to deliver drugs at cost to poor nations.
This is only the first step, however. It is clear that, despite the sev-
eral-billion-dollars-strong international fund, there will not be
enough money to buy treatments for everyone, even at cost. So who
gets them? '

Whereas the early spread of AIDS was attributed primarily to ho-
mosexual sex, today heterosexual sex is the leading means of transmis-
sion. As we've established, hubs play a key role in these processes.
Their unique role suggests a bold but cruel solution: As long as resources
are finite we should treat only the hubs. That is, when a treatment ex-
ists but there is not enough money to offer it to everybody who needs it,
we should primarily give it to the hubs. This was the conclusion
reached in two recent studies, one by Pastor-Satorras and Vespignani,
the other by Zoltdn Dezs8, a graduate student in my research group.
The results indicate that if we offer treatment for all nodes with a de-
gree larger than a preselected value, no matter where we set the limit
the epidemic threshold becomes finite. The more hubs we treat the
larger the epidemic threshold and, thus, the higher the chance that the
virus will die out.

The problem is that we do not know for sure who the hubs are.
Therefore, Zoltin Dezs6 and I set out to address a more difficult ques-
tion. While we do not know how to identify the hubs with a high degree
of confidence, decades of research have produced numerous sociological
methods for identifying high-risk groups, as well as individuals most
likely to be the source of the epidemic, in a given community. Social
status, age, occupation, and many other factors each play a role.
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Therefore, with a certain probability, one can identify the hubs. Doubt-
less, many hubs will go undiscovered, while a few nonhubs will make
the list. But we must ask whether such an imperfect method is useful.
Since doing our best to identify the hubs is not enough, can we still re-
store the epidemic threshold? To answer this question we must assume
that nodes are not treated randomly, but health organizations follow a
biased policy that makes an individual with numerous sexual links
more likely to be treated than those with only a few links. This stochas-
tic approach allows us to compare those policies that are very effective
in identifying and treating the highly connected nodes with those that
distribute the treatment randomly. Zoltdn Dezs6 undertook this com-
parison and we were surprised by the results. To be sure, each policy
that continued to distribute the treatments randomly continued to
have zero threshold and failed to stop the virus. But any policy that dis-
played bias toward the more connected nodes, even a small bias, re-
stored the finite epidemic threshold. That is, even if we are not success-
ful in finding all hubs, by trying to do so we can lower the rate at which
the disease spreads.

Any selective policy raises important ethical questions. Indeed, our
results indicate that, faced with limited resources, we would end up re-
warding promiscuity: The more sexual partners an individual has had,
the greater her or his likelihood of being picked for treatment. The bet-
ter we are at selecting and treating the promiscuous individuals, the
fewer people will be affected by the disease. Are we prepared to aban-
don the less connected patients for the benefit of the population at
large? Are we ready to offer drugs to the more connected poor prosti-
tutes than to the wealthier but sexually less connected middle class?

There is a solution that makes such moral debates academic: a vac-
cine. Currently, the world spends a mere $350 million annually on
AIDS vaccine research. That number pales in comparison to the $3 bil-
lion plus annually spent on AIDS drugs in America and Europe or to
the billion-plus dollar price tag for a single fighter plane. As we con-
tinue wrestling with our priorities, my feeling is that in the meantime
we should do everything it takes to stop the spread of the disease, even

if it requires rewarding promiscuity.
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11.

Our understanding of hits and flops, epidemics and fads, has progressed
considerably since the pioneering lowa study. The last few decades
have seen an incredible diversification of the subject. We have learned
that studying the adoption of new crops can help us understand the
spread of AIDS and the emergence of blockbusters. We have learned
that, though randomness is involved in every diffusion process, the
process follows laws that can be formulated in precise mathematical
terms. And we have begun to understand the important role the social
network plays in these processes.

Much has changed over the past five decades, however. The world-
wide social network has imploded with the spread of high-speed com-
munication devices, ranging from fax machines to e-mail, that bring
and keep us together to a degree unprecedented in history. We feel a
sense of urgency about understanding how this implosion affects the
laws of diffusion. With the increasing threat of bioterrorism and with
the steady spread of AIDS, there is a vital need to be able to predict and
track deadly viruses in this increasingly mobile world, where infected
individuals can hop on a plane and turn a local epidemic into a pan-
demic. In an increasingly computer-dependent world we have created a
new breed of viruses that see no national boundaries. These cousins of
Love Bug are more than mere nuisances. They represent a palpable
threat to our security and way of life, easily capable of causing life-
threatening emergencies. With their proliferation a new breed of epi-
demiologist has emerged, the computer security expert, who vigilantly
monitors the health of our online universe.

Innovations and biological or computer viruses spread across inho-
mogeneous networks where hubs run the show. The implications of the
Trieste study are that we are in for more surprises when it comes to how
much we know about spreading and diffusion. I believe that the results
obtained so far represent only the tip of the iceberg. Whereas spreading
and diffusion have universal properties, individual systems have unique
features that are often as important as some of the generic laws. We
would be kidding ourselves if we believed that modeling computer viruses
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would give us a good picture of the AIDS epidemic. To be able to make
detailed predictions on the disease’s spread, the models should include
many details that are specific to the pandemic. That is still a distant
dream. But understanding the fundamental laws that govern spreading
and diffusion is the key prerequisite for success. The recent break-
throughs in these directions offer a strong impetus to revisit problems
ranging from marketing to the spread of influenza and to critically inspect
the inherent assumptions. As we follow this path, I am convinced that
many more surprises and potential breakthroughs will surface.

The recent paradigm changes in diffusion and epidemics studies
were possible thanks to the wealth of data offered by the Internet, one
of the most charted networks. The Internet helped us discover scale-
free networks in the first place. The viruses navigating it provided the
insights and the necessary data that made the Trieste study possible,
uncovering the threshold-free nature of some epidemics. The under-
standing they offered has prompted us to revisit everything from fads
to the AIDS pandemic. Let us step back now and take a look at the
entangled medium that made all these discoveries possible and chart

the network behind it.




THE ELEVENTH LINK

The Awakening Internet

WHEN PAUL BARAN REGISTERED a week late for his first computer sci-
ence class at University of Pennsylvania, he knew that he had already
missed the first lecture, but he was not too worried. Not much is done
in the first class anyway. So he showed up for the secornd class, on
Boolean algebra, the mathematics behind computer logic. As he re-
calls, “The instructor went up to the blackboard and wrote ‘1 + 1 =0.” |
looked around the room waiting for someone to correct his atrocious
arithmetic. No one did. So I figured that I may be missing something
here, and I didn’t go back.” Yet, he did revisit the subject ten years later,
on his fourth job after graduation. This time he faced a different prob-
lem: He was way too early.

Barely thirty and only a few months into his new job at RAND
Corporation, Baran was given the prodigious task of developing a com-
munication system that would survive a nuclear attack. In 1959 the
possibility of a Soviet nuclear warhead’s falling from the sky was not
mere science fiction but an appropriately feared potential war scenario.
Baran’s employer, a California think tank founded in 1946 to provide
the intellectual know-how for the military’s nuclear buildup, had con-
siderable expertise in developing war scenarios and potential disaster
outcomes. Such grim tasks as foreseeing and detailing the death of mil-
lions from a nuclear attack were never a source of good press, often tar-
ring the company with Dr. Strangelove’s brush. Baran’s assignment, to
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develop a survivable communicator system, was par for the course at
RAND. Baran took his job seriously, and in a twelve-volume series of
RAND Memorandums he meticulously described the vulnerabilities of
the existing communication infrastructure and proposed a better
one—the Internet.

Baran saw the vulnerability of the command system of the 1950s
hidden in the topology of the existing communication network. Since a
nuclear strike handicaps all equipment within the range of detonation,
he wanted to design a system whose users outside of this range would
not lose contact with one another. Inspecting the communication sys-
tems of that time, he saw three types of networks (see Figure 11.1).
Baran discarded the starlike topology, concluding that “the centralized
network is obviously vulnerable as destruction of a single central node
destroys communication between the end stations.” Baran saw the cur-
rent system as a “hicrarchical structure of a set of stars connected in the
form of a larger star,” offering an early description of a scale-free net-
work. With incredible insight, he found this topology too centralized to
be viable under attack. In Baran’s mind the ideal survivable architec-
ture was a distributed meshlike network, similar to a highway system,
redundant enough so that even if some nodes went down, alternative
paths maintained the connection between the rest of the nodes.

An enduring myth alleges that the Internet was designed to survive
a Soviet nuclear strike. It is true that Baran’s main motivation was to
design a system that could not be taken out by the Soviet nuclear arse-
nal. But in the long run his ideas and innovations were all but ignored
by the military. As a result the topology of today’s Internet has little to
do with his vision. Yet the topological change advocated by Baran was
not the reason everyone from the military to industry vehemently op-
posed his design. The objection was to his proposal to break the mes-
sages into small packets of uniform size capable of traveling independ-
ently of one another along the network. This could not be achieved
with the existing analog communication system. Thus he advocated a
switch to a digital svstem. This step was too difficult for AT&T, the
communication monopoly of his time, to absorb. Therefore, AT&T’s

Jack Osterman quashed Baran’s vision when he declared, “First, it can't
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Figure 11.1 Paul Baran’s Networks. In 1964, Paul Baran began thinking about
the optimal structure of the Internet. He suggested that there were three possible ar-
chitectures for such a network—centralized, decentralized, and distributed—and
warned that both the centralized and decentralized structures that dominated com-
munications systems of the time were too vulnerable to attack. Instead, he proposed
that the Internet should be designed to have a distributed, mesh-like architecture.
(Reproduced with permission of Paul Baran.)

possibly work, and if it did, damned if we are going to allow the cre-
ation of a competition to ourselves.” Baran’s ideas, defeated at every
step by industry and the military, were rediscovered only years later,
when the Advanced Research Projects Agency, not aware of his results,
independently constructed the same vision. By that time, however, the
Internet was well along its course of development.

Understanding the topology of the Internet is a prerequisite for de-
signing tools and services that offer a fast and reliable communication
infrastructure. Though human made, the Internet is not centrally de-
signed. Structurally, the Internet is closer to an ecosystem than to a
Swiss watch. Therefore, understanding the Internet is not only an engi-
neering or 2 mathematical problem. In important ways, historical forces
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shaped its topology. A tangled tale of converging ideas and competing
motivations left their mark on the Internet’s structure, creating a jum-
bled information mass for historians and computer scientists to unravel.

1 *
The Advanced Research Projects Agency, or ARPA, was President

Eisenhower’s answer to the Soviets’ launching of the first Sputnik satel-
lite. Originally ARPA had sweeping control of the most advanced mili-
tary research and development projects, in particular the antimissile
and satellite programs. It lost its muscle, however, after NASA took
over the space program.

Struggling for a mission, ARPA reinvented itseif to coordinate
long-range research relevant to the military, in contrast with the imme-
diate developmental projects that different military agencies were han-
dling themselves. The Internet entered the picture around 1965 or
1966, when Bob Taylor, the director of ARPA’s computing program,
suddenly became concerned with a huge waste of federal resources he
had just discovered.

In the 1960s, ARPA was already funding computer research in a big
way. This indeed required considerable investment—with the PC revo-
lution decades away, computers cost anywhere from half a million to
several million dollars. ARPA had several such monsters in its research
portfolio, hosted by research labs around the country. The problem was
that even computers in the same room could not talk to each other.
Tapping into the computing power stored at other ARPA-supported
sites was out of the question. Bob Taylor had a brilliant idea: To stop
this waste, why not link these incompatible machines somehow? In
February 1966, after presenting his vision to Charlie Herzfeld, ARPA’s
director, he walked away with a fresh million in his budget and a new
sense of mission.

The idea of connecting computers also occurred to Donald Davies,
director of computer science at Britain’s National Physical Laboratory in
Tennington, a town within commuting distance of London. Working
hard to turn his idea into reality, Davies reinvented packets and packet
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switching well before learning of Baran’s preexisting work. His group pre-
sented these concepts at a 1967 symposium in Gatlinburg, Texas, intro-
ducing his and Baran’s ideas to the ARPA-supported research group. It
suddenly became clear to everyone that packet switching over faster lines
was the technology required to create a truly efficient communication
network. Finally Baran’s decade-old vision began to materialize. And so
the network that today we call the Internet was born.

The word Internet is often used to describe everything related to our
online universe, including computers, routers, optical cables, and even
the World Wide Web. Here we will use the word to refer only to the
physical infrastructure connecting computers. The Internet is a net-
work of routers that communicate with each other through protocols
envisioned by Paul Baran and made possible thanks to ARPA’s deep
pockets. Ironically, the principles directing today’s Internet match
Baran’s original vision in every respect except the guiding principle
that motivated his work: undercutting vulnerability to attacks. Baran’s
distributed highwaylike network could have become a reality only if
the Internet had continued to be regulated and maintained by the mili-
tary. The Internet, however, took on a life of its own.

2.

In the computer science community Bill “Ches” Cheswick, a researcher
at a Lucent/Bell Labs’ spin-off called Lumeta, is best known for his
work on firewalls and computer security. But the public increasingly
recognizes him for the colorful Internet maps he and Hal Burch, also at
Lumeta, produce and sell through Peacockmaps.com. The millennium
map, depicting the Internet’s topology on January 1, 2000, shows a
dense, entangled forest of routers and links, a network of considerable
beauty. Its complexity is matched perhaps only by the human brain.
There is an important difference between the two, however. Whereas
the human brain’s size has been stagnating for centuries, the Internet
continues to grow exponentially, without any sign of slowing down.
Cheswick is far from being a lone scientist with artistic aspirations. He
is in illustrious company. DARPA, the successor to ARPA, is currently
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spending millions of dollars on research groups around the United States
to do just what Cheswick is doing: map the Internet. The most visible of
these projects is the Cooperative Association for Internet Data Analysis,
or CAIDA, an Internet tomography collaboration hosted by the Univer-
sity of California at San Diego, whose main goal is to monitor just about
every characteristic of the Internet from traffic to topology. Across the At-
lantic but only a click away, Martin Dodge, a researcher at the Center for
Advanced Spatial Analysis at University College London, hosts Cy-
bermaps.com, a colorful Website collecting a stunning body of maps visu-
alizing the Internet.

Would it ever occur to you to meticulously draw a map of your
watch, the Pentium chip in your computer, or the car you drive every-
day to work? Hardly. If you really want to know what is under the hood,
you could contact the manufacturer for the car’s blueprint. Engineers
prepare hundreds of maps before building each watch, chip, or car, de-
tailing not only every component, but the location of and the relation-
ship between each piece, as well. But today, when the Internet is the
workhorse of the American economy, we still do not have a detailed
map of it. Since the National Science Foundation relinquished its stew-
ardship of the Internet in early 1995, no central authority has con-
trolled or documented its growth and design.

Today the Internet evolves based on local, distributed decisions on
an “as needed” basis. Everyone, from corporations to educational insti-
tutions, adds nodes and links without needing permission from a cen-
tral authority. There is no single network either. Independent but inter-
linked networks coexist and operate, going by such names as WNET,
vBNS, or Abilene.

You would think there was someone out there who, if necessary,
could shut the whole thing down. Wrong. While you could persuade an
institution to close down the portion of the network under its author-
ity, no single company or person controls more than a negligible frac-
tion of the whole Internet. The underlying network has become so dis-
tributed, decentralized, and locally guarded that even such an ordinary
task as getting a central map of it has become virtually impossible.
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3.

There are important practical reasons for seeking a global Internet map.
Without knowing the Internet’s topology it is impossible to design bet-
ter tools and services. The current Internet protocols were developed
with a small network and 1970s technologies and needs in mind. As
the network grew and new applications emerged these protocols have
often fallen short of our desires. Indeed, most of today’s use of the Inter-
net was unimaginable by those who designed the basic infrastructure,
which is still in place. For example, e-mail was born when an adventur-
ous hacker, Rag Tomlinson, working at BBN, a small consulting firm in
Cambridge, Massachusetts, figured out how to modify the file transfer
protocols to carry mail messages. For a long time Tomlinson kept quiet
about his breakthrough. When he first showed it to one of his col-
leagues, he warned him, “Don’t tell anyone! This isn’t what we’re sup-
posed to be working on.” E-mail leaked out, however, and became one
of the dominant applications of the early Internet.

The same is true of the World Wide Web. The infrastructure was
never prepared for it. It is an excellent example of a “success disaster,”
the design of a new function that escapes into the real world and multi-
plies at an unseen rate before the design is fully in place. Today the In-
ternet is used almost exclusively for accessing the World Wide Web and
e-mail. Had its original creators foreseen this, they would have designed
a very different infrastructure, resulting in a much smoother experi-
ence. Instead we find ourselves locked into a technology that adapts
only with great difficulty to the booming diversity and demand imposed
by the increasingly creative use of the Internet.

Until the mid-nineties all research concentrated on designing new
protocols and components. Lately, however, an increasing number of
researchers are asking an unexpected question: What exactly did we
create! While entirely of human design, the Internet now lives a life of
its own. It has all the characteristics of a complex evolving system,
making it more similar to a cell than to a computer chip. Many diverse
components, developed separately, contribute to the functioning of a
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system that is far more than the sum of its parts. Therefore, Internet re-
searchers are increasingly morphing from designers into explorers. They
are like biologists or ecologists who are faced with an incredibly com-
plex system that, for all practical purposes, exists independently of
them. The mystery is a bit deeper than that, however. While biologists
have spent decades figuring out what proteins look like and how they
interact with each other, all details regarding the Internet’s compo-
nents are fully available to the Internet tomographer. What neither
computer scientists nor biologists know is how the large-scale structure

emerges once we put the pieces together.

4.

Vern Paxon and Sally Floyd, computer scientists at the International
Computer Science Institute Center for Internet Research in Berkeley,
California, in an influential and much quoted 1997 paper, identified our
limited knowledge of the network topology as the main obstacle toward
a better understanding of the Internet as a whole. Two years later three
Greek computer scientist brothers, Michalis Faloutsos of the University
of California~Riverside, Petros Faloutsos of the University of Toronto,
and Christos Faloutsos of Carnegie Mellon University, made a surpris-
ing discovery. They found that the connectivity distribution of the In-
ternet routers follows a power law. In their seminar paper “On Power-
Law Relationship of the Internet Topology” they showed that the
Internet, a collection of routers linked by various physical lines, is a
scale-free network. Their discovery had a simple message that quickly
penetrated the research community: All tools used to model the struc-
ture of the Internet before 1999, based on ideas rooted in random net-
works, were simply wrong.

The Faloutsos brothers were unaware of the parallel discoveries of
power laws in the World Wide Web topology. Combined with these de-
velopments their inding acquired a new meaning, removing the Inter-
net from the world of random networks and dropping it into the color-
ful zoo of scale-free topologies. This was rather unexpected. After all,
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the Internet is comprised of physical lines and routers. It is all hard-
ware. How could these costly and heavy copper and optical connec-
tions follow the same rules as hurnans do when establishing their
weightless social links or adding URLs to their Webpage?

5.

In October 1969 Charley Kline was asked to arrange the first computer-
to-computer message through an ordinary telephone line. Working as a
programmer in the UCLA lab of Leonard Kleinrock, he was part of a
project attempting to connect to the only other existing Internet node
located at Stanford University. After establishing the connection,
Kline started by typing “login.” He typed [ and got the echo from Stan-
ford confirming that the letter had been received. He proceeded with o
and again received the appropriate echo. Then he ventured to g. How-
ever, that was too much for the young system to absorb, and the com-
puter crashed, killing the connection as well.

The connection was quickly reestablished, and after the UCLA
and Stanford nodes were firmly in place many others joined in. Accord-
ing to John Naughton, author of A Brief History of the Future, the Uni-
versity of California~Santa Barbara and the University of Utah got the
third and the fourth nodes in November and December 1969, respec-
tively. The fifth was delivered to BBN, a Massachusetts consulting firm,
early in 1970, together with the first cross-country circuit—a second
line connecting the machines in Los Angeles to BBN’s in Boston. By
the summer of 1970, nodes six, seven, eight, and nine had been in-
stalled at MIT, RAND, System Development Corporation, and Har-
vard. By the end of 1971 the Internet consisted of fifteen nodes; by the
end of 1972 it had thirty-seven. As Naughton puts it, “The system was
beginning to spread its wings—or, if you were of a suspicious turn of
mind, its tentacles.”

As you may have noticed, the Internet follows the classical scenario
of a growing network. Today, two decades later, it continues to expand
node by node—the first and necessary condition for the emergence of a
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scale-free topology. Preferential attachment, the second condition, is
more subtle, however. Why would anyone link his or her computer to
any router other than the nearest one! After all, laying down a longer
cable is more expensive.

It turns out that the length of cable is not the limiting factor deter-
mining the growth or stagnation of the Internet. When an institution
decides to link its computers to the Internet, it has only one parameter
in mind: cost of communication. Regarding bandwidth, the measure of
how many bits a connection can carry each second, the closest node is
often not the best choice. Going a few extra miles could provide access
to faster routers.

Routers offering more bandwidth likely have more links as well.
Thus, while shopping for a good place to link, network engineers in-
evitably gravitate toward the more heavily connected access points.
This simple effect is a possible source of preferential attachment. We do
not know for sure whether it is the only one, but preferential attach-
ment is unquestionably present on the Internet. This was first demon-
strated by Soon-Hyung Yook and Hawoong Jeong, both working in my
research group, when they compared Internet maps recorded at several
months’ time intervals. Charting how the Internet grows node by node
they found quantitative evidence that nodes rich in links acquire more
links than nodes with a few links only.

Growth and preferential attachment should be sufficient to explain
the scale-free topology discovered by the Faloutsos brothers. On the In-
ternet things are a bit more complicated, however. While not the pri-
mary consideration, distance does matter. Undeniably, it is more ex-
pensive to lay down two miles of optical cable than half a mile. We
must also take into consideration that nodes do not appear randomly
across the map. Routers are added where there is a demand for them,
and demand depends on the number of people wanting to use the Inter-
net. Thus there is a strong correlation between population density and
the density of the Internet nodes. The distribution of routers on the
map of North America forms a fractal set, a self-similar mathematical
object discovered in the 1970s by Benoit Mandelbrot. Therefore, when

trying to model the Internet, we must simultaneously acknowledge the
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interplay of growth, preferential attachment, distance dependence, and
an underlying fractal structure.

Each of these forces alone, if taken to the extreme, could destroy
the scale-free topology. For example, if the length of the wire were the
main consideration when deciding where to link, the resulting network
would have an exponential degree distribution, developing a topology
very similar to the highway system. But the amazing thing is that these
coexisting mechanisms delicately balance each other, maintaining a
scale-free Internet. This very balance of power is the Internet’s own

Achilles’ heel.

6.

MAI Network Services, a small Internet service provider headquar-
tered in McLean, Virginia, owns several high speed Internet routers
linked to the giant networks owned by Sprint and UUNet. On the
morning of Friday, April 25, 1997, MAI released a routing table update
for its routers. Routers shepherd packets they receive toward their desti-
nation by matching the address on the packet with a routing table.
These routing tables are the roadmaps of the Internet. As the network
topology is constantly changing, the routing tables are also periodically
updated. At 8:30 A.M. MAI broadcast the updated routing information
to its own routers. Because of an incorrect configuration, the update did
not stop at the borders of MAI but escaped and rewrote the routing ta-
bles of a large number of routers owned by Sprint and UUNet. It in-
structed them to send all traffic to several MAI routers.

It was like watching water burst from a broken dam, destroying
everything in its path. MAI watched in horror as all Internet traffic
was suddenly redirected towards it. Because it never had the capacity
to handle even a fraction of this flood, MAI turned into a black hole,
absorbing packages at an incredible rate. Forty-five minutes later the
company was forced to shut itself down to stop the damage. In the
meantime Internet providers helplessly watched all their traffic get
sucked into the black hole created by the faulty reconfiguration. Sprint
recovered only after it manually changed all the routing tables it
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owned, as did many of the big and small Internet providers affected by
the problem.

Thanks to the quick resolution and the relative youth of the In-
ternet, the world paid little attention to the event. However, it of-
fered a vivid demonstration of the speed by which errors propagate on
the Net: Within minutes of its release the misconfigured routing table
was part of several large networks, triggering a classic example of a
cascading failure.

Paul Baran had a very specific threat in mind when he designed the
prototype of the Internet. He anticipated Soviet nuclear warheads hit-
ting intelligence and military headquarters, potentially leading to com-
plete information and communication loss. Neither he nor the early In-
ternet pioneers considered the possibility that one day people from any
country in the world could have access to the infrastructure. For many
years the United States resisted sharing the technology with countries
deemed nonfriendly. I experienced that myself, as the much hated CO-
COM list officially excluded Hungary from the Internet until the fall of
the Berlin Wall. The Internet was too contagious to be halted by such
artificial barriers, however. Thanks to the ingenuity of local system
managers, many eastern European universities had been regularly com-
municating via e-mail with their Western colleagues well before the re-
strictions were lifted. Today virtually every country on Earth is con-
nected to the Internet. This open access policy brought along
unexpected dangers and vulnerabilities as well, increasingly threaten-
ing our interlinked world.

One of the United States’ busiest nodes, owned by AT&T, is a
highly guarded subterranean facility in Schaumburg, Illinois, a Chicage
suburb. This and several similarly well protected key nodes offer a false
sense of security that the Internet cannot be broken by intentional at-
tacks. The increasingly understood interplay between the network ar-
chitecture and the protocols presents a different picture, however. A
few well-trained crackers could destroy the net in thirty minutes from
anywhere in the world. There are many ways to accomplish this, from
breaking into the computers running several key routers to launching

denial-of-service attacks against the busiest nodes.
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The Code Red worm, which spread like a virus and infected hun-
dreds of thousands of computers worldwide in the summer of 2001, is a
good example of a technology that could achieve just that destruction.
At first it appeared to be a harmless virus, since it did not damage its
host. But after sitting dormant for days, it suddenly turned all infected
computers into zombies, simultaneously throwing traffic at white-
house.gov. Code Red was only a proof-of-principle demonstration of
what automated viruses could achieve. More sophisticated versions
could result in unparalleled damage. Disabling a few major nodes would
not be sufficient to break the network into pieces, but the cascading
tailure of other routers resulting from the redirection of traffic to
smaller nodes would finish the job.

Most crackers or hackers with the know-how would have no interest
in taking the whole Internet out. A successful attack would take away
their favorite toy, denying them access to the Net, as well. So a large-
scale action taking on the entire Internet would never be the work of
true hackers. But it could easily be the goal of rogue nations and terror-
ists. Understanding the Internet’s topology will help us protect it.

7.

On August 30, 2001, National Public Radio aired a five-minute segment
about our latest research, published the same day by the British journal
Nature. It was not the first time that our work had been featured in the
media. But the next morning, staring in disbelief at the project’s Website
counter, which had registered over 10,000 hits overnight, I realized
things were a bit different this time. My e-mailbox was crowded with
uncountable messages. Most were positive. Some, however, were rather
scary. “Stay the hell out of my computer!” wrote a senior officer in a
company developing deterrence programs. “I'd hate to see another East-
ern European CompSci person tossed in jail by the US Federal Govern-
ment,” concluded another less than friendly note, reminding me of the
recent arrest of a Russian hacker by U.S. authorities. “[I] request that
you assure us that no computers on our networks have been, or are cur-
rently being, targeted by this program,” wrote the CEO of a company in
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Norway. “I remind you that any unauthorized use of resources located at
these IP addresses is illegal and may result in legal action and demands
for compensation.” How could a research paper intended for an aca-
demic audience and published by one of the most prestigious scientific
journals create such a fierce and immediate reaction?

James McAdams, head of the Department of Government and In-
ternational Studies at Notre Dame, had a great idea in early 2000. He
assembled seven professors from all different departments, including
economics, physics, law, chemical engineering, computer science, and
Asian languages, to discuss in an informal setting the impact of the In-
ternet on everything from democracy to teaching. Meeting once a
month for lunch or breakfast, we took turns suggesting discussion topics
and assigning reading materials, covering issues from cyberlaw to social
movements on the Web. During one such breakfast meeting computer
scientist Jay Brockman mentioned that the Web is a computer,
metaphorically speaking. His comment left me puzzled. To be sure, the
Internet is comprised of computers that can exchange Webpages and e-
mail messages. But this limited, user-driven communication does not
yet make the World Wide Web a single computer.

Could we do something to change this? Could we make computers
drive each other’s activity? To get started, could I force any computer
out there to do computation on my behalf? Now this was an interesting
question that [ was willing to entertain. We ended up forming a tiny re-
search group to try to address it. Brockman and [ were soon joined by
Vincent Freeh, an expert on Internet protocols, and my longtime col-
laborator Hawoong Jeong. After many discussions and tutorials on how
computers communicate, a simple but controversial idea emerged: para-
sitic computing.

Sending a message through the Internet is a sophisticated process
regulated by layers of complex protocols. For example, when you click
on a URL to view a Webpage, your request is broken into small packets
that are then carried to the computer owning the Webpage. There the
request is reconstructed and interpreted, prompting the distant com-
puter to send you the requested Web document. Therefore, such a
seemingly simple task as clicking on a URL involves a significant
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amount of computation along the way. Parasitic computing exploits
this setup by forcing computers to perform computation at the com-
mand of a master host by merely engaging the computers in communi-
cation. To achieve this we disguised complex computational problems
as legitimate Internet requests. When a computer received a packet, it
performed a routine check to ensure that the packet had not been cor-
rupted during its journey. While doing the math, it solved a problem of
interest to us, encoded into the packet.

Our implementation of parasitic computing demonstrated that we
can enslave computers located thousands of miles away, forcing them to
perform computation on our behalf. This fundamental vulnerability of
the Internet raised a barrage of computational, ethical, and legal ques-
tions. What if someone improves the method, making it efficient, and
starts using it on a grand scale? Who owns the resources that are made
available to anyone through the Internet? Could this mark the birth of
the Internet computer? Will there be a new intelligent being at the end
of this road?

Taken to an extreme, parasitic computing suggests that in the fu-
ture computers could swap information and services on an as-needed
basis. Right now communication within a chip is orders of magni-
tude faster than communication across the Internet. With broadband
communication on its way, the gap will shrink. Soon it will start
making perfect sense to ask other computers to chip in their unused
resources to solve complex problems that cannot be addressed by a
single computer or research group. On a smaller scale this possibility
has already been exploited by SETI@home, a Berkeley-based project
that harbors the unused time of millions of PCs to search for extra-
terrestrial intelligence.

The SETI model requires your voluntary collaboration. Most of us
are just simply too lazy to go along. If, however, protocols allowing
service and information swapping become the norm, vast unused re-
sources could be tapped. Along the way the Internet might become in-
dependent of human supervision, since it can shepherd most of the in-
formation and resources it needs to solve specific problems. This could
have unforeseen impact on the Internet’s topology as well, giving self-
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organization an even bigger role. I can imagine a time when, after get-
ting an answer to a question from your Web browser, neither you nor
your computer will know for sure where it came from. After all, do you
know where the letter A is stored in your brain?

8.

Our skin is a unique piece of engineering. It has the ability to measure
and sense changes in temperature and movement of air; it can size up
objects and identify their make. It achieves all of this with the help of a
huge number of tiny integrated chemical sensors that talk to each other
through the nervous system. As Neil Gross pointed out in Business-
Week, a skin of similar sensitivity is enfolding the earth right now. Mil-
lions of measuring devices, including cameras, microphones, thermo-
stats and temperature gauges, light and traffic sensors, and pollution
detectors, are popping up everywhere, feeding information into increas-
ingly fast and sophisticated computers. Experts predict that by 2010
there will be around 10,000 telemetric devices for each human on the
planet. This number is not particularly significant in and of itself—
we’ve had sensors for a long time, ranging from surveillance cameras in
supermarkets to car detectors buried in the pavement at traffic signals
that switch the lights at the intersection. What is changing is that for
the first time these various sensors are feeding information into a single
integrated system. There will soon be over 3 billion Internet-connected
cell phones and close to 16 billion Internet-connected computers em-
bedded in everything from toasters to fashion designs. The tiny sensors
of this planetary skin will spy on everything from the environment to
our highways and bodies. Most importantly, however, they are all con-
nected. Qur planet is evolving into a single vast computer made of bil-
lions of interconnected processors and sensors. The question being
asked by many is, when will this computer become self-aware? When
will a thinking machine, orders of magnitude faster than a human
brain, emerge spontaneously from billions of interconnected modules?
It is impossible to predict when the Internet will become self-
aware, but clearly it already lives a life of its own. It grows and evolves
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at an unparalleled rate while following the same laws that nature uses
to spin its own webs. Indeed, it shows many similarities to real organ-
isms. Just like the millions of reactions taking place in a cell, terabytes
of information are passed along its links every day. The surprising thing
is that some of this information is very difficult to find. That brings us
to yet another network: the World Wide Web.



THE TWELFTH LINK

The Fragmented Web

SCIENCE FICTION WRITERS and visionaries, whose books I consumed as
a child, made me believe that by the turn of the century human-look-
ing robots would handle all mundane tasks. Yet we entered the new
millennium without such humble servants having appeared on the
scene. Or perhaps the robots have arrived quietly. They do not have the
shining golden exterior of the always worried C-3PO, nor can they pro-
duce the joyful whistle of R2-D2. They wisely avoid sharing the
crowded Euclidean space with us, where real estate is at a premium.
The robots of the twenty-first century are invisible and immaterial.
They have taken up residence in the virtual world, which allows them
to hop with enviable ease from continent to continent. Staring at your
computer screen won't reveal these robots. But if you take the time to
inspect carefully your computer’s log files, which keep detailed records
of who has visited your Webpage, you can catch them in action. You
will see them tirelessly performing one of the most thankless and boring
jobs humanity has ever designed: reading and indexing millions of
Webpages.

Designed for speed and efficiency, these robots—the sports cars of
the Web—rapidly sweep along the links, sniffing out just about every-
thing in their paths. While these road warriors overshadowed the little
beetle Hawoong Jeong built to map the Web, I was truly proud of it. It
was like the first used car one could finally afford. And it crashed just

161
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about every other day, often getting into trouble by inadvertently carry-
ing home Webpages protected by robot exclusion files.

It soon became clear that mapping the whole Web was a dream
beyond the capabilities of our little engine. But sneaking and often
stalled, it managed to carry home about 300,000 Webpages, enough
to discover that there are scale-free networks out there. We shut it
down at that point—perhaps a bit too early. Had we let it go further
and allowed it to bring home a larger sample of the Web, we might
have discovered other features of complex networks that were not so
evident from our smaller sample. Search engines do see a much larger
portion of the Web than we did during our experiments. Researchers
studying these huge samples have made some fascinating discoveries.
They have found that the Web is fragmented into continents and
communities, limiting and determining our behavior in the online
universe. Paradoxically, they have also told us that there is terra
incognita out there, whole continents of the Web never visited or
seen by robots. Most important, we learned that the structure of the
World Wide Web has an impact on everything from surfing to de-
mocracy.

1.

A few years ago we thought we knew everything there was to know
about the Web. Comments like “If you can’t find it using AltaVista, it’s
probably not out there” or “HotBot is the first search robot capable of
indexing and searching the entire Web” were routine. We trusted the
search engines to cover and deliver the Web to us. This suddenly
changed in April 1998. “We prefer to index quality sites instead of a
greater quantity of sites” was the new spin from the spokesman of a ma-
jor search engine. Others went even further, claiming that “many pages
are not worth indexing.” What happened? This sudden mood shift was
provoked by a research paper published on April 3, 1998, in the journal
Science. Its three pages completely changed our perceptions about the
accessibility of information stored on the Web.
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Steve Lawrence and Lee Giles never planned to undermine the
credibility of search engines. Working at the NEC Research Institute in
Princeton, New Jersey, they were interested in machine learning, a
booming subfield of computer science. They built a meta—search en-
gine, a robot called Inquirus that could inquire at each major search en-
gine for documents matching a given query. Halfway through they real-
ized that their robot could do more than it was originally designed for:
[t could help them estimate the size of the Web.

Inquirus asked several search engines to list all documents contain-
ing a given word, for example, crystal. If each search engine visits and in-
dexes the full Web, it must return the same list of documents. In reality
the lists returned by different search engines are rarely identical. There is
always significant overlap, however. For example, of the 1,000 documents
containing the world crystal found by AltaVista, 343 were on HotBot’s
list as well. Dividing the number of overlapping documents by the num-
ber of documents returned by AltaVista gives the fraction of the Web
covered by HotBot. Since HotBot reportedly indexed 110 million pages
in December 1997, the NEC group estimated that the World Wide Web
had approximately 110/0.343 million, or about 320 million documents at
the same time. Today this number may not seem that large. In 1997, how-
ever, this was at least twice the current best guess of the Web’s size.

Before 1998 we believed everything the search engines told us
about the size of the Web. After all, they should know. Lawrence and
Giles’s landmark study turned the Web into a target of scientific in-
quiry—one that could and must be studied using systematic and repro-
ducible methods. But their indings about the search engines’ ability to
map the Web offered us little to cheer about.

2.

According to the NEC study in 1997 HotBot collected the largest num-
ber of documents, earning the distinction of being the search engine
with the largest coverage. This was great news for the company. David
Pritchard, marketing director for HotBot, proudly acknowledged this:
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“We're the largest index out there—there are no surprises for us in this
report.” Well, there were some. The bad news was that HotBot covered
only 34 percent of the full Web. That is, 66 percent of all Webpages
were unseen by it. AltaVista, the most popular search engine at that
time, was second on the list because its robots sniffed out only 28 per-
cent. Some search engines, such as Lycos, had captured as little as 2 per-
cent. Their reaction was predictable: “Quite frankly, I don’t give these
kinds of reports a lot of credence. Our focus is not on quantity, it’s on
quality,” said Rajive Mathur, senior product manager at Lycos Inc.

One would think that the NEC study would have motivated the
search engines to increase their coverage. It didn’t. A year later, in Feb-
ruary 1999, Lawrence and Giles repeated their measurements and found
that the size of the Web had more than doubled, swelling to 800 mil-
lion documents, but the search engines had not kept up with this
growth. In fact, their coverage had further deteriorated. This time
Northern Light was the leader, covering a mere 16 percent of the
World Wide Web. HotBot and AltaVista had lost significant ground:
Their coverage decreased to 11 and 15 percent, respectively. Google in-
dexed only 7.8 percent of the estimated 800 million pages out there.
Taken together, in 1999 the search engines covered about 40 percent of
the full Web. That means that six out of ten pages relevant to your
query would never be returned by any search engine. Simply, they
would have never seen it.

Eventually the NEC study did ignite a fierce competition among
the search engines. Size suddenly mattered. A fight for dominance de-
veloped between AltaVista and the new search engine run by FAST,
whose address, alltheweb.com, leaves little room for ambiguity regard-
ing the company’s goal. In January 2000 alltheweb.com broke the 300-
million-page mark. AltaVista followed shortly. By June 2000 the new
kid on the block, Google, had become a serious contender, breaking the
500-million mark. Inktomi soon matched that, and so did yet another
newcomer, WebTop.com. In June 2001 Google hit a new record, reach-
ing for the first time the magic 1-billion-document coverage mark.

As of now Google maintains the lead. Alltheweb.com, pursuing its
dream to eventually map out the full Web, is second with over 600
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million documents, followed by AltaVista with 550 million. The search
engines are doing better and better. This is great news. There is one
problem, however: The Web is growing even faster.

Most search engines do not even try to reach the full Web. The
reason is simple: The search engine with the most documents is not
necessarily the best one. To be sure, if you are looking for difficult-to-
find information, the engine with the larger coverage is your best bet.
But when it comes to popular topics, a larger index does not necessarily
offer better results. Most of us are already overwhelmed by the thou-
sands of hits search engines return for simple queries. The last thing we
want is to see millions more. Therefore, beyond a certain point it is
more profitable to enhance the algorithm that selects the best page from
the search engine’s already enormous database than to go deeper into
the Web.

When it comes to surfing the Web, either by individuals or robots,
economic incentives (or their absence) are not the only limitations.
The topology of the Web limits our ability to see everything out there.
The World Wide Web is a scale-free network, dominated by hubs and
nodes with a very large number of links. But, as we will see next, this
large-scale topology coexists with numerous small-scale structures that
severely limit how much we can explore simply by clicking our way
along the links.

3.

Despite the billion documents on the Web, nineteen degrees of separa-
tion suggests that the Web is easily navigable. Big yet small. But the
small world behind the Web is a bit misleading. To be sure, if there is a
path between two documents, that path is typically short. But in reality
not all pages can be connected to each other. Starting from any page,
we can reach only about 24 percent of all documents. The rest are in-
visible to us, unreachable by surfing.

This is a consequence of the fact that for various technical reasons
the links of the Web are directed. In other words, along a given URL
we can travel only in one direction. If there is no direct link between
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Central Core

Islands

Tendrils

Figure 12.1 'The Continents of a Directed Network. Directed networks such
as the World Wide Web naturally break down into several easily identifiable conti-
nents. In the central core each node can be reached from every other node. Nodes in
the IN continent are arranged such that following the links eventually brings you
back to the central core, but starting from the core doesn’t allow you to return to the
IN continent. In contrast, all nodes of the OUT continent can be reached from the
core, but once you've arrived, there are no links taking you back to the core. Finally,
tubes directly connect the IN to the OUT continent; some nodes form tendrils, at-
tached only to the IN and OUT continents; and a few nodes form isolated islands

that can’t be accessed from the rest of the nodes.

two nodes in a directed network, you can connect them through other
nodes: For example, if you want to go from A to D, you can start from
node A, then go to node B, which has a link to node C, which points to
D. But you can’t make a round-trip. In a nondirected network, where
you can follow a link in both directions, an A — B — C — D path im-
plies that the shortest path from D to A is the reverse one, D - C — B
— A. In a directed network, however, there is no guarantee that the in-
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verse path exists. Most likely you would have to follow a different route
back: From D you might need to visit dozens of intermediate nodes be-
fore getting back to A. The Web is full of such disjointed directed
paths. They fundamentally determine the Web’s navigability.

Directed networks do not represent a fundamentally new class of
networks: Whether the network is scale-free or random, the links can
be either directed or nondirected. So far we have dealt with mostly
nondirected links. Indeed, most webs, ranging from social to protein in-
teraction networks, are nondirected. But some networks, ranging from
the World Wide Web to food webs, have directed links. This directed-
ness has consequences for the network’s topology. In the context of the
World Wide Web these consequences were first addressed by Andrei
Broder, from AltaVista, and his collaborators from IBM and Compag.
They studied a sample of 200 million nodes, close to a fifth of all Web-
pages in existence in 1999. Their measurements indicated that the most
important consequence of directedness is that the Web does not form a
single homogeneous network. Rather, it is broken into four major con-
tinents (see Figure 12.1), each forcing us to obey different traffic rules
when we want to navigate them.

The first of these continents contains about a quarter of all Web-
pages. Often called the centrdl core, it gives a home to all major Web-
sites from Yahoo! to CNN.com. Its distinguishing feature is that it is
easily navigable, since there is a path between any two documents be-
longing to it. This does not mean that there is a direct link between any
two nodes of the central core. Rather, there is a path along nodes be-
longing to the core that allows you to surf between any two nodes.

The second and third continents, called IN and OUT, are just as
large as the central core but much harder to navigate. From the pages of
the IN continent you can reach the central core, but there are no paths
from the core taking you back to IN land. In contrast, the nodes be-
longing to the OUT continent can be easily reached from the central
core, but once you have left the core, there are no links to take you
back. The OUT land is populated by corporate Websites that can be
easily reached from outside; but once you get in, there is no way out.
The fourth continent is made of tendrils and disconnected islands,
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isolated groups of interlinked pages that are unreachable from the cen-
tral core and do not have links back to it. Some of these isolated groups
can contain thousands of Web documents. About a quarter of all Web
documents are located on such islands or tendrils. In general the loca-
tion of a Webpage on the Web has little to do with the page’s content;
rather it is mostly determined by its relationship, via incoming and out-
going links, to other documents.

These four continents significantly limit the Web’s navigability. How
far we can get surfing depends on where we start. Taking off from a node
belonging to the central core, we can reach all pages belonging to this
major continent. No matter how many times we are willing to click,
however, about half of the Web will still be invisible to us, since the IN
land and the isolated islands cannot be reached from the core. If we step
out of this core, into the OUT land, we will soon hit a dead end. If we
start our journey from a tendril or an isolated island, the Web will appear
very tiny because only the other documents on the same island will be
reachable. If your Webpage is on an island, the search engines will never
discover it, unless you submit your URL address to them.

Therefore, our ability to map out the full World Wide Web is not
only a question of resources or economic incentives. The directedness
of the links creates a very fragmented Web dominated by four major
continents. Search engines have an easy time mapping out about half
of it, the connected component and the OUT land, since the nodes be-
longing to them can be located starting from any node of the frequently
visited central core. However, the other half of the Web, made up of
the islands and IN land, is hopelessly isolated. No matter how hard the
robots try, they will not be able to find the documents on them. This is
why most search engines allow you to submit the address of your Web-
site. If you do that, they can start crawling from it and potentially dis-
cover links to regions of the Web where they have never been. If you
refuse to volunteer this information, many nodes could be residing in
terra incognita for years to come.

Is this fragmented structure here to stay? Or will the evolving and
growing Web eventually absorb the four continents into a single, fully
connected core?! The answer is simple: As long as the links remain
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directed, such homogenization will never occur. The continents are by
no means a property peculiar to the World Wide Web. They appear in
all directed networks. Consider for example a network crucial for our
ability to find scientific information: the citation network. Each scien-
tific paper cites other papers, relevant to the discussed work. A mathe-
matics paper would cite other math papers focusing on similar problems
or occasionally a biology or a physics paper, illustrating the applications
of the obtained results. Therefore, all scientific publications are part of
a web of science in which nodes are research publications connected by
citations. These links are directed. Indeed, following the references at
the end of this book will allow you to find the quoted papers. Yet none
of these papers could send you to this book, since they do not cite it.
The citation network is a very peculiar directed network in which the
IN and OUT components reflect the historical ordering of the papers
and the central component is very small if it exists at all. Nature also
harbors some directed webs. In food webs, species are connected by
links telling us which species feeds on which other species. The links of
these networks seldom go both ways: The lion eats the antelope and
never the other way around.

The bottom line is that all directed networks break into the same
four continents. Their existence does not reflect any organizing princi-
ples particular to the Web. Random or scale-free, if the links are directed,
the continents are there. This was recently demonstrated by Sergey
Dorogovstev, José Mendes, and A. N. Samukhin, from the University of
Porto, Portugal. They showed that the size and structure of these conti-
nents can be predicted analytically. Obviously, depending on the particu-
lar network’s properties, the relative size of these continents varies. Yet,
these results indicate that, no matter how complex and large the Web be-
comes, the continents are here to stay.

4.

In June 2000 Cass Sustein, a law professor at the University of
Chicago, conducted a random survey of sixty political sites, finding
that only 15 percent of them have links to sites with opposite views.
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In contrast, as many as 60 percent have links to like-minded Web-
pages. A study focusing on democratic discourse on the Web arrived
at a similar conclusion: Only about 15 percent of Webpages offer
links to opposing viewpoints. Sustein fears that by limiting access to
conflicting viewpoints, the emerging online universe encourages seg-
regation and social fragmentation. Indeed, the mechanisms behind
social and political isolation on the Web are self-reinforcing: They al-
ter the Web’s topology as well, segregating the online universe.
Therefore, the four continents are not the only isolated structures of
the Web. On a smaller scale, these continents are sprinkled with vi-
brant villages and metropoli. These are Websites brought together by
a joint idea, hobby, or habitat, forming communities of shared inter-
ests. Jazz enthusiasts form a well-defined Web-based community, but
so do bird-watchers. Religious fundamentalists in eastern Europe
share virtual space with their ideological counterparts in the United
States. Antiglobalization activists in Europe join forces with their
peers in Japan to coordinate strategies and activities.

Communities are essential components of human social history.
Granovetter's circles of friends, the elementary building blocks of com-
munities, pointed to this fact. Lately, however, perhaps unrecognized by
their members, such communities are increasingly recorded in the
Web’s topology. A side effect of our digital life is that our beliefs and af-
filiations are publicly available. Each time we link to a Webpage, we are
endorsing its relevance to our intellectual curiosity. Thus the links of
an enthusiastic bird-watcher can take us to other like-minded Web
sites, allowing us to map out the community of bird enthusiasts.

Identifying such Web-based communities has tremendous potential
for applications. Indeed, finding the community of sports car enthusi-
asts would allow car companies to most effectively market their new
models by placing ads at several hubs of this community. AIDS activists
could use community knowledge to mobilize those who passionately
care about the disease, molding them into an effective lobbying and ac-
tion group. Organizers of ethnic festivals could take advantage of infor-
mation about Web-based ethnic communities to advertise upcoming
events and incubate local grassroots organizations. The problem is that
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there are a billion-plus pages out there. Can we locate communities on
such a gigantic web?

Supreme Court justice Potter Stewart famously remarked in 1964
that “I shall not today attempt further to define [obscenity] . . . and per-
haps [ never could succeed in intelligibly doing so. But I know it when |
see it.” We face similar problems when we try to find a proper definition
of “Web-based communities.” We all know them once we see them, but
everybody has slightly different criteria for them. One reason is that
there are no sharp boundaries between various communities. Indeed,
the same Website can belong simultaneously to different groups. For
example, a physicist’s Webpage might mix links to physics, music, and
mountain climbing, combining professional interests with hobbies. In
which community should we place such a page? The size of communi-
ties also varies a lot. For example, while the community interested in
“cryptography” is small and relatively easy to locate, the one consisting
of devotees of “English literature” is much harder to identify and frag-
mented into many subcommunities ranging from Shakespeare enthusi-
asts to Kurt Vonnegut fans.

Recently Gary Flake, Steve Lawrence, and Lee Giles, from NEC,
suggested that documents belong to the same community if they have
more links to each other than to documents outside of the community.
This definition is precise enough to develop algorithms to identify differ-
ent groupings given the topology of the World Wide Web. It turns out,
however, that actually finding these communities is notoriously difficult.
This kind of search belongs to the class of so-called NP complete prob-
lems, which means that, though in principle communities can be located,
there is no efficient algorithm for doing so. Therefore, the difficulty in
finding communities on the Web is similar to solving the traveling sales-
person’s problem, which asks us to find the shortest route reaching a
given number of cities assuming that we are not allowed to visit the same
city twice. The only algorithm guaranteed to work for finding communi-
ties or the route for the traveling salesperson requires us to try all possible
combinations. For communities, the time required to perform such a
search increases exponentially with the size of the Web. With fast
enough computers we might be able to locate communities in a sample of
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a hundred documents. Uncovering them from a billion Webpages, how-
ever, is simply out of the question.

Combining content and topology makes the problem somewhat
less challenging. For example, we can focus on documents that contain
only one or two keywords. Lada Adamic, from Stanford University, re-
cently investigated communities discovered by searching for the
phrases “abortion—pro choice” and “abortion—pro life.” The pro-life
query resulted in a core of forty-one documents in which you could get
from each page to the other ones. In contrast, the pro-choice move-
ment was fragmented into many disconnected sites.

Such differences in the structure of competing communities have
important consequences for their ability to market and organize them-
selves for a common cause. As Adamic notes, a campaign against the
partial birth abortion bill launched from the middle of the pro-life clus-
ter could easily reach other pro-life sites, since there are many links be-
tween them. Furthermore, due to the links on the pro-choice sites, the
visitors of pro-choice sites would also learn about it. However, one
would need to advertise at several disconnected pro-choice Websites to
achieve an equally efficient campaign against the bill. Therefore, not
only does the pro-life community have a better presence on the Web, it
is also better organized—its sites are more aware of each other.

Far from being a homogenous sea of nodes and links, the Web is
fragmented into four continents, each of which hosts many villages and
cities that appear as overlapping communities. Any of us willing to take
up a virtual presence belongs to one or several of them. To be sure, we
are far from fully understanding this fine structure of the Web. But
many forces, from commercial interests to scientific curiosity, increas-
ingly motivate us to do better. As we dig deeper, [ am sure that we will
encounter many surprises, offering us an even clearer view of this com-

plex, amorphous, ever changing online universe.

5.

On November 20, 2000, in a precedent-setting decision, Judge Jean-
Jacques Gomes of France ordered Yahoo! to deny French consumers




The Fragmented Web 173

access to any of its sites that auction Nazi memorabilia. It did so by up-
holding a French law prohibiting the sale of such items in France. The
legal implications of the court’s decision are still being debated across
the world. Yahoo! argued that the Internet is fundamentally free from
geographic and national boundaries and that subjecting the U.S. com-
pany to national laws around the world was therefore a severe breach
of the Internet’s basic philosophy. Others disagreed, saying that there
is nothing particularly novel about the Internet and that it should be
covered by the same international trade agreements as any interna-
tional business.

Beyond the legal ramifications, the deeper issue is about the code—
the software behind the Web. The French court acknowledged that
considering the nature of the Web, there is no way to keep France com-
pletely isolated from the world. They were persuaded, however, by ex-
perts who testified that Yahoo! could put in place a filtering mechanism
that would block at least 70 to 80 percent of French nationals trying to
reach Yahoo!’s Nazi sites. Thus, the court ordered Yahoo! to alter the
code. This is exactly the type of action that Lawrence Lessig, a Stanford
University law professor, envisioned in his influential book Code and
Other Laws of Cyberspace. According to Lessig, “Left to itself, cyber-
space will become a perfect tool of control. . .. [T}he invisible hand of
cyberspace is building an architecture that is quite the opposite of what
it was at the cyberspace’s birth.”

Lessig uses the word architecture to mean the sum of all software
running behind the Web, concluding that the only way to influence
behavior in cyberspace is to regulate the code. He suggests that two
forces are aligned to do just that. First, governments have a hard time
policing behavior on the Web. It is easy to write legislation limiting
access to everything from pornography to keys to cryptographic codes.
In a borderless cyberworld, however, it is almost impossible to enforce
these laws. If governments pass on the opportunity to regulate the
Web, commerce will live with it. Companies seeking a more secure
business environment in which they can identify customers for various
purposes ranging from security concerns to marketing will push the
code in the direction of control. Netizens will completely lose their
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anonymous and space-free existence as the technology develops to
meet the merchants’ desires.

On one hand, as the Yahoo! case and others have demonstrated,
some of Lessig’s bleak predictions have become reality. On the other
hand, in my view, to truly understand cyberspace we need to distinguish
carefully between code and architecture. Code—or software—is the
bricks and mortar of cyberspace. The architecture is what we build, us-
ing the code as building blocks. The great architects of human history,
from Michelangelo to Frank Lloyd Wright, demonstrated that, whereas
raw materials are limited, the architectural possibilities are not. Code
can curtail behavior, and it does influence the architecture. It does not
uniquely determine it, however.

Like architects’ buildings, the Web's architecture is the product of
two equally important layers: code and collective human actions taking
advantage of the code. The first can be regulated by courts, govern-
ment, and companies alike. The second, however, cannot be shaped by
any single user or institution, because the Web has no central design—
it is self-organized. It evolves from the individual actions of millions of
users. As a result, its architecture is much richer than the sum of its
parts. Most of the Web’s truly important features and emerging proper-
ties derive from its large-scale self-organized topology.

A good example is democracy on the Web. We've seen that the
scale-free topology means that the vast majority of documents are
hardly visible, since a highly popular minority has all the links. Yes,
we do have free speech on the Web. Chances are, however, that our
voices are too weak to be heard. Pages with only a few incoming
links are impossible to find by casual browsing. Instead, over and
over we are steered toward the hubs. It is tempting to believe that ro-
bots can avoid this popularity-driven trap. They could, but they
don’t. Instead, the likelihood that a document will be indexed by a
search engine depends strongly on the number of its incoming links.
Documents with only one incoming link have less than a 10 percent
chance of being noticed by any search engine. In contrast, robots
find and index close to 90 percent of pages that have twenty-one to
one hundred incoming links.
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Lessig is right: The architecture of the Web controls just about
everything, from access to consumers to the probability of being visited
by surfing along the links. But the science of the Web increasingly
proves that this architecture represents a higher level of organization
than the code. Your ability to find my Webpage is determined by one
factor only: its position on the Web. If many people find my page inter-
esting and they link to me, my node will slowly turn into a minor hub,
and search engines will inevitably notice. If everybody ignores my Web-
site, so will the search engines. [ will join the ranks of invisible Websites,
which are the majority anyway. Thus the Web's large-scale topology—
that is, its true architecture—enforces more severe limitations on our
behavior and visibility on the Web than government or industry could
ever achieve by tinkering with the code. Regulations come and go, but
the topology and the fundamental natural laws governing it are time in-
variant. As long as we continue to delegate to the individual the choice
of where to link, we will not be able to significantly alter the Web’s
large-scale topology, and we will have to live with the consequences.

6.

The great thing about the Web is that our Webpages mature with us.
Once we alter our personal page, nobody can haunt us with the oppo-
site views we might have held decades earlier. Do you remember that
boyfriend you broke up with a few years ago? Of course you do, but you
probably hope that nobody else does. To be sure, all his pictures are
gone from your Webpage. How about that high-school manifesto you
are still embarrassed about? Or that collection of links to Democratic
sites you assembled a mere two years before running on a Republican
ticket? They are all untraceable. Or at least, we tend to think so. That
is because most netizens have never heard of Brewster Kahle. The truth
is, Kahle could easily have a copy of all the pictures and documents that
you so carefully removed from your Website and have now forgotten.
The inventor of wide area information servers and founder of
Alexa Internet, one of the major search engines, Kahle is a veteran
of the Web. After selling Alexa to Amazon.com in 1999, he used the
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proceeds to create the Internet Archives, a nonprofit organization lo-
cated in Presidio, a converted military base in downtown San Fran-
cisco. His goal is simple: He wants to prevent the Web’s content from
disappearing into the past.

When [ visited the Archives to give a talk at the First Internet
Archive Workshop in March 2000, Kahle reminded me of the ancient
library of Alexandria. It was believed to have had a copy of all books
written in the ancient word, all of which disappeared when the library
was burned to the ground. He also told me about great cinematographic
collections that were recycled for their silver content. Without cultural
artifacts, humanity has no memory, and without memory it cannot
learn from its successes and failures. When it comes to the World Wide
Web, we are again letting history go unrecorded. To avoid repeating
history, Kahle’s brainchild, the Internet Archives, carefully keeps all
documents that Alexa has crawled to since 1996. The collection has al-
ready swelled to 100 billion Webpages, representing about 100 ter-
abytes of information. In comparison, all books and documents
archived by the Library of Congress are only about 20 terabytes.

The Archives’ collection is of unparalleled value for historians, so-
cial scientists, and Web topographers alike. To write the history of the
2000 presidential election, you would start with the Archives. They
have a time machine that allows you to see the candidate’s sites, voter
guides, and the Web pages of political parties, exactly as they were dur-
ing the campaign. Do you want to track the reaction of the online uni-
verse to the September 11, 2001, terrorist attacks? One month after the
events the Archives already had a collection of 200 million related
documents. If you are a Web topographer aiming to understand the
Web's architecture, the Archives are an excellent starting point. They
let you trace when and where Webpages and links were added and re-
moved, how some latecomer nodes become popular overnight, and how
former hubs lost their shine. Comparing the maps of the Web taken at
different time intervals, you can follow the emergence and crystalliza-
tion of virtual communities. The Archives have the data to reconstruct
the chaotic evolution of nodes and links, helping to uncover the mech-
anisms responsible for the Web’s current architecture.
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The Archives have many fans from many ditferent disciplines, but
most researchers who could take advantage of them either do not know of
their existence or lack the programming skills to access and efficiently use
them. So their tull potential is still untapped by researchers and the public
alike. However, I hope that the Internet Archives are only the beginning
of an awakening to our historical responsibility towards the online
universe. The Archives are far frorn capturing everything out there.
Their main collection comes from Alexa, the search engine founded by
Kahle and Bruce Gilliat in 1996. As we already know, search engines
cover only a small fraction of the World Wide Web, and Alexa was
never known for pursuing a significant coverage. Therefore, despite their
enormous size, the Archives’ current collection represents only a tiny
fraction of the Web, mostly popular Webpages. Alexa got the hubs; the
rest, the vast majority of less connected pages ignored by their robots,
are slipping into oblivion at a rate of millions per day.

7.

To an alien approaching our solar system, the Earth would appear to be
nothing more than a spherical ball. Getting closer, the alien might start
noticing the continents. The bright lights of Paris, New York City, Lon-
don, and Tokyo offer clues of intelligent life. Getting even closer,
smaller communities become discernable, and a fine structure of con-
necting highways and roads emerges. The alien would have to come
really close, however, to see the human beings responsible for the large-
scale order visible from space.

Our exploration of the World Wide Web has followed an identical
route. First we discovered the inhomogeneous large-scale topology and
understood that it is as unavoidable as the spherical shape of most plan-
ets. Looking closer, we noticed four major continents, each obeying dif-
ferent laws. Bringing more details into focus, we started to see commu-

nities, groups of Webpages held together by common interests. These

forays into the unknown have significantly altered our understanding of
the World Wide Web. We learned that the online universe is much

larger than anyone ever anticipated. It also grows faster than we were
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ready to believe. To our dismay, we also found that it is much less
charted than we were willing to accept. Two years ago, six out of ten
pages had not been visited by any search engine. If the trend can be
trusted, today’s search engines see an even smaller fraction of the Web.
The good news is that competition forces the search engines to do a
better job. But we should never lose sight of the big picture: Whatever
the extent of their competition, the Web is even bigger.

Yet we shouldn’t underestimate the enormous services the search
engines and their robots offer us. We often sigh in desperation, calling
the Web a “jungle.” The truth is, without robots it would be a black
hole. Space would curve around it such that anything falling in would
never get out. Robots keep the World Wide Web from collapsing under
its increasing complexity. They fold the space out, maintaining order in
the chaos of nodes and links.

Our life is increasingly dominated by the Web. Yet we devote re-
markably little attention and resources to understanding it. Relatively
little effort would be required to bring along a new revolution in infor-
mation access. It will happen. The question is, what do we lose in the
meantime’

In an increasingly Internet-dominated society, understanding the
World Wide Web has tremendous value in and of itself. For me, how-
ever, the rewards go beyond that. One of the most exciting aspects of
this exploration has been uncovering laws whose validity does not stop
at the gates of cyberspace. These laws, applying equally well to the cell
and the ecosystem, demonstrate how unavoidable nature’s laws are and
how deeply self-organization shapes the world around us. By virtue of
its digital nature and enormous size the World Wide Web offers a
model system whose every detail can be uncovered. We have never
gotten this close to any network before. It will continue to be a source
of inspiration and ideas to anybody aiming to grasp the properties of

our weblike universe.
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The Map of Life

IN FEBRUARY 1987 the journal Nature reported a landmark discovery:
the gene for manic depression, or by its more recent name, bipolar
disorder. Manic depression affects 1 to 5 percent of adults in the
United States, and as many as 25 to 50 percent of those attempt sui-
cide at least once. Because the risk of developing manic depression is
five to ten times higher if first-degree relatives have the disease, the
prevailing view is that manic depression is a genetic disorder. So as
soon as methods for linking illnesses to specific genes emerged, the
race was on to find the manic depression gene. The much coveted
“first” seemed to have gone to the authors of the 1987 Nature paper,
who located the gene on chromosome 11 while studying a large
Amish family in Lancaster, Pennsylvania. Yet two years later the re-
search group recanted the results. The blunder did not discourage
other gene hunters, however. If anything, it gave them extra motiva-
tion to find the real gene. In 1996, almost a decade after the first pub-
lished study, three independent research groups reported links to
genes on other chromosomes. Another Amish study implicated chro-
mosomes 6, 13, and 15; a study focusing on the isolated population of
Costa Rica’s Central Valley documented links to chromosome 18; and
results derived from a large Scottish family indicated the involvement of
chromosome 4. Research on another prominent mental disorder, schizo-
phrenia, followed a similar pattern, linking the disease to two different
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regions of chromosome 1, with a different research group implicating
chromosome 5 a few years later.

Absentminded scientists? Bad research? Far from it. These are not
conflicting results. They simply demonstrate that most illnesses, rang-
ing from manic depression to cancer, are not caused by a single mal-
functioning gene. Rather, several genes interacting through a complex
network hidden within our cells are simultaneously responsible. Faced
with the gigantic task of figuring out the building blocks of the cell,
from genes to proteins, scientists until recently focused on biology
rather than networks. But with the pieces now in hand, postgenomic
biology is taking a step back to grasp the big picture. New and exciting
discoveries that are revolutionizing biology and medicine tell us loud
and clear: If we want to understand life—and ultimately cure disease—
we must think networks.

1.

“Today we are learning the language in which God created life,” said
President Bill Clinton on June 26, 2000, at the White House ceremony
announcing the decoding of the 3 billion chemical “letters” of the hu-
man genome. Is it true! Has humanity been handed the “book of life”?
Are Francis Collins and Craig Venter, the two gentlemen who stood on
either side of the president, the prophets of the twenty-first century?
After all, Collins and Venter, representing the publicly funded Human
Genome Project and the private Celera Genomics, which each de-
coded the human genome, brought the book to us.

Open the “book of life” and you will see a “text” of about 3 billion
letters, filling about 10,000 copies of the New York Times Sunday edi-
tion. Each line looks something like this:

TCTAGAAACA ATTGCCATTG TTTCTTCTCA TTTTCTTTTC ACGGGCAGCC
These letters, abbreviations of the molecules making up the DNA,

could easily mean that the anonymous donor whose genome has been
sequenced will be bald by the age of fifty. Or they could reveal that he
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will develop Alzheimer’s disease by seventy. We are repeatedly told that
everything from our personality to future medical history is encoded in
this book. Can you read it? I doubt it. Let me share a secret with you:
Neither can biologists or doctors.

To be sure, the sequencing of the human genome is a triumph, the
result of modern molecular biology’s ability to reduce complex living
systems to their smallest parts. It is undoubtedly a catalyst of a new era
in both medicine and biology. But the genome project has brought
along a new realization: The behavior of living systems can seldom be
reduced to their molecular components.

Our inability to find a single gene responsible for manic depression
is the best illustration. A list of suspected genes is not sufficient. To cure
most illnesses, we need to understand living systems in their integrity.
We need to decipher how and when different genes work together, how
messages travel within the cell, which reactions are taking place or not
in any given moment, and how the effects of a reaction spread along
this complex cellular network. To achieve this we must map out the
network within the cell. This web of life determines whether a cell de-
velops into skin or labors constantly in the heart, decides the cell’s re-
sponse to external disturbances, holds the key to survival in constantly
changing environments, tells the cell when to divide or die, and is re-
sponsible for illnesses ranging from cancer to psychiatric disorders. As
the historic Science article that reported the decoding of the human
genome concluded, “there are no ‘good’ genes or ‘bad’ genes, but only
networks that exist at various levels.”

2.

The decoding of the human genome offered us an inventory of the
cell’s parts. To return to our car analogy, it is like having thousands of
car parts in your backyard. If you ever want to see that car running
again, you must find the blueprint, a map telling you how to assemble
it. For most cells this map is almost as elusive now as it was fifteen years
ago at the beginning of the Human Genome Project. The absence of a
cellular search engine is only part of the problem. The biggest difficulty
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is that within each cell there are many layers of organization that can
each be viewed as a complex network. To understand the web of life,
we need to acquaint ourselves with some of these.

In today’s weight-conscious society, it is common knowledge that
cells burn food by splitting complex molecules to create the cells’ build-
ing blocks and the energy they require to stay alive. This is achieved
through a web of hundreds of multistep intracellular biochemical reac-
tions, together referred to as the metabolic network. The nodes of this net-
work can be simple chemicals, such as water or carbon dioxide, or more
complex molecules made of dozens of atoms, such as ATP. The links are
the biochemical reactions that take place between these molecules. If
two molecules, A and B, react with each other to create C and D, then
all four of them are connected in the cell’s complex metabolism.

Think of the cellular metabolism as the engine in your car. Hav-
ing an engine in and of itself will not get you very far. You need
wheels, suspension, brakes, lights, and many other components, each
ensuring that the car will run safely on the road. In a similar vein,
the cell has an intricate regulatory network that controls everything
from metabolism to cell death. The nodes of this network are the
genes and the proteins encoded by the gigantic DNA molecule. The
links are the various biochemical interactions between these compo-
nents. The genes are first copied into unique messenger RNA mole-
cules, which are then translated into proteins. Some proteins inter-
act with the DNA, initiating or suppressing the translation of new
genes, repairing accidental DNA damage, copying the two strands of
DNA when the cell replicates, and so on. Other proteins interact
with each other, forming large protein complexes. A prominent ex-
ample is hemoglobin, a protein complex made of four proteins that
bind together to transport oxygen in our bloodstream. Therefore,
proteins can be viewed as nodes of a complex protein-protein inter-
action network in which two proteins are connected if they can
physically attach to each other. The full weblike molecular architec-
ture of a cell is encoded in the cellular network, a sum of all cellular
components (genes, proteins, and other molecules), connected by all
physiologically relevant interactions, ranging from biochemical reac-
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tions to physical links. This v-eb of life contains all metabolic, pro-
tein-protein, and protein-DNA interactions present in the cell.

Not too long ago it was widely believed that everything that mat-
ters for an organism’s biological history is encoded in the genes. Postge-
nomic biology, though still in its infancy, is already fighting an impor-
tant battle. It aims to diminish the all-encompassing role historically
attributed to individual genes. Genes are known to play a structural
role, determining the scope and make of proteins and passing this infor-
mation in a hereditary manner to subsequent generations. Recently,
however, scientists have discovered that genes also play an important
functional role as members of a complex cellular network. This func-
tional role is apparent only in the dynamic context in which an indi-
vidual gene interacts with many other cellular components. The gene’s
structural role can be unearthed from its sequence. We now have the
complete sequence for several key organisms, ranging from Esherichia
coli bacteria to humans. We are only at the beginning, however, of the
second, equally revolutionary scientific endeavor: uncovering the
gene’s functional role. To achieve this we need a second genome proj-
ect, this time mapping the web within the cell. We have the “book of
life.” Now we need the map of life.

3.

Zoltan Oltvai, a cell biologist at Northwestern University Medical
School in Chicago, had several significant and much cited discoveries
under his belt when we met in 1998. At that time we both lived in Oak
Park, a Chicago suburb styled by the towering architectural presence of
Frank Lloyd Wright. With small children of similar age, we started to
visit each other regularly. After exhausting all topics related to culture
and politics, our conversation turned to science and biology. By then my
group was pressing ahead with research on the Web and Internet. In-
evitably, our weekend chats drifted toward the similarities and differences
between the web of life and other complex networks. Soon an ongoing
argument developed. The Web and the actor network are scale-free be-
cause they emerged thanks to growth and preferential attachment,
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processes that are easily identifiable in both networks. The cell, on the
other hand, is different. To be sure, the original assembly of the first pro-
tocells from a primordial soup of organic molecules might have resembled
a growing network. But during the past three billion years evolution and
natural selection took their course. During this time there was signifi-
cantly less growth, just a lot of tinkering with the cellular network,
streamlining and optimizing it. Thus, on the one hand, even if a scale-
free topology had developed when lifeless molecules took their first steps
towards life, it might have been lost because of the all-encompassing ef-
fects of evolution. On the other hand, it is hard to fathom that the com-
plex biochemical web within the cell would be completely random. So is
the map of life, like the Erd&s-Rényi network, random, or is it scale-free,
like the Web? How do we characterize the cell’s complex topology?

After we ran out of arguments to convince ourselves one way or
another, Oltvai and I decided to move our discussions off the play-
ground and look for real data on the web of life. Fortunately, for most
of the twentieth century, biology and biochemistry were devoted to
identifying and interrelating the various molecules within the cell.
James Watson, the codiscoverer of the double helix structure of
DNA, wrote in 1970 in the now classic Molecular Biology, “We al-
ready know at least one-fifth, and maybe more than one-third of all
metabolic reactions that will ever be described [in E. coli bacteria],”
suggesting that “within the next ten to twenty years we shall ap-
proach a state in which it will be possible to describe essentially all
metabolic reactions.” Watson's vision has been fulfilled. Today bacte-
riologists believe that the complex network of more than seven hun-
dred nodes and close to a thousand links represents pretty much the
full list of reactions fueling the E. coli metabolism. What Watson
could not have imagined in 1970 is that thirty years later online data-
bases would be compiling the network of metabolic reactions for hun-
dreds of organisms. While we are still missing a detailed metabolic
map of the highly complex human cell, our knowledge of several sim-
pler organisms is close to being complete.

So my discussions with Oltvai could not have been better timed.
A few years earlier my lab’s quest to study the cell’s topology would
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have been brought to a halt by an absence of data. In late 1999, how-
ever, several Websites had the maps we were looking for. After re-
searching the available databases, we settled on a new one, run by
the Argonne National Laboratory outside Chicago, nicknamed
“What Is There?” which compiled the metabolic network of forty-
three diverse organisms. Hawoong Jeong, once again displaying his
computer wizardry, wrote a program that downloaded each reaction
individually. Oltvai and I watched over his shoulder as he made
sense of this extremely complex web, assembling one by one the full
metabolic map for these forty-three organisms. Having finished that,
he moved on to characterize these networks, calculating how many
reactions each molecule participates in. The robustness of the results
was shocking. No matter which organism we examined, a clear scale-
free topology greeted us. Each cell looked like a tiny web, extremely
uneven, with a few molecules involved in the majority of reactions—
the hubs of the metabolism—while most molecules participated in
only one or two.

4.

To harken back to our social networks, if two molecules participate in
the same reaction, their separation is one. If, however, two subsequent
reactions are needed to connect them, their separation is two. Putting
all nodes and links together, will this complex network within the cell
have small-world properties?

Measuring the separation between molecules is not an outgrowth of
our obsession with six degrees of separation. The diameter of the net-
work—or degree of separation between nodes—has biological signifi-
cance. For instance, if we should find that the shortest chemical path
between two molecules is one hundred, then any change in the con-
centration of the first molecule will have to go through one hundred in-
termediate reactions before reaching the second molecule. Any pertur-
bation will decay and die along such a long path.

To our great surprise, the measurements indicated that the typical
path lengths are much shorter than one hundred. In fact, cells are small



186 LINKED

worlds with three degrees of separation. That is, most pairs of molecules
can be linked by a path of three reactions. Perturbations, therefore, are
never localized: Any change in the concentration of a molecule will
shortly reach most other molecules. This finding was supported by the
study of Andreas Wagner, from the University of New Mexico, and by
David A. Fell, from Oxford Brooks University, who independently con-
cluded that the E. coli metabolic network is scale-free and has small-
world properties.

Though unexpectedly short, the three degrees was not the most in-
teresting aspect of our finding. Because the forty-three organisms all
had different sizes, we expected that the separation would increase with
the organism’s size, just as the Web’s diameter increases with the num-
ber of documents. Surprisingly, the measurements indicated that
whether we are navigating the tiny network of a small parasite bac-
terium or the highly developed highway system of a multicellular or-
ganism, such as a flower, the separation is the same. Although the dif-
ference in the cellular architecture between a primitive bacterium and
a cell from a multicellular organism could be as large as the difference
between a tiny village and New York City, stripped to their dynamically
relevant networks, all cells feel like a small town. Digging deeper, we
learned that most cells share the same hubs as well. That is, for the vast
majority of organisms the ten most-connected molecules are the same.
Adenosine triphosphate (ATP) is almost always the biggest hub, fol-
lowed closely by adenosine diphosphate (ADP) and water.

To be sure, the role of ATP, ADP, and water as prominent hubs was
by no means surprising. In cells, ATP serves as a convenient and versa-
tile store of energy, driving hundreds of biochemical reactions. By sup-
plying energy to these reactions, ATP turns into ADP by giving up a
phosphate group; thus, within the metabolic web, both ATP and ADP
are linked to a huge number of molecules participating in energy-hun-
gry reactions. Yet, taken together, the top-ten list of highly connected
molecules was rather revealing. A key prediction of the scale-free
model is that nodes with a large number of links are those that have
been added early to the network. In terms of metabolism this would im-
ply that the most connected molecules should be the oldest ones within
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the cell. And indeed, the analysis of Wagner and Fell has shown that
the most-connected molecules have an early evolutionary history as
well. Some of these molecules are believed to be the remnants of the
so-called RNA world, the evolutionary step before the emergence of
DNA, while others are known to be the components of the most an-
cient metabolic pathways. Therefore, the first mover advantage seems
to pervade the emergence of life as well.

It all organisms have the same scale-free topology and the same
node separation and share the same hubs, how do cells of different or-
ganisms differ from one another? Is there any difference between the
chemical architecture of a bacterium and that of a human cell? It turns
out that there are significant differences. Comparing the metabolic net-
work of all forty-three organisms, we found that only 4 percent of the
molecules appear in all of them. Though the hubs are identical, when it
comes to the less connected molecules, all organisms have their own
distinct varieties. Life looks like a suburb in which each house was de-
signed by the same architect, but different builders and interior design-
ers were commissioned to offer the finishing touches, from the material
of the floor to the size and make of the windows. In an aerial photo-
graph all houses appear to be alike. The closer you get to them, how-
ever, the more you start noticing the differences.

Metabolism represents only one component, albeit an important
one, of the cellular network. Will the same scale-free architecture also
be present in the regulatory network—the web responsible for running
the cell? Indeed, we are ultimately interested in the full weblike molec-
ular architecture of living organisms. The question is, do the different
components of this web of life follow the same laws and architectural
features, or has evolution discovered different solutions for the various
components? Beyond our desire to comprehend the fundamental fea-
tures of the cell’s architecture, understanding the regulatory network
has important practical implications as well. Indeed, genetic disorders
result from malfunctions of the nodes of the regulatory network. There-
fore, the robustness of this network to node failures determines our abil-
ity to survive various diseases, as well as researchers’ ability to design
drugs that can cure those disorders that we cannot easily tolerate.
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5.

Baker’s yeast, one of the simplest eukaryotic cells, has about 6,300
genes, encoding about the same number of proteins. Though this is
only a fifth of the estimated 30,000 different genes a human cell con-
tains, it is already an enormous number. In general, when proteins in-
teract by sticking to one another, they have a good reason for doing so.
Most interactions play some important functional role in the cell’s life.
Therefore, to understand how cells work we must identify all pairs of
proteins that can interact. For baker’s yeast, that requires checking
6,300 times 6,300 pairs—close to forty million potential interactions.
With standard molecular biology tools this would take decades and
hundreds of people. Yet, despite the magnitude of the job, two research
groups have independently obtained a detailed map of the yeast protein
network. They succeeded thanks to an important technological break-
through, the so-called two-hybrid method. Developed by Stanley Fields
in 1989, the two-hybrid method offers a relatively rapid semiautomated
technique for detecting protein-protein interactions. Though the
method is known to provide numerous false negatives and positives, the
map it generated offers an unprecedented opportunity to peek into the
cell’s regulatory organization.

Electrified by the insights offered by the topological analysis of cellu-
lar metabolism, in the fall of 2000, Oltvai, Jeong, and I, together with a
young student, Sean Mason, became interested in the structure of the
protein interaction network. The two-hybrid data, published a few
months earlier, offered an excellent opportunity for such a study. After
downloading all known protein-protein interactions, we reconstructed
the protein network of yeast with the aim of studying its large-scale fea-
tures. Once again, the results left little room for ambiguity: They demon-
strated that the protein interaction network has a scale-free topology.
That is, most proteins in the cell play a very specific role, interacting with
only one or two other proteins. A few proteins, however, are able to phys-
ically attach to a huge number of other proteins. These hubs are crucial
for the cell’s proper functioning and survival. Indeed, we were able to
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show that removing a gene responsible for a hub protein kills the cell 60
to 70 percent of the time. Mutations affecting a weakly connected pro-
tein, in contrast, have a less than 20 percent likelihood of proving lethal.

A series of parallel results supported these findings. Andreas Wag-
ner independently confirmed that the yeast protein network has a
scale-free topology. Stefan Wuchty, a young researcher working at the
European Media Laboratories, found a similar architecture in a
markedly different network within the cell. In his so-called protein do-
main network, the nodes are different facets through which proteins
link to each other, two facets being considered connected if they are si-
multaneously present on the same protein. Jong Park and collaborators
from the European Bioinformatics Institute in the United Kingdom
spotted a scale-free topology when they reconstructed the yeast net-
work from protein interaction data collected by the Protein Data Bank.
Our research group has found the same structure in an organism very
different from yeast, a simple bacterium called Helicobacter pylori, sug-
gesting that the scale-free nature of the protein interaction network is a
generic feature of all organisms.

Taken together, the similar large-scale topology of the metabolic
and the protein interaction networks indicate the existence of a high
degree of harmony in the cell’s architecture: Whichever organizational
level we examine, a scale-free topology greets us. These journeys within
the cell indicate that Hollywood and the Web have only rediscovered
the topology that life had already developed 3 billion years earlier. Cells
are really small worlds that share the topology of many other nonbio-
logical networks, as if the architect of life could design only these.

How did life arrive at this architecture? Almost as soon as we asked
the question, we had an answer. Approximately a half year after the
publication of our findings on the topology of the protein interaction
network, | received three e-mails within about a month. Each of them
contained a manuscript by a different research group. Amazingly, each
of the three research groups independently offered the same simple and
elegant explanation, claiming that the cell’s scale-free topology is a re-
sult of a common mistake cells make while reproducing.
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6.

Cells reproduce by duplicating their content and dividing into two.
The details of these processes may vary for simple bacteria and more
complex human cells. Certain steps are universal, however. First, in or-
der to produce a genetically identical offspring cell, the DNA must be
faithfully replicated. This process is not free of errors, however. Al-
though the cell’s intricate copying mechanism insures that DNA se-
quences are inherited with extraordinary fidelity, about one letter in a
thousand is randomly changed every 200,000 years. Another common
error is gene duplication. Through a rare accident in the copying
process, gene duplication can occur when the ends of broken DNA
molecules join together. As a result, segments of varying length of the
parent DNA will appear twice in the offspring’s genome. Such copying
mistakes sometimes kill the cell. In other cases, multiple copies of the
same gene have evolutionary advantages and are passed on to future
generations. Hemoglobin is a well-known example.

Originally cells had only one hemoglobin gene. About 500 million
years ago, during the evolution of the higher fish species, a series of
gene duplications occurred, resulting in four copies of the hemoglobin
gene scattered along the genome. Today each of these genes encodes
one of the four components of the hemoglobin protein complex.

Gene duplication has a significant impact on the cellular net-
work. It results in two identical genes, which produce identical pro-
teins, that in turn interact with the same proteins. A new node thus
has been created, the protein generated by the duplicated gene. Its
neighbors, the proteins with which the duplicated protein interacts,
will each now interact with both the parent and the identical off-
spring protein. Therefore, each protein in contact with the dupli-
cated protein gains an extra link. In this game highly connected pro-
teins have a natural advantage: They are more likely to have a link
to the duplicating protein than their weakly connected cousins. It’s
not that hubs duplicate more often. Rather, since the hubs are in
contact with more proteins, they are more likely to have a link to a
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duplicating node, which offers them an extra link, a subtle version of
preferential attachment.

The most important feature of this explanation is that it traces the
origin of the scale-free topology back to a well-known biological mech-
anism, gene duplication. It does so by showing that gene duplication
can simultaneously lead to both the growth of the protein network by
adding an extra protein and to preferential attachment by adding new
links at a higher rate to the more connected proteins. It is too early to
determine if this is the only explanation, since it is conceivable that
different mechanisms, yet unexplored, could generate the same topol-
ogy. It is unclear if it explains the scale-free structure seen in the metab-
olism, as well. Nevertheless, it demonstrates that mechanisms present
in the cell can generate the scale-free topology. Therefore, at this point
we are ready to turn to the next important question: Will the map of
life help us better understand diseases and enhance our ability to even-
tually cure them?

7.

Cancer is the most researched human illness ever. The extraordinary at-
tention the medical community has devoted to it has resulted in several
significant breakthroughs. Probably the most important is the discovery
of the p53 gene. Though reported as early as 1979 by David Lane and
Arnold J. Levine, it was not until the late 1980s following the work of
Bert Vogelstein that its role in cancer was fully appreciated. Vogelstein
recognized that the p53 protein, created by the p53 gene, is a tumor sup-
pressor. Just as your brakes allow you to stop your car, tumor suppressor
genes act to slow and halt DNA replication and division into new cells.
Healthy cells keep a small number of p53 molecules around. If radiation
or some other injury damages the cell, more p53 is produced, preventing
the progression of the cell through cell division. This gives the cell time
to repair the damage before further copies of the malfunctioning cell can
be produced. However, if the damage is irreparable, the p33 protein will
activate a group of genes to kill the cell.
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If the cell’s brake—the p53 protein—malfunctions, the cell can run
amok. Cancerous cells differ from healthy cells in their ability to multi-
ply at a very high rate. Indeed, about 50 percent of human cancers con-
tain mutations in the p53 gene. This observation has stimulated an av-
alanche of research, resulting in over 17,000 publications since 1989. In
recognition of its central role in cancer, in 1993 the p53 molecule was
named “Molecule of the Year” by Science. Considering the attention
the p53 molecule has received, one might have expected that a cure for
cancer would have been found by now. After all, all we need to do is to
develop drugs that make sure the p53 molecule always does its job.
Why, then, has this huge amount of research not yet translated into a
universal cancer drug’

Despite its important role in human cancer, fixing the p53 gene
alone will not lead to a cure for this deadly disease. The reason was re-
cently articulated by the very people responsible for placing p53 at the
center of cancer research. Vogelstein, Lane, and Levine in November
2000 coauthored a Nature paper that made networks the crux of their
argument. The reason why we do not fully understand cancer, the three
suggested, is that the cell is like the Internet.

The three researchers argued that we must stop our obsession with
the omnipresent p53 molecule and focus instead on what they called
the p53 network, a sum of all molecules and genes interacting with the
p53 molecule. As they put it, “One way to understand the p53 network
is to compare it to the Internet. The cell, like the Internet, appears to
be a ‘scale-free network’: a small subset of proteins is highly connected
(linked) and controls the activity of a large number of other proteins,
whereas most proteins interact with only a few others. The proteins in
this network serve as the nodes, and the most highly connected nodes
are the hubs. In such a network, performance is almost unchanged by
random removal of nodes. But such systems contain an Achilles’ heel.”

The “Achilles’ heel” of a network, you'll recall, refers to the vulner-
ability of its hubs. The inactivation of less connected molecules does
not have draconian effects on the cell, whereas a mutation in the p53
molecule, one of the clear hubs of the cellular network, turns the cell

cancerous and eventually kills the organism. This explains why com-
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bined pharmaceutical attacks on molecules that interact with the p53
molecule have progressively more severe effects on the cell, resembling
an attack on the p53 molecule itself.

Vogelstein, Lane, and Levine'’s Nature paper demonstrated the
strength and ubiquity of network thinking. Ideas developed to better
defend the Internet and quantify the effects of hacker attacks have
fallen on fertile ground in cell biology, which is concerned with the de-
fense of healthy human cells against all threatening organisms. At the
heart of Internet research and cell biology, the questions are similar.
The first step is to map out the network behind these systems. Then
from these maps we need to infer the laws that govern the networks. At
that point the Internet topographer, the Web mapper, and the cancer
researcher will be in the same camp.

Yet the most important implication of the p53 network goes be-
yond the fundamental analogies it illuminates between cells and the
Internet. It points to a new approach to drug therapies and drug de-
velopment. The ultimate goal of studying the p53 network is to find
a cure for cancer. As we discuss next, this is largely a trial-and-error
process. In most cases cancer therapies aim for destruction: They kill
the cancerous cells by disrupting their cellular network with either
drugs or radiation. The increasing understanding of the p53 network
suggests another avenue: We must first decipher the precise topology
of this network, fully understanding all interactions. With such a
map in hand, we can start a frontal attack, finding drugs that restore
the functions of the p53 molecule without dismantling the network
around it.

8.

Until recently we could only treat the symptoms of illnesses like cancer,
heart disease, and psychiatric disorders. We searched for rare chemicals
everywhere, from chemistry labs to rain forests, hoping that they would
offer miracle drugs for some diseases. According to some estimates, the
drugs available on the market target only about 500 of the 30,000 pro-
teins in the human body. And though we have multiple drugs for many
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diseases, it is often a trial-and-error process to figure out which works
for a given patient.

A detailed understanding of the full biochemical network within
the cell promises to eliminate this guesswork. With knowledge of the
precise wiring diagram of a cell and diagnostic tools capable of captur-
ing the strength of the various cellular interactions, doctors in the fu-
ture could test the response of your cells to a drug before you even take
it. Thanks to the map of life, which implies a detailed understanding of
how genes work together, we will someday be able to diagnose diseases
like manic depression or cancer before any of the symptoms have oc-
curred. This knowledge will help us develop drugs that are so fine-tuned
and highly precise that they affect only the malfunctioning cells, leav-
ing the healthy cells alone. In other words, they will provide real cures.

Changing the concentration of a chemical in your body via a drug
could reduce the symptoms of a particular disease. However, since the
cell is controlled by a complex network with small-world properties, a
drug-induced perturbation inevitably affects many other chemicals,
possibly creating undesired side effects. Patients treated for manic de-
pression might die of heart disease, a condition they had never experi-
enced before. Furthermore, the drug that causes heart disease for you
could have no side effects on another individual. We all have different
eye and hair colors and facial features, after all, so it is not surprising
that we metabolize drugs differently as well. With the map of life in
hand and with tools such as the recently developed DNA chips that
monitor the links between the genes, doctors will be able to obtain a
detailed list of all molecules and genes affected by a given drug. Explor-
ing side effects will no longer be guesswork. We will have personalized
medicine, allowing the marketing and approval of drugs that are effec-
tive for only 10 percent of the population and potentially lethal for

everybody else.

9.

If you suffered from manic depression in recent years, your first visit to
the doctor probably started with an hour-long discussion to carefully
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examine your thoughts and feelings. Eventually you walked away with a
drug prescription. If you had never appreciated how much of your
brain’s activity and well-being was a matter of brain chemistry, now, af-
ter taking the drug, you did. A layer of chemicals injected into your
body rapidly took over your behavior and impulses. You discovered
yourself doing things and having feelings that you never experienced
before. In most cases the first drug didn’t work. It perhaps made you hy-
peractive or even more depressed. A few weeks later the drug had to be
switched for another, in hope of better results. Patients would routinely
try five or six drugs over a period of several months before finding the
one that worked best. While they made you feel better, these drugs
didn’t cure your illness. They temporarily altered your brain’s chemistry,
offsetting the changes caused by the malfunctioning of your genetic
network. If you stopped taking them, the chemical imbalance would
return, along with the symptoms of manic depression.

Twenty years from now things could look quite different. Facing the
same doctor, you will have a five-minute discussion, just as you do in
cases of simple influenza. An assistant will take a few drops of blood,
and you will walk home empty-handed. In the evening you will pick up
the medicine from the nearest pharmacy. The next day you will wake
up fresh and happy, as you did before your symptoms appeared. Both the
manic and the depressive you will have been washed away.

How will this breakthrough come about? First, the full biochemical
network of the human cell will have been mapped by then, allowing us to
understand in detail how different genes and molecules work together.
Second, DNA and protein chips, new technologies now under develop-
ment, will be in each doctor’s office, allowing her or him to monitor which
genes and proteins malfunction in your cells. While mapping the human
cellular network will probably take over a decade, the instant monitoring
of gene activity is already possible in some research labs.

By 2020 these advances will change medicine across the board.
Kids will not be taken to the doctor with a sore throat—Mom will have
a handheld device, with a replaceable chip, that will reveal that
Tommy’s sore throat is a streptococci infection, identifying the strain as
well. She will be able to link the device to the computer and e-mail the
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profile to the doctor’s office, so when Tommy shows up for school the
drug is ready for him in the nurse’s office. Most important, Tommy’s
drug will not be a strafing antibiotic that kills all bacteria, harmful or
not, in his body. It will be designed and mixed on the spot to take out
only the organism that made Tommy’s throat hurt. It will be ineffective
against any other bacteria, minimizing the chance that Tommy will de-
velop an antibiotic resistance.

I don’t believe that this vision is far-fetched. In fact, it is rather
modest, perhaps even shortsighted. It is only a simple interpolation of
the tools already present in most research laboratories around the
world. These advances are rooted in a fundamental shift in how we
look at everything from life to disease. They are the result of seeing the
cell as a whole—as a network-—rather than a bag of independent
chemicals.

10.

The genome project is the ultimate celebration of the gene. Until re-
cently we believed that the complete biological history of a human be-
ing was encoded in the 3 billion letters of the helical DNA. To be sure,
the mapping of the human genome revolutionized biological research.
But it also showed us what a small fraction of the vast world is really
known to us and how much more is left to be explored.

In 1996 the decoding of the yeast genome gave the scientific com-
munity a shock: It contained as many as 6,300 genes. Only about a
quarter of these were expected and could be assigned vague functions.
To be on the safe side, and boosted by humans’ perceived importance as
the pinnacle of evolution, biologists estimated that the human genome
would have at least 100,000 genes. This number was believed to be suf-
ficient to account for the high complexity of Homo sapiens. Then came
February 2001 and the publication of the human genome. It turned out
that we have less than a third of the anticipated genes—only about
30,000. Therefore, a mere one-third increase in genes must explain the
difference between us and the unsophisticated Caenorhabditis elegans

worm—quite a provocative idea when we consider that the 20,000
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genes of C. elegans need to encode only three hundred neurons,
whereas our extra 10,000 genes have to account for the billion nerve
cells present in our brain.

In short, it is now clear that the number of genes is not propor-
tional to our perceived complexity. Then what does complexity mean?
Networks point to the answer. Framed in terms of networks, our ques-
tion becomes: How many different potentially distinct behaviors can a
genetic network display with the same number of genes? In principle,
two cells that are identical except that a specific gene is on in the first
cell and off in the second could behave differently. Assuming that each
gene can be turned on or off independently, a cell with N genes could
display 2N distinct states. If we adopt as a measure of complexity the po-
tential number of distinct behaviors displayed by a typical cell, the dif-
ference between the worm and humans is staggering: Humans could be
viewed as 103900 times more complex than our wormy relatives!

Whereas the twentieth century was seen as the century of physics,
the twenty-first is often predicted to be the century of biology. A
decade ago it would have been tempting to call it the century of the
gene. Few people would dare say that any longer about the century we
have just entered. It will most likely be a century of complexity. It must
be a century of biological networks as well. If there is any area in which
network thinking could trigger a revolution, I believe that biology is it.



THE FOURTEENTH LINK

Network Economy

TEN YEARS AGO AN EARLY and largely unknown Internet startup was des-
perately short of cash. As a manager for Time Warner, a member of the
startup’s directorial board saw these problems as an opportunity for the en-
tertainment giant for which he worked. He therefore suggested to a Time
Warner senior executive that they bail out the startup. For a mere $5 mil-
lion the media conglomerate could have owned 11 percent of the com-
pany. This would have been petty cash for Time Warner and would have
offered access to the Internet, at that time a brand new distribution chan-
nel. “If we did that,” the senior executive replied, meaning that if he ac-
cepted the Internet as a viable distribution channel for Time Warner, “then
everything we have done since 1923 would be thrown out the window.”

He certainly was a terrible stock picker: Ten years later the $5 mil-
lion investment would have been worth over $15 billion. The purchase
would have altered history too. Indeed, a decade later Steve Case, the
CEO of America Online (AOL), the once unknown Internet startup,
and Jerry Levin, the chairman of Time Warner, announced the merger
of the two companies at a Manhattan press conference. A few years ear-
lier Time Warner could have easily digested the Internet startup. In
2000, however, it was AOL, a company that few had heard of a decade
earlier, that swallowed the media giant.

Time Warner had content, and AOL had the means of delivering it
to the consumer. Just before the collapse of the NASDAQ bubble in

199




200 LINKED

spring 2000, Jerry Levin was under pressure to go dot.com to regain Wall
Street’s attention, and Steve Case needed access to Time Warner’s cable
to get into your living room. Despite the very different cultures of the two
companies, business analysts were eager to convince us that it was a match
made in heaven. The same analysts had told us that the 1998 Daimler-
Benz takeover of Chrysler also was a sound step for both companies. So
was the fusion of the oil industry titans Exxon and Mobil in 1998, four
months after another major acquisition in which Amoco was bought by
British Petroleum. The list of attention-grabbing mergers and acquisitions
does not end here, however. In 1998 alone Bell Atlantic paired up with
GTE, SBC Communications bought Ameritech, BankAmerica joined up
with NationsBank, Citicorp merged with Travelers Group.

Do these mergers make sense? Not if you listen to antiglobalization
activists, who accuse big corporations of dictating everything from pol-
icy to fashion. They are unavoidable, however, if we view the economy
as a complex network, whose nodes are companies and whose links rep-
resent the various economic and financial ties connecting them. In-
deed, in a network economy the hubs must get bigger as the network
grows. To satisfy their hunger for links, nodes of the business web learn
to swallow the smaller nodes, a novel method unseen in other net-
works. As globalization pressures the nodes to grow bigger, mergers and
acquisitions are a natural consequence of an expanding economy.

Motivated by the renaissance of networks in physics and mathemat-
ics, recently a number of new findings has documented the power of net-
works in everything from company structure to the marketplace. We have
learned that a sparse network of a few powerful directors controls all major
appointments in Fortune 1000 companies; a network of alliances deter-
mines the success in the biotech industry; the structure of the network
within the firm is responsible for the organization’s ability to adapt to rap-
idly changing market conditions; and strategies taking advantage of the
network nature of the consumer base lead to phenomenal successes in
marketing. As links and connections take over, understanding network ef-

fects become the key to survival in a rapidly evolving new economy.
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1.

Regardless of industry and scope, the network behind all twentieth cen-
tury corporations has the same structure: It is a tree, where the CEO oc-
cupies the root and the bifurcating branches represent the increasingly
specialized and nonoverlapping tasks of lower-level managers and
workers. Responsibility decays as you move down the branches, ending
with the drone executors of orders conceived at the roots.

Despite its pervasiveness, there are many problems with the corpo-
rate tree. First, information must be carefully filtered as it rises in the
hierarchy. If filtering is less than ideal, the overload at the top level,
where all branches meet, could be huge. As a company expands and the
tree grows, information at the top level inevitably explodes. Second,
integration leads to unexpected organizational rigidity. A typical ex-
ample comes from Ford’s car factories, one of the first manufacturing
plants to fully implement the hierarchical organization. The problem
was that they got too good at it. Ford’s assembly lines became so tightly
integrated and optimized that even small modifications in automobile
design required shutting down factories for weeks or months. Optimiza-
tion leads to what some call Byzantine monoliths, organizations so
overorganized that they are completely inflexible, unable to respond to
changes in the business environment.

The tree model is best suited for mass production, which was the
way of economic success until recently. These days, however, the value
is in ideas and information. We have gotten to the point that we can
produce anything that we can dream of. The expensive question now
is, what should that be?

As companies face an information explosion and an unprecedented
need for flexibility in a rapidly changing marketplace, the corporate
model is in the midst of a complete makeover. This does not mean a su-
perficial shift in the job description of a few individuals. It is a funda-
mental rethinking of how to respond to the new business environment
in the postindustrial era, dubbed the information economy.
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The most visible element of this remaking is a shift from a tree to a
web or a network organization, flat and with lots of cross-links between
the nodes. As valuable resources shift from physical assets to bits and
information, operations move from vertical to virtual integration, the
reach of businesses increasingly expands from domestic to global, the
lifetime of inventories decreases from months to hours, business strat-
egy changes from top-down to bottom-up, and workers transform into
employees or free agents.

New products require new alliances both within and outside the
company, demanding a new topology. To achieve this, layers of middle
managers have been scrapped. Employees who previously played sec-
ondary roles are in charge of major products from one day to the next.
Project teams, alliances within and outside the organization, and out-
sourcing proliferate. Therefore, companies aiming to compete in a fast-
moving marketplace are shifting from a static and optimized tree into a
dynamic and evolving web, offering a more malleable, flexible com-
mand structure. Those that resist this change could easily be forced to
the periphery.

The internal remaking of the web within the firm is only one con-
sequence of a network economy. Another is the realization that compa-
nies never work alone. They collaborate with other institutions, adapt-
ing business practices proved successful in other organizations. The
crucial high-level connection to the rest of the corporate world is often
maintained by the CEO and the board of directors. As we will see next,
network effects play a fundamental role in these interactions.

2.

“I want to say to you absolutely and unequivocally that Ms. Lewinsky

told me in no uncertain terms that she did not have a sexual relationship
with the President,” read Vernon Jordan at a hastily convened press con-
ference in the midst of the Clinton-Lewinsky scandal. But he soon was to
“pull off some of the fanciest footwork of his career—dancing out of the
box that he put himself in,” according to Time magazine’s Eric Pooley, as
everyone pressed him for a satisfactory explanation for the four meetings
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and seven phone calls Jordan had with the former White House intern,
trying to arrange a job for her at one of several major companies.

Jordan’s role in finding Monica Lewinsky a corporate job was no
surprise to Washington insiders. His inability to steer the attention
away from himself was something new, however. An effective civil
rights leader in the 1970s, Jordan was shot in the back in 1980 by a
white supremacist, who settled on him after learning that Jesse Jack-
son, whom he really wanted to kill, was out of town. Jordan carefully
had avoided the spotlight ever since, becoming the most powerful un-
known in D.C., a rarely heard or seen top deal maker and superlawyer
in Washington’s media-fixated crowd. As Pooley wrote in Time, Jordan
“earns $1 million a year from a law practice that requires him to file no
brief and visit no courtroom, because his billable hours tend to be
logged in posh restaurants, on cellular telephones, in the tufted-leather
backseats of limousines—making a deft introduction here, nudging a
legislative position there, ironing out an indelicate situation before it
makes the papers.”

Uncharacteristically, Jordan found himself in the papers all over the
nation in 1998, his meetings and phone calls being scrutinized by
everyone from the media to independent counsel Kenneth Starr. He
emerged as a prominent node in the entangled web of the Clinton-
Lewinsky scandal, often dubbed the Six Degrees of Monica.

Jordan was not a newcomer to small worlds. He acquired his unique
status as a consummate Washington insider by successfully surfing one of
the most influential small-world networks in the American economy, the
corporate web. During the years preceding the Clinton-Lewinsky scandal
and the Clinton presidency, Jordan became the most central director of
the small corporate elite running the Fortune 1000 corporate world.

The board of directors, a group of about a dozen individuals, holds
unusual power in overseeing a company’s future. It is responsible for all
major decisions, from ousting poorly performing CEOs to approving
major mergers and acquisitions. Therefore, corporations make all ef-
forts to recruit well-connected and experienced directors. Successful
CEOs, lawyers, and politicians are frequently sought after, being
courted for directorship on several boards at the same time.
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Despite concerns that directors serving on a large number of boards
cannot possibly find the time to do justice to all of them, most compa-
nies want their directors to have experience on other boards. As direc-
tors apply the knowledge and experience they acquired on one board to
bear on questions faced by another, this interlocked network of board
members plays a crucial role in spreading corporate practices and main-
taining the political and economic clout of big corporations.

Thanks to the important role boards play in shaping the landscape
of American corporate life, the web of directors has often been scruti-
nized in business literature. But only recently, with the advent of meth-
ods to analyze complex networks, have we started to understand to
what degree the power of this web is rooted in its interlocked topology.

In the director network each node is a board member linked to di-
rectors serving on the same board. With thousands of companies, each
with about a dozen or so directors, this is a rather large web. Gerald E
Davis, Mina Yoo, and Wayne E. Baker, from the University of Michigan
Business School, recently studied the most influential component of
this web, focusing on the network of Fortune 1000 companies, made up
of 10,100 directorships held by 7,682 directors. If each director were to
serve on one board only, the network would be broken into tiny, fully
connected circles, each the size of a single board. This is not the case,
however. While 79 percent of directors serve on only one board, 14
percent serve on two, and about 7 percent serve on three or more. The
measurements indicated that these few overlapping directors create a
small-world network with five degrees of separation. Indeed, the dis-
tance between any two directors belonging to the major cluster, which
contains 6,724 directors, was 4.6 handshakes on average.

The small-world nature of the director web is due to the 21 percent
of directors who serve on more than one board, since they are the ones
who hold this complex network together. Of these, Vernon Jordan
plays a very special role. With membership on ten boards, in which he
regularly meets 106 other Fortune 1000 directors, Jordan is the most
central director of the corporate elite, within three handshakes from
most other directors.
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3.

Jordan’s career offers a vivid demonstration of how the interlocked,
small-world nature of corporate directorships determines most major
appointments in corporate life. Indeed, in most cases when Jordan
joined a board, he already knew at least one director from his service
on other boards. In the early seventies, as president of the National
Urban League, the influential civil rights organization, Jordan re-
peatedly called for the inclusion of blacks in the powerful corporate
elite. In 1972 John Brooks, the chairman of Celanese Corporation, a
diversified manufacturer of chemicals, told him, “I think you ought
to put your money where your mouth is. ... You're talking about
blacks on the board of directors. Why don’t you come on the board
at Celanese?”

Soon after joining the board of Celanese, Jordan received two calls
inviting him to join the boards of both Marine Midland Bank and
Bankers Trust. Undecided as to which he should accept, Jordan called
John Brooks for advice. “You don’t have a choice. It’s Bankers Trust,”
came the short reply. When Jordan asked why, Brooks answered simply,
“How do you think you got nominated to be on the Bankers Trust
board? I am on the board. I nominated you.” At Bankers Trust Jordan
served together with William M. Ellinghaus, who held a directorship at
JC Penney as well. A year later Jordan was invited to serve on the board
of JC Penney.

Three years later Jordan asked Peter McCullough, the CEO of Xe-
rox, to be the corporate chairman of the National Urban League. He
accepted with a condition: “I'll be your corporate chairman if you come
on the Xerox board.” Jordan agreed. Three years after becoming a Xe-
rox director, Jordan was invited to the board of American Express,
where two other Xerox directors already served. It comes as no surprise
that in 1980 Jordan joined the board of R] Reynolds. Indeed, the CEO
of Celanese and another JC Penney board member both served on the
R] Reynolds board, and Jordan had close links to the R] Reynolds CEO

as well, who was a fellow director on the Celanese board.



206 LINKED

Prior acquaintanceship allows directors to vouch for prospective re-
cruits. Therefore, the small-world dynamics help the creation of a pow-
erful “old boy network,” or corporate elite, that has unparalleled influ-
ence in economic and political life. Jordan’s current job at Akin,
Gump, Strauss, Hauer & Feld, one of the biggest law practices in Wash-
ington, can be also traced back to this old boy network: Robert S.
Strauss, the partner responsible for recruiting Jordan, was a fellow direc-
tor on the Xerox board.

Jordan’s path is by no means unique. Network effects are known to
be present in all industries. For example, in Silicon Valley the extensive
movements of labor between companies create dense personal inter-
company links. These subtle social networks are extensively utilized for
hiring new employees and attracting managers. Since current employ-
ees can vouch for their social links, just as directors do for fellow board
members, employees hired through social networks quit less frequently
and perform better than those recruited otherwise.

The intricate and interlocked nature of board directorships and Sil-
icon Valley employees provides just two examples of the complex social
and power networks behind the U.S. economy. But to comprehend how
an economy truly works, we need to understand how corporations and
other economic institutions run by these highly connected directors in-
teract with each other.

4.

Although universities and their spin-offs, small biotech companies,
have been recently the driving force behind the development of new
drugs, the cash and experience needed to launch large-scale clinical tri-
als and the worldwide marketing channels continue to be located in
large chemical and pharmaceutical companies. Because the develop-
ment and marketing of a new drug can cost anywhere from $150 mil-
lion to $500 million, the different players of this field, ranging from
universities and research labs to government agencies, chemical and
pharmaceutical companies and venture capital firms, have been forced to
form strategic partnerships. These alliances, together with the relatively
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young age of the biotech industry, offer an unusually well documented
case of network formation, allowing us to follow and understand the
emergence of networks in economic systems.

From its early days the biotech industry displayed the essential at-
tributes of a growing network. This growth was captured in a dynamic
oraph developed by Walter W. Powell, Douglas White, and Kenneth W.
Koput, depicting the biotech network at different stages of its evolution
between 1988 and 1999. In 1988, representing the early days of the in-
dustry, there were far fewer links than nodes: Seventy-nine organiza-
tions connected by only thirty-one links. According to the famous
Erd&s-Rényi prediction, the network should have been broken into
many tiny clusters. In reality, however, the nodes formed two major
components, one with twenty-seven and the other with four organiza-
tions. That is, none of the thirty-one links was wasted—each of them
contributed to a major component developing around a few biotech
companies, leading to a level of connectedness that could not emerge
in a random network. A few hubs visible already at this early stage were
the first-mover biotech companies, such as Centocor, Genzyme, Chi-
ron, Alza, and Genentech. Without them the biotech network would
have broken into many tiny disconnected nodes.

But the existence of a few companies with a large number of part-
nerships, resembling hubs, is not enough for us to identify the nature of
the network. For this we have to analyze the degree distribution, a
study recently performed by two economists, Massimo Riccaboni and
Fabio Pammolli, both from the University of Siena, working with
physicist Guido Cardarelli from La Sapienza University in Rome, Italy.
Their study was based on data collected by the Pharmaceutical Industry
Database, hosted by the University of Siena, which provides informa-
tion for 3,973 research and development agreements between 1,709
firms and institutions. The analysis indicates that the hubs noticed by
Powell, White, and Koput are not accidental but are rooted in the
scale-free nature of the network behind the pharmaceutical industry.
Indeed, the number of companies that entered in partnership with ex-
actly k other institutions, representing the number of links they have
within the network, followed a power law, the signature of a scale-free



208 LINKED

topology. A hierarchy of well-connected large corporations brought to-
gether a large number of small companies, seamlessly integrating all
players into an evolving scale-free economy.

As research, innovation, product development, and marketing be-
come more and more specialized and divorced from each other, we are
converging to a network economy in which strategic alliances and part-
nerships are the means for survival in all industries. The interfirm link-
ages of suppliers and subcontractors are well documented in southwest-
ern Germany and north central Italy; Japanese business has long relied
on interfirm collaborations to diffuse responsibilities for technological
innovations; the Korean business model marries a whole array of di-
verse companies under the umbrella of large conglomerates; Silicon
Valley regularly takes advantage of technology transfers by pairing up
startups with established companies. These fluid alliances, which are
periodically renegotiated as the marketplace shifts or the focus of the
participants changes, offer a glimpse of the future of the world’s business

environment.

5.

Despite the important role these interfirm alliances play in the econ-
omy, economic theory pays surprisingly little attention to networks.
Until recently economists viewed the economy as a set of autonomous
and anonymous individuals interacting through the price system only, a
model often called the standard formal model of economics. The individ-
ual actions of companies and consumers were assumed to have little
consequence on the state of the market. Instead, the state of the econ-
omy was best captured by such aggregate quantities as employment,
output, or inflation, ignoring the interrelated microbehavior responsi-
ble for these aggregate measures. Companies and corporations were
seen as interacting not with each other but rather with “the market,” a
mythical entity that mediates all economic interactions.

In reality, the market is nothing but a directed network. Compa-
nies, firms, corporations, financial institutions, governments, and all po-

tential economic players are the nodes. Links quantify various interac-
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tions between these institutions, involving purchases and sales, joint
research and marketing projects, and so forth. The weight of the links
captures the value of the transaction, and the direction points from the
provider to the receiver. The structure and evolution of this weighted
and directed network determine the outcome of all macroeconomic
processes.

As Walter W. Powell writes in Neither Market nor Hierarchy: Net-
work Forms of Organization, “in markets the standard strategy is to drive
the hardest possible bargain on the immediate exchange. In networks,
the preferred option is often creating indebtedness and reliance over
the long haul.” Therefore, in a network economy, buyers and suppliers
are not competitors but partners. The relationship between them is of-
ten very long lasting and stable.

The stability of these links allows companies to concentrate on their
core business. If these partnerships break down, the effects can be severe.
Most of the time failures handicap only the partners of the broken link.
Occasionally, however, they send ripples through the whole economy. As
we will see next, macroeconomic failures can throw entire nations into
deep financial disarray, while failures in corporate partnerships can se-

verely damage the jewels of the new economy.

6.

On February 5, 1997, Somprasong Land, a Thai property development
company, failed to pay interest of $3.1 million on Euro-convertible
debt. In a globalized economy where trillions of dollars change hands
daily, this is petty cash. Not surprisingly, the event easily evaded the at-
tention of the average investor. Unnoticed by most, this single failure
was nevertheless the spark that led to the melting of the world’s finan-
cial architecture.

A month later the Thai government made the first in a series of
desperate attempts to save the country’s economy from imminent col-
lapse, announcing that it would buy $3.9 billion in bad property debt
from financial institutions. A few days later it reneged on its promisc,
a move that some financial experts took as a sign of stability. The
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International Monetary Fund’s managing director, Michel Camdessus,
who was later criticized for his organization’s role in the Asian finan-
cial meltdown, said, “I don’t see any reason for this crisis to develop
further.”

Subsequent events proved him wrong. Two weeks later the finan-
cial sector was trembling in Malaysia, prompting its central bank to re-
strict loans. At the same time, Sammi Steel, the main firm of Korea’s
twenty-sixth largest conglomerate, sought court receivership, the first
step toward bankruptcy. In May, Japan hinted that it would raise inter-
est rates to stop the decline of the yen (which never happened), trigger-
ing a global sell-off of Southwest Asian currencies and shaking the lo-
cal stock markets. A week later Thailand failed to save its largest
finance company, Finance One, which effectively went bankrupt. The
event triggered a strong speculative attack on Thailand’s currency, the
baht, which, despite repeated promises to the contrary by the govern-
ment, was abandoned on July 2.

The cascading failures of companies and financial institutions in
Thailand, Indonesia, Malaysia, Korea, and the Philippines would take
hundreds of pages to fully document. So would the chronicle of finger-
pointing, including such highlights as Malaysian Prime Minister Ma-
hathir Mohamad’s bitter attack on “rogue speculators,” which culmi-
nated in a talk given to the IMF/World Bank annual conference in
which he called cutrency trading immoral. George Soros, the promi-
nent international financier, responded a day later, “Dr. Mahathir is a
menace to his own country.”

Some economists blamed the “structural and policy distortions in
the countries of the region” for the financial meltdown. Yet President
Clinton and his economic team in the economic report of the president
to the Congress in 1999 maintained that the crisis “was not due to
problems with the economic fundamentals.” Less than a year after the
events, Paul Krugman, professor of economics and international affairs
at Princeton, summarized the overall feeling: “It seems safe to say that
nobody anticipated anything like the current crisis in Asia.” A few
small, localized financial difficulties had set off a chain reaction of fail-

ures that swept across national boundaries, creating a huge currency de-
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valuation and stock market crashes from Asia to South America. It
cventually caused the single biggest point loss ever of the Dow Jones in-
dustrial average, which tumbled 554.26 points on October 27, 1997.

How could the failure of a large but far from dominant property de-
velopment company shake the world’s largest stock market and keep
the president of the “world’s strongest nation” explaining even two
yvears after?! If we view the economy as a highly interconnected network
of companies and financial institutions, we can begin to make sense of
these events. In such networks the failure of a node has little effect on
the system’s integrity. Occasionally, however, the breakdown of some
well-selected nodes sets off a cascade of failures that can shake the
whole system.

The Asian crisis was a large-scale example of a cascading financial
failure similar to those we discussed in Chapter 9, a natural conse-
quence of connectedness and interdependency. It was not the first,
however: South America and Mexico had experienced similar cascad-
ing failures two years earlier. It is surely not the last either, despite all
the measures banks and governments seem to have taken to avoid it.

These events cannot be explained within a framework in which all
organizations interact with a mythical market only. Cascading failures
are a direct consequence of a network economy, of interdependencies
induced by the fact that in a global economy no institution can work
alone. Understanding macroeconomic interdependencies in terms of
networks can help us to foresee and limit future crises. Thinking net-
works can teach us to monitor the path of the damage and to set fire-
walls by identifying and strengthening the nodes that can stop the
spread of macroeconomic fires.

We should not let ourselves believe that such cascading failures as
the Asian crisis and its Latin American counterparts are the side ef-
fects of the unstable financial systems of rapidly developing nations.
Established economies, such as the United States’, that have the cash
and the expertise to root out such failures before they turn global
aren’t immune to cascading failures. Vulnerabilities related to inter-
connectivity exist in stable economies as well, as the burst of the

dot.com bubble illustrates.
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7.

In late 1999, Compaq’s Pocket PC became the company’s biggest hit. As
discussed by a recent Strategy & Business study, demand for the device out-
paced supply twenty-five times, making some Compaq executives dream
that, with support and accessories, the handheld devices could soon of-
fer a bigger market than traditional PCs. Then problems started surfacing.

Compagq, Cisco Systems, and several other companies are leaders of
a new business strategy: outsourcing. Cisco, which not long ago was
poised to become the first trillion-dollar company, is the driving force
behind this trend. It reached a 30 to 40 percent annual revenue growth
with a novel and aggressive approach to manufacturing: It didn’t build
anything that it sold. Rather, it established strong ties to a large number
of manufacturers who built and assembled the pieces sold under Cisco’s
logo. Compaq and many others followed suit.

Qutsourcing requires a tight integration of suppliers, making sure
that all pieces arrive just in time. Therefore, when some suppliers
were unable to deliver certain basic components like capacitors and
flash memory, Compaq’s network was paralyzed. The company was
looking at 600,000 to 700,000 unfilled orders in handheld devices.
The $499 Pocket PCs were selling for $700 to $800 at auctions on
eBay and Amazon.com. Cisco experienced a different but equally
damaging problem: When orders dried up, Cisco neglected to turn
off its supply chain, resulting in a 300 percent ballooning of its raw
materials inventory.

The final numbers are frightening: The aggregate market value loss
between March 2000 and March 2001 of the twelve major companies
that adopted outsourcing—Cisco, Dell, Compaq, Gateway, Apple,
IBM, Lucent, Hewlett-Packard, Motorola, Ericcson, Nokia, and Nor-
tel—exceeded $1.2 trillion. The painful experience of these companies
and their investors is a vivid demonstration of the consequences of ig-
noring network effects. A me attitude, where the company’s immediate
financial balance is the only factor, limits network thinking. Not un-
derstanding how the actions of one node affect other nodes easily crip-
ples whole segments of the network.
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Experts agree that such rippling losses are not an inevitable down-
side of the network economy. Rather, these companies failed because
they outsourced their manufacturing without fully understanding the
changes required in their business models. Hierarchical thinking does
not fit a network economy. In traditional organizations, rapid shifts can
he made within the organization, with any resulting losses being offset
by gains in other parts of the hierarchy. In a network economy each
node must be profitable. Failing to understand this, the big players of
the network game exposed themselves to the risks of connectedness
without benefiting from its advantages. When problems arose, they
failed to make the right, tough decisions, such as shutting down the
supply line in Cisco’s case, and got into even bigger trouble.

At both the macro- and the microeconomic level, the network
economy is here to stay. Despite some high-profile losses, outsourcing
will be increasingly common. Financial interdependencies, ignoring
national and continental boundaries, will only be strengthened with
globalization. A revolution in management is in the making. It will
take a new, network-oriented view of the economy and an understand-

ing of the consequences of interconnectedness to smooth the way.

8.

Sabeer Bhatia did not know how to sell a company. But having been
born and raised in India, he did know how to buy onions. You have to
negotiate. Now he had a very hot onion to sell. He and his partner, Jack
Smith, on July 4, 1996, launched a service offering nothing but e-
mail—free to anybody in the world. They named it Hotmail. By year’s
end they had signed up a million customers, each of whom view daily
the banner ads displayed on their e-mail account, Hotmail’s main
source of revenue. When Microsoft came knocking a year later, nearly
10 million users had Hotmail accounts. Bhatia was only twenty-eight
when, after touring all twenty-six buildings at Microsoft’s Redmond,
Washington, empire and shaking hands with Bill Gates, he was ushered
into a room packed with twelve Microsoft negotiators. They offered
him $160 million. “I'll get back to you,” he said, and walked away.
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Currently Hotmail has about a quarter of all e-mail accounts. It is
the biggest e-mail service provider in Sweden and India, countries in
which it has never advertised. Microsoft eventually paid $400 million
for the company, which a year later, before the burst of the dot.com
bubble, was worth $6 billion.

How did an underfunded startup sign up a quarter of all e-mail
users! The answer is simple: They exploited the power of networks, us-
ing a hot new marketing technique called viral marketing. Viral mar-
keting works on the same principle that allowed Love Bug to circle the
globe in a few hours. The computer virus reached everybody by looking
up the e-mail list you store in your Microsoft Outlook program, sending
a copy of itself to each address. Thanks to a similar innovation, Hot-
mail users voluntarily offer the same service.

Tim Draper, from the Draper, Fisher and Jurvetson venture capital
firm, after providing $300,000 seed money to launch Hotmail, persuaded
Bhatia and Smith to add an extra line at the end of each email: “Get Your
Private, Free Email at http://www.hotmail.com.” Therefore, whenever
Hotmail users send e-mails to their friends, they advertise and endorse the
company. The news about Hotmail travels on a scale-free network, utiliz-
ing exactly the same routes that helped the spread of Love Bug. Because
the critical threshold for innovation spreading vanishes on such networks,
it was likely that Hotmail would succeed. It was unexpected and surpris-
ing, however, how fast and to what degree it did.

What is the source of Hotmail’s phenomenal success? The answer
is partially contained in the Trieste study discussed in Chapter 10. In-
novations and products with a higher spreading rate have a higher
chance of reaching a large fraction of the network. Hotmail enhanced
its spreading rate by eliminating the adoption threshold individuals
experience. First, it is free; thus you do not have to think about
whether you are making a wise investment. Second, the Hotmail in-
terface makes it very easy to sign up. In two minutes you have an ac-
count; thus there is no time investment. Third, once you sign up,
every time you send an e-mail, you offer free advertisement for Hot-

mail. Combine these three features, and you get a service that has a
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very high infection rate, a built-in mechanism to spread. Traditional
marketing theories will tell you that the combination of free service,
low learning path, and rapid reach through consumer marketing has
put the product above the threshold, and that is why it reached every-
body. Based on our new understanding of diffusion in complex net-
works, we now know that this is only partially correct. It is true that
you have a very high rate of spread. But you have no threshold either.
Products and ideas spread by being adapted by hubs, the highly con-
nected nodes of the consumer network.

Can Hotmail be replicated? Don’t bet on it. Take for example
EpidemicMarketing.com, a company that spent $2.1 million on a
thirty-second Super Bowl advertisement in 2000, dreaming big to ex-
ploit the power of networks. In the Super Bowl ad a man visits a pub-
lic restroom and receives a tip from the washroom attendant, instead
of tipping the attendant as is customary. As was so cleverly expressed
in their commercial, Epidemic planned to reward people for doing
things they do every day. Their business model was to pay consumers
to attach links to Internet businesses on their outgoing e-mail.
Therefore, information about a company or promotion was expected
to spread largely through word of mouth, replicating the phenomenal
success of Hotmail. The model was missing a crucial element of viral
marketing, however: Your friend had little interest in passing on the
link to his or her acquaintances. It comes as no surprise, therefore,
that Epidemic closed its doors and laid off its sixty-person staff in
June 2000 after burning through the $7.6 million it raised.

Hotmail demonstrates the power of consumer networks. Some
products do not need expensive telemarketing or TV and newspaper
ads to prevail. They simply spread by word of mouth like a virus.
Though it may not work for all products, throwing in elements of vi-
ral marketing could enhance just about all sales. Yet Epidemic’s fail-
ure indicates that Hotmail cannot be easily copied. Instead, Hot-
mail’s experience should be the starting point for new marketing
approaches, combining traditional strategies with a better under-
standing of network effects.
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9.

Network effects proliferate in the business world. We saw Vernon Jordan
successfully surf the complex corporate network, becoming an influential
member of the corporate elite. We saw Hotmail take advantage of the
scale-free nature of the consumer network to become the biggest e-mail
provider worldwide. The list does not stop here. Motivated by the evolv-
ing marketplace, an array of new companies have lately vowed to put
network thinking at the core of their business models. Their record is
mixed at best.

Take for example SixDegrees.com, a New York—based startup that
asked its members to submit the names of their friends, inviting them
to join too. If they enrolled, they also submitted the names of their
friends. Step by step SixDegrees acquired a detailed map of the social
network around each of its members, allowing them to reach everybody
two links away from them. This consumer-driven viral marketing al-
lowed SixDegrees to sign up over 3 million consumers. Yet the startup
closed its doors on December 30, 2000, failing to turn six degrees into a
viable business plan.

The burst of the dot.com bubble is often attributed to the one-di-
mensional thinking of many Internet enthusiasts. Most startups were
based on the simple philosophy that offering things online was suffi-
cient to replicate the success stories of the new economy. Yet, apart
from a few early starts, such as Amazon.com, AOL, or eBay, most failed.
The real legacy of the Internet is not the birth of thousands of new on-
line companies but the transformation of existing businesses. We can
see its signature on everything from mom-and-pop stores to large multi-
national agglomerates.

Networks do not offer a miracle drug, a strategy that makes you in-
vincible in any business environment. The truly important role net-
works play is in helping existing organizations adapt to rapidly chang-
ing market conditions. The very concept of network implies a

multidimensional approach.
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The diversity of networks in business and the economy is mind-
hoggling. There are policy networks, ownership networks, collaboration
networks, organizational networks, network marketing—you name it. It
would be impossible to integrate these diverse interactions into a single
all-encompassing web. Yet no matter what organizational level we look
at, the same robust and universal laws that govern nature’s webs seem
to greet us. The challenge is for economic and network research alike
to put these laws into practice.



THE LAST LINK

Web Without a Spider

By MARCH 1998, when in an unusual move I invited Réka Albert to
lunch, she was only a year and a half into her graduate studies but had
enough publications to receive a Ph.D. One of her papers, on granular
media and sand castles, was featured on the cover of Nature and Sci-
ence News, and the preliminary results of her current projects were
promising, as well. So the purpose of this lunch defied all wisdom: I
wanted to persuade her to give up the research she had been so good at
and start something entirely different. I told her about my dream to
study networks.

Four years earlier, in the fall of 1994, with a fresh doctorate in
theoretical physics, I had started as a postdoc in the legendary corpo-
rate ivory tower of IBM, the T. ]. Watson Research Center in York-
town Heights, New York. Four months into my job there, perhaps
touched by the spirit of the place, I checked out from the library a
general-audience book on computer science to read over the Christ-
mas break. As I immersed myself in algorithms, graphs, and Boolean
logic, I started to sense how little was known about networks in gen-
eral. All my readings told me that the millions of electric, tele-
phone, and Internet cables cramped under the pavement in Manhat-
tan formed a fundamentally random network. The more I thought
about it, the more | was convinced that there must be some organiz-

ing principles governing the complex webs around us. Dreaming of
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identifying some signature of order, | started to study network theory,
beginning with the classical works of Erd&s and Rényi. Before 1 left
IBM in the fall of 1995 for a faculty position in physics at University
of Notre Dame, I had submitted my first research paper about com-
plex networks.

At Notre Dame, I tried with little success to contact search en-
gines for data on the Web’s topology. Under pressure to publish and
obtain grants, I gradually replaced networks with safer and more con-
ventional research. By the beginning of 1998, however, | was ready to
return to thinking about nodes and links. Now 1 was asking one of my
best students to drop everything she was doing and join me on that
risky journey. I could offer her little encouragement at that time. |
had to tell her that my only paper about networks had been rejected
by four journals and never been published. I told her she was risking a
sudden end to the success story she was part of so far. But I also told
her that sometimes we should be ready to take risks. In my view, net-
works were worth the try.

In 1994, or even in early 1998, nobody could have anticipated the
flood of discoveries that would completely reshape our understanding of
our interconnected world in the following years. At that lunch with
Albert when | made my pitch for networks, I could not tell her about
small worlds. Not even in my wildest dreams could I conjure power laws
or scale-free networks. I could not talk about error-and-attack tolerance
either, since these were nonissues in network research at that time. In
fact, every question worth studying that I could tell her about has since
been proven ill-founded or simply irrelevant.

It was Hawoong Jeong’s robot that forced us to think outside the
box. Jeong joined my research group as a postdoctoral researcher in
August 1998, five months after Albert and I took up networks as a re-
search topic. Recently graduated from Korea's prestigious Seoul Na-
tional University, his fascination with and knowledge of computers
were prodigious. One day, after a late night discussion, I casually
asked him if he would be able to build a robot to map out the World
Wide Web. He made no promises. But a month later his robot was
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busy carrying home the nodes and links. By that time we were some-
what familiar with the classical literature dealing with random graphs
and networks. Thus it was immediately clear that the power laws seen
by the robot represented a serious deviation trom everything then
known about networks. It was only after the construction of the scale-
free model, however, that we fully understood how different real webs
are from the random universe Erdés and Rényi depicted.

Today we know that, though real networks are not as random as
Erd&s and Rényi envisioned, chance and randomness do play an impor-
tant role in their construction. Real networks are not static, as all graph
theoretical models were until recently. Instead, growth plays a key role
in shaping their topology. They are not as centralized as a star network
is. Rather, there is a hierarchy of hubs that keep these networks to-
gether, a heavily connected node closely followed by several less con-
nected ones, trailed by dozens of even smaller nodes. No central node
sits in the middle of the spider web, controlling and monitoring every
link and node. There is no single node whose removal could break the
web. A scale-free network is a web without a spider.

In the absence of a spider, there is no meticulous design behind
these networks either. Real networks are self-organized. They offer a
vivid example of how the independent actions of millions of nodes
and links lead to spectacular emergent behavior. Their spiderless
scale-free topology is an unavoidable consequence of their evolution.
Each time nature is ready to spin a new web, unable to escape its own
laws, it creates a network whose fundamental structural features are
those of dozens of other webs spun before. The robustness of the laws
governing the emergence of complex networks is the explanation for
the ubiquity of the scale-free topology, describing such diverse sys-
tems as the network behind language, the links between the proteins
in the cell, sexual relationships between people, the wiring diagram
of a computer chip, the metabolism of the cell, the Internet, Holly-
wood, the World Wide Web, the web of scientists linked by coau-
thorships, and the intricate collaborative web behind the economy,

to name only a few.
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1.

One of the most fascinating aspects of the birth of a new science is the
new language it creates, allowing us to casually converse about ideas and
issues that we were struggling to describe before. The renaissance of net-
work theory has done this for our interconnected world. The connectors
of society, the stars of Hollywood, and the keystone species of an ecosys-
tem are suddenly only manifestations of a single reality, their perceived
importance within their environment attributable to their status as hubs
within their respective networks. Network thinking is poised to invade
all domains of human activity and most fields of human inquiry. It is
more than another helpful perspective or tool. Networks are by their very
nature the fabric of most complex systems, and nodes and links deeply in-
fuse all strategies aimed at approaching our interlocked universe.

A dramatic example of the pervasiveness of this new language
came after September 11, 2001, when networks acquired a meaning
previously unfamiliar to most of us. Most of what led to the tragedy
make perfect sense from a network perspective. Al Qaeda, the terrorist
network held responsible for the attacks, was not created in seven days.
Driven by religious beliefs and impatience with the existing social and
political order, thousands were drawn to the radical organization over
several years. The network expanded one node at a time, taking on all
the characteristics of a web without a spider. Indeed, al Qaeda failed to
turn into the hub-and-spoke network that offers a central leader con-
trol over all details. It avoided the tree structure as well, the chain of
command characterizing the military and twentieth-century corpora-
tions. Rather, it evolved into a self-organized spiderless web in which a
hierarchy of hubs kept the organization together.

After September 11, Valdis Krebs, a management consultant who
normally uses network theory to analyze corporate communications, as-
sembled a map of the nineteen hijackers aboard the four planes in-
volved in the attacks and the fifteen people whom authorities claimed
to have been connected to them. Krebs carefully entered all publicly
disclosed contacts between these thirty-four individuals, weighting the
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links based on the known closeness of the relationship. The obtained
web is extremely revealing for anybody who wants to understand the
inner workings of the deadly cell that carried out the attacks. It offers
few surprises to those familiar with the shape of real networks. Mo-
hamed Atta, the purported mastermind of the attacks, is the most con-
nected node indeed. Yet, he had direct contact with only sixteen of the
twenty-three nodes. He is closely trailed by Marwan Al-Shehhi, the
second most connected node, with links to fourteen nodes. As we go
down the list, we encounter numerous nodes poor in links, the periph-
eral soldiers of the deadly organization.

The map also shows that, despite his central role, taking out Atta
would not have crippled the cell. The rest of the hubs would have kept
the web together, possibly carrying out the attack without his help.
Many suspect that the structure of the cell involved in the September
11 attack characterizes the whole terrorist organization. Because of its
distributed self-organized topology, Al Qaeda is so scattered and self-
sustaining that even the elimination of Osama bin Laden and his clos-
est deputies might not eradicate the threat they created. It is a web
without a true spider. _

Today the world’s most dangerous aggressors, ranging from al Qaeda
to the Columbian drug cartels, are not military organizations with divi-
sions but self-organized networks of terror. In the absence of familiar
signs of organization and order, we often call them “irregular armies.”
Yet by doing so we again equate complexity with randomness. In real-
ity, terrorist networks obey rigid laws that determine their topology,
structure, and therefore their ability to function. They exploit all the
natural advantages of self-organized networks, including flexibility and
tolerance to internal failures. Unfamiliarity with this new order and a
lack of language for formalizing our experience are perhaps our most
deadly enemies.

To be sure, the battle against al Qaeda can and will be won by crip-
pling the network, either by removing enough of its hubs to reach the
critical point for fragmentation or by draining its resources, prepuring
the groundwork for cascading internal failures. Yet, collapsing al Queda
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will not end the war. Other networks with similar scope and ideology
will no doubt take its place. Bin Laden and his lieutenants did not in-
vent terrorist networks. They only rode the rage of Islamic militants,
exploiting the laws of self-organization along their journey. If we ever
want to win the war, our only hope is to tackle the underlying social,
economic, and political roots that fuel the network’s growth. We must
help eliminate the need and desire of the nodes to form links to terror-
ist organizations by offering them a chance to belong to more construc-
tive and meaningful webs. No matter how good we become at winning
each net battle, if we are unable to inhibit the desire for links, the pre-
requisite for the formation of these deadly self-organized webs, the net

war will never end.

2.

On June 23, 1995, the New York Times carried a large photograph of the
German parliament, the century-old Reichstag, on its cover. This was
five years after German reunification and almost exactly four years after
the Bundestag, sitting in Bonn, voted to make Berlin the capital of the
united Germany once again. Yet, politics and the collapse of commu-
nism had little to do with the renewed worldwide attention to the Re-
ichstag. The real attraction for the 5 million visitors who flooded to
Berlin during the coming two weeks was the fact that none of them
could actually spot even a square inch of the building. The Reichstag’s
signature sober gray walls, the dark and quiet witnesses of a century of
tumultuous German history, were all invisible. This ultimate symbol of
power was wrapped in an aluminum-colored fabric, from its stairs to its
flag post, transforming it into a monumental piece of public art. Over a
million square feet of thickly woven polypropylene fabric held together
by 5,000 feet of blue rope covered every square inch of the structure, of-
fering one of the most magnificent artistic spectacles of our time.

The portfolio of the Bulgarian-born artist Christo and his partner,
the French artist Jeanne-Claude, includes such monumental works as
the Wrapped Pont Neuf, which covered the famous Parisian bridge
with a yellow drapery, and the magnificent Surrounded Islands, for
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which they placed six million square feet of pink fabric around eleven
islands in Biscayne Bay, Miami, Florida. In many ways the Wrapped Re-
ichstag was the culmination of their decades-long wrapping activity.
Yet, it would be simplistic to perceive the artists simply as wrappers of
buildings, bridges, and other objects. Their work has a powerful philos-
ophy: “revelation through concealment.” By hiding the details they al-
low us to focus entirely on the form. The wrapping sharpens our vision,
making us more aware and observant, turning ordinary objects into
monumental sculptures and architectural pieces.

In a sense we approached the world in this book following the spirit
of Christo and Jeanne-Claude. To look at the networks behind such
complex systems as the cell or the society, we concealed all the details.
By seeing only nodes and links, we were privileged to observe the archi-
tecture of complexity. By distancing ourselves from the particulars, we
glimpsed the universal organizing principles behind these complex sys-
tems. Concealment revealed the fundamental laws that govern the
evolution of the weblike world around us and helped us understand
how this tangled architecture affects everything from democracy to cur-
ing cancer.

Where do we go from here! The answer is simple. We must remove
the wrapping. The goal before us is to understand complexity. To
achieve that, we must move beyond structure and topology and start fo-
cusing on the dynamics that take place along the links. Networks are
only the skeleton of complexity, the highways for the various processes
that make our world hum. To describe society we must dress the links of
the social network with actual dynamical interactions between people.
To understand life we must start looking at the reaction dynamics along
the links of the metabolic network. To understand the Internet, we
must add traffic to its entangled links. To understand the disappearance
of some species in an ecosystem, we have to acknowledge that some
prey are easier to catch than others.

In the twentieth century we went as far as we could to uncover and
describe the components of complex systems. Our quest to understand
nature has hit a glass ceiling because we do not yet know how to fit the
pieces together. The complex issues with which we are faced, in fields
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from communication systems to cell biology, demand a brand new
framework. Embarking on the journey ahead without a map would be
hopeless. Fortunately the ongoing network revolution has already pro-
vided many of the key maps. Though there are still many “dragons”
ahead, the shape of a new world has become discernible, continent by
continent. Most important, we have learned the laws of web cartogra-
phy, allowing us to draw new maps whenever we are faced with new sys-
tems. Now we must follow these maps to complete the journey, fitting
the pieces to one another, node by node and link by link, and capturing
their dynamic interplay. We have ninety-eight years to succeed at this,
and make the twenty-first the century of complexity.
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Notes

THE FIRST LINK: INTRODUCTION

Page 2 The story of MafiaBoy has been widely discussed in the press. For a collec-
tion of links, see http://www.mafiaboy.com/. The “Yes, I heard you” phrase comes from
C. Taylor, “Behind the Hack Attack,” Time Magazine (February 21, 2000).

Page 3 St. Paul’s life and role in spreading Christianity have been the focus of
countless books and monographs. See, for example, C. J. Den Heyer, Paul: A Man of
Two Worlds (Harrisburg, Penn.: Trinity Press International, 1998) and Robert Jewlett,
A Chronology of Paul’s Life (Philadelphia: Fortress Press, 1979).

Page 6 Complexity, an emerging field of science aiming to understand how systems
made of millions of diverse components behave and how order emerges from chaos
and randomness, riding the laws of self-organization, is booming lately. Its practition-
ers span dozens of disciplines, ranging from mathematics and physics to ecology and
business. For popular books and introductory texts on the subject, see for example
Murray Gell-Mann’s The Quark and the Jaguar: Adventures in the Simple and the
Complex (New York: W. H. Freeman, 1995); Hidden Order: How Adaptation Builds
Complexity (Cambridge, Mass.: Perseus, 1996); Ricard V. Solé and Brian Goodwin’s
Signs of Life: How Complexity Pervades Biology (New York: Basic Books, 2001); Yaneer
Bar-Yam, Dynamics of Complex Systems (Cambridge, Mass.: Perseus, 1997).

THE SECOND Link: THE RANDOM UNIVERSE w2

Page 9 Euler’s life has been briefly described in many different places. For a recent ac-
count, see for example the biographical note in Willam Durham, Euler: The Master of Us
All (Washington, D.C.: Mathematical Association of America, 1999).

Page 10  Euler’s life in St. Petersburg was rather tumultuous. He lost his wife of three
decades, only to marry his wife’s half sister three years later. A fire burned down his house
and destroyed all his books and notes; he escaped thanks to the bravery of a fellow Swiss
who walked into the fire and carried his illustrious countryman out on his back.
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Page 10 The freshness and clarity of Euler’s writing is remarkable. His enthusiasm
for his subject vibrates even centuries later. Today, when scholarly writing is hardly
intelligible to the uninitiated, the simple language of his papers is enviable. Euler

! spent about a quarter century in Berlin, invited by Frederick the Great, King of Prus-
sia, during which time he was asked to offer lessons in the natural sciences to the
Princess of Anhalt Dessau, the King’s niece. The four-hundred-page work written as a
response to this assignment, Letters of Euler on Different Subjects in Natural Philosophy,
Addressed to a German Princess, touches on just about all fields of science, discussing
issues ranging from the gravity of the Moon to the nature of spirits. Letters to a German
Princess soon became an international hit. This is the finest example of popular
science writing by a scholar working at the frontiers of his field. See Leonhard Euler,
Letters of Euler on Different Subjects in Natural Philosophy Addressed to a German
Princess (New York: Arno Press, 1975).

Page 10  Euler’s collected works are published under the title Opera Omnia (Basel,
Switzerland: Birkhiuser Verlag AG, 1913). Though their publication began in 1911
and over six dozen volumes have appeared, the work is still incomplete.

Page 10 A nice account of the early days of graph theory, with historical background
and English translation of the most important papers in the field, can be found in
Graph Theory: 17361936, by Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson
(Oxford, England: Clanderon Press, 1976). The book also contains Euler’s original pa-
per on the Konigsberg bridges.

Page 12 To see in more detail Euler’s arguments, consider, for example, node D,
which has three links representing land connected to three bridges, e, f, and g. A per-
son attempting to cross all three bridges only once has to visit node D at least twice.
For example, he could arrive through bridge f, leave on e, and then come again on g.
The problem is that he cannot leave again, since there is no unvisited bridge left.
Thus D is either the starting point or the end point of the journey. But this is not a
unique feature of node D: It is easy to check that all nodes with an odd number of
links have this property. That is, a person who wants to visit all nodes must start or
end on them. Nodes A, B, C and D share this property, too, as they all have three
links each. This means that A, B, C, and D have to be simultaneously the starting or
ending point of the journey.

Page 13  For example, the four color problem, dating back to 1852, was missing a
proof until 1976. The problem is very simple at the outset: Prove that any map can be
colored with four colors such that no two countries sharing a border have the same
color. Anyone who has tried to color a map can easily convince him or herself that,
indeed, four colors are sufficient. Yet the proof evaded mathematicians for well over a
century, becoming the first major theorem to have a computer-aided proof.

Page 14  Erdss's life has inspired many popular accounts. The story in the introduc-
tion is based on the account of Andrds Varzsonyi, who was the fourteen-year-old in
the shoe store and who later became the second-youngest math Ph.D. in Hungary in
that era (after Erd6s) and Erdés’s lifelong friend. See Fan Clung and Ron Graham,
Erdés on Graphs: His Legacy and Unsolved Problems (Wellesley, Mass.: A. K. Peters,
1998). For popular Erdss biographies sce Paul Hoffman, The Man Who Loved Only
Numbers (New York: Hyperion, 1998) and Bruce Schechter, My Brain Is Open (New
York: Touchstone, 1998). See also Andras Hajnal and Vera T. S6s, “Paul Erdss 1s Sev-
enty,” Journal of Graph Theory 7 (1983): 391-393.
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Page 14  The honor roll of eight articles by Erdés and Rényi, that established ran-
dom graph theory is listed in Michal Karonski and Adrzej Rucinski, “The Origins of
the Theory of Random Graphs,” in The Mathematics of Paul Exdds, ed. R. L. Graham
and J. Nesetril (Berlin: Springer, 1997). They are On Random Graphs I, Math. De-
brecen vol. 6, 290-297 (1959). “On the Evolution of Random Graphs,” Publ. Math.
Inst. Hung. Acad. Sci 5 (1960): 17-61; “On the Evolution of Random Graphs,” Bull.
Inst. Internat. Statist 38 (1961): 343-347. “On the Strength of Connectedness of a
Random Graph,” Acta Math. Acad. Sci. Hungar 12 ( 1961): 261-267. “Asymmetric
Graphs,” Acta Math. Acad. Sci. Hungary 14 (1963): 295-315; “On Random Matri-
ces,” Publ. Math. Inst. Hung. Acad. Sci 8 (1964): 455-461; “On the Existence of a
Factor of Degree One of a Connected Random Graph,” Acta Math. Acad. Sci. Hun-
gary 17 (1966): 359-368; “On Random Matrices II,” Studia Sci. Math. Hung 13
(1968): 459-4064.

Page 17 Note that unknown to Erd&s and Renyi, and to most mathematicians, ran-
dom networks had been introduced a decade before the classic Erdés-Rényi work, in
Ray Solomonoff and Anatol Rapoport, “Connectivity of Random Nets,” Bulletin of
Mathematical Biophysics, 13 (1951): 107-227. Interestingly, the paper derives the clas-
sical result again attributed to Erdés and Rényi, that when the average degree reaches
one, a giant cluster emerges. It is difficult to explain why the paper was never recog-
nized as a precursor to Erdés and Rényi’s work. Perhaps the mathematical beauty of
Erdés’s proof was the appealing aspect for mathematicians, something that the heuris-
tic derivation of Solomonoff and Rapoport was clearly lacking.

Page 20 Rényi’s life, however, is much less covered in the international press. For a
tour of his mathematics and life, see the series of articles published soon after his death
(in Hungarian) in Matematikai Lapok 3—4 (1970): Turan Pal, “Rényi Alfréd
munkdssaga,” 199-210; Révész Pal, “Rényi Alfréd valésziniiségszamitdsi munkdssiga,”
211-231; Csiszar Imre, “Rényi Alfréd informaciéelméleti munkassaga,” 233-241; Ka-
tona Gyula and Tusnady Gabor, “Rényi Alfréd pedagégiai munkassiga, 243-244; B.
Mészaros Vilma, “Guibus Vivere est Cogitare,” 245-248. Today he is remembered
through the recently renamed hotbed of Hungarian mathematics, the Alfréd Rényi In-
stitute of Mathematics in Budapest.

Page 20 Though he failed to attract Erd&s to the Notre Dame faculty, Arnold Ross
went on to a very prolific career as a scientific educator. He founded the Ross Pro-
gram, an intensive summer course on mathematics for talented high school students
and teachers. Ross started his program in 1947 at Notre Dame and moved it to Ohio
State University in 1964, and has run it every summer since. See, e.g., Allyn Jack-
son, “Interview with Arnold Ross,” Notices of the American Mathematics Society 48,
no. 7 (August 2001): 691-697.

Page 22 The degree distribution of a random graph has been derived in B. Bollobs,
“Degree Sequences of Random Graphs,” Discrete Mathematics volume 33, pg. 1
(1981).

Page 23  In retrospect it is not clear how much the work of Erds and Rényi was
motivated by a desire to model our interlinked world and how much by the mathe-
matical beauty of the problem at hand. In their seminal 1959 paper they do mention
potential applications: “It seems plausible that by considering the random growth of
more complicated structures . . . one could obtain fairly reasonable models of more
complex real growth processes (e.g. the growth of a complex communication net
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consisting of different types of connections, and even of organic structures of living
matter, etc.).” Despite this incredible insight into the future, it is fair to assume that
their work in this area was motivated by a deep curiosity about the mathematical
depths of the problem rather than by its applications.

Page 23  As we continue our journey into our interconnected world, the Erd&s-Rényi
theory of random networks will often be our reference point. Moving along the links,
we cannot help occasionally contrasting it with the real world. Yet, the shortcomings of
the model do not decrease our admiration and respect for Erdés and Rényi’s monumen-
tal legacy. Our occasional criticism is aimed at all of us who, as their followers, for
decades indiscriminately applied to the real world the random worldview they depicted.

THE THIRD LiNK: SiX DEGREES OF SEPARATION

Page 25  There are a large number of books in Hungarian about Karinthy’s work and
life. See, e.g., the in memoriam volume Karinthy Frigyes, A humor a teljes igazsdg, ed.
Matyas Domokos, Budapest: Nap Kiads, 1998), which is a collection of stories about
Karinthy written by friends and colleagues, most of them writers. See also Dolinszky
Miklés, Szdszerint (A Karinthy Passié), (Budapest: Magvetd, 2001), and Levendel Julia,
Igy élt Karinthy Frigyes (Budapest: Méra Kényvkiads, 1979).

Page 26  Frigyes Karinthy, “Lincszemek,” in Minden mdsképpen van (Budapest:
Atheneum Irodai es Nyomdai R.-T. Kiaddsa, 1929), 85-90. I am deeply indebted to
Tibor Braun, who brought this story to my attention and mailed me a copy in 1999,
soon after our research on nineteen degrees on the World Wide Web was featured in
the Hungarian media. I do not think that the short story has ever been translated into
English. For a collection of short stories in English by Karinthy, see Frigyes Karinthy,
Grave and Gay (Budapest: Korvina Kiadé, 1973).

Page 27  For another early appearance of the six-degrees concept see Jane Jacobs’s
The Death and Life of American Cities (New York: Random House, 1961), one of the
most important books ever written about city planning, setting off the revival of
old-fashioned neighborhoods. In this book she recalls, “When my sister and I first
came to New York from a small city, we used to amuse ourselves with a game we
called Messages. The idea was to pick two wildly dissimilar individuals—say a head
hunter in the Solomon Islands and a cobbler in Rock Island, Illinois—and assume
that one had to get a message to the other by word of mouth; then we would each
silently figure out a plausible, or at least possible, chain of persons through which
the message could go. The one who could make the shortest plausible chain of
messengers won.”

Page 27  Milgram’s six-degrees study was published in several places. See for example
Stanley Milgram, “The Small World Problem,” Physiology Today 2 (1967): 60-67. For
his work on obedience, which is fascinating reading by itself, see Stanley Milgram,
From Obedience to Authority (New York: Harper and Row, 1969).

Page 27  To learn more about the work and life of Milgram, see Thomas Blass, “The
Social Psychology of Stanley Milgram,” in Advances in Experimental Social Psychology,
ed. M. P. Zanna (San Diego: Academic Press, 1992), 25:277-328; and Thomas Blass,
ed., Obedience to Authority: Current Perspectives on the Milgram Paradigm (Mahwah,
N.J.: Lawrence Erlbaum, 2000). Further information and links can be obtained from
http://www.stanley milgram.com.
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Page 28  Note that the methodology used by Milgram to reach the six-degrees conclu-
sion has been questioned recently by Judith S. Kleinfeld, who inspected Milgram’s papers
and notes as well as the collection of letters that made their way to their destination,
kept in the Yale Archives. In particular, recent studies suggest that our world is deeply di-
vided by class and race, making navigation across such social barriers rather difficult. See,
e.g., Judith S. Kleinfeld, “The Small World Problem,” Society 39 (January-February,
2002): 61-66; and “Six Degrees of Separation: An Urban Myth,” Psychology Today
(forthcoming in 2002).

Page 29  The technical aspects of Milgram’s work on our social connectivity was
known to have been inspired by the work of Anator Rapaport, a Russian-born mathe-
matician and concert pianist who published several seminal papers on social net-
works. He independently introduced the concept of random graphs and had a huge
impact on sociology. His most relevant papers include R. Solomonoff and A. Rapa-
port, “Connectivity of Random Nets,” Bulletin of Mathematical Biophysics 13 (1951):
107-117; and A. Rapaport, “Contribution to the Theory of Random and Biased
Nets,” Bulletin of Mathematical Biophysics 19 (1957): 257-271.

Page 29  John Guare, Six Degrees of Separation (New York: Random House, 1990).

Page 30 For the early history of the World Wide Web as told by the Web's creator,
see Tim Berners-Lee with Mark Fischetti, Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor (San Francisco: Harper, 1999).

Page 31 Regarding the size of the World Wide Web, see Steve Lawrence and C. Lee
Giles, “Searching the World Wide Web,” Science 280 (1998): 98-100; and “Accessi-
bility of Information on the Web,” Nature 400 (1999): 107-109. See also the exten-
sive discussion in Chapter 12.

Page 34 The study uncovering the nineteen degrees ot the World Wide Web was
published in R. Albert, H. Jeong, and A.-L. Barabasi, “Diameter of the World Wide
Web,” Nature 401 (1999): 130-131. The method we used to uncover the diameter of
the full Web is known in the literature as finite size scaling.

Page 34  For the degree of separation in food webs, see Richard J. Williams, Neo D.
Martinez, Eric L. Berlow, Jennifer A. Dunne, and Albert-L4szl6 Barabasi, Two Degrees
of Separation in Complex Food Webs, http://www.santafe.edu/sfifpublicatons/Abstracts/
01-07-036 abs.html; José M. Montoya and Ricard V. Solé, Small World Patterns in Food
Webs, http://www.santafe.edu/sfi/publications/Abstracts/00-10-059abs.html.

For the separation within the cell, see Chapter 13 and Hawoong Jeong, Balint
Tombor, Réka Albert, Zoltdn N. Oltvai, and Albert-Laszlé Barabasi, “The Large-Scale
Organization of Metabolic Networks, Nature 407 (2000): 651; Hawoong Jeong, Sean
Mason, Albert-L4sz16 Barabdsi, and Zoltan N. Oltvai, “Centrality and Lethality of Pro-
tein Networks,” Nature 411 (2001): 41-42; Andreas Wagner and David Fell, The Small
World Inside Large Metabolic Networks, Proceedings of the Royal Society of London, Se-
ries B—Biological Sciences, vol. 268 (Sept. 7, 2001): 1803-1810. For the network of
scientists and the small world between them, see A.-L. Barabasi, H. Jeong, E. Ravasz,
Z.Néda, T. Vicsek, and A. Schubert, Evolution of the Social Network of Scientific Collab-
orations, http:///xxx.lanl.gov/abs/cond-mat/0104162 (forthcoming in 2002); M. E. ]J.
Newman, Who is the Best Connected Scientist? A Study of Scientific Coauthorship Net-
works, http://www.santafe.edu/sfi/publications/Abstracts/00-12-064abs.html; M. E. J.
Newman, The Structure of Scientific Collaboration Networks, Proceedings of the National
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Academy of Sciences of the United States of America, vol. 98, (Jan. 16, 2001):
404-409. For the small world in neural networks see D. ]. Watts and S. H. Strogatz,
“Collective Dynamics of ‘Small-World’ Networks,” Nature 393 (1998): 440-442.

Page 35 We can test our simple prediction on two familiar networks: society and the
Web. For society we need to know how many people an average person knows.
Though this might seem simple to calculate, sociologists cannot agree, and estimates
range from 200 to over 5,000! As Duncan Watts, a mathematician turned sociologist
at Columbia University, told me recently, finding the right answer is complicated by
the difficulty of defining the term acquaintance: “I probably know the names of a few
thousand people, but would I call them when visiting their city? Would I feel com-
fortable asking them for a favor? Would [ confide in them?” To get around this prob-
lem, let’s assume that an average person has about 1,000 acquaintances whom he or
she knows on a first-name basis, which is about halfway between the most conserva-
tive and the most optimistic estimates. With 6 billion people, our formula tells us that
the separation in society is close to three. The same formula applied to the World
Wide Web, using a billion documents and an average connectivity of seven, predicts a
separation of ten. Both predictions are on the lower end but not that far from the
“correct” answers (six and nineteen, respectively). The mathematical formula washes
away all but the order-of-magnitude differences in the number of nodes, explaining
why we get such a small separation in general.

The deviation from the “correct” answer underlies the basic premise of this book:
Real networks are not random. If the World Wide Web were random, since there is
little ambiguity about its connectivity and size, its separation would be much closer to
the prediction of ten clicks of the random network formula. That would be true for
many other networks in nature, as well, for which size and connectivity are known
rather precisely. The numbers, however, rarely match—a hint of the order hidden
within our interwoven world. For a detailed list of small-world networks, highlighting
the discrepancy between the random network prediction and their real separation,
see, e.g., R. Albert and A.-L. Barabisi, “Statistical Mechanics of Complex Networks,”
Reviews of Modern Physics 74 (January 2002): 47-97.

Page 36  For Kochen’s note on the history of small worlds see Manfred Kochen, pref-
ace to The Small World, ed. Manfred Kochen (Norwood, N.J.: Ablex, 1989).

Page 38  For a discussion on the navigability of small worlds, see J. M. Kleinberg,
“Navigation in a Small World—It Is Easier to Find Short Chains Between Points in
Some Networks Than Others,” Nature 406 (August 2000): 845.

Page 39 Note that one can also argue that Milgram’s work has underestimated the
degree of separation between people, as it did not correct for the effect of incomplete
chains. Indeed, if a letter did not make it to the target person, it was ignored. As in
the Nebraska experiment, only 42 of 160 letters arrived to the target, the majority of
larger chains was clearly absent from the sample. Longer chains have a larger proba-
bility of not making it, thus the sample studied by Milgram was biased toward the
shorter completed paths.

THE FOURTH LiINK: SMALL WORLDS

Page 42  The original inding about our clustered society was published in Mark S.
Granovetter, “The Strength of Weak Ties,” American Journal of Sociology 78, (1973)
1360-1380. Granovetter recalled the saga surrounding its publication in the short ar-
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ticle published in Current Contents (Sociology and Behavioral Sciences Edition, vol.
18, no. 49 [Dec. 1986]: 24) on the occasion of the paper being named a Citation Clas-
sic. Sce also “The Strength of Weak Ties: A Network Theory Revisited,” Sociological
Theory 1 (1983): 201-233; Mark S. Granovetter, Getting a Job (Cambridge, Mass.:
Harvard University Press, 1994).

Page 44  Rhythmic applause has been extensively studied in the physics literature as
a manifestation of synchronization. The first detailed measurements were reported in
Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L. Barabisi, “Self-Organizing
Processes: The Sound of Many Hands Clapping,” Nature 403 (2000): 849-850 . For a
more detailed account see Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A.-L.
Barabasi, “Physics of the Rhythmic Applause,” Physical Review E 61, no. 6 (2000):
6987-6992. For a popular account of this research see Henry Fountain, “Making Or-
der Out of Chaos When a Crowd Goes Wild,” New York Times, March 7, 2000; and
Josie Glausiusz, “Joining Hands,” Discover 21 (July 2000).

Page 45  John Buck and Elisabeth Buck, “Synchronous Fireflies,” Scientific American,
May 1976, 74-85. For a recent book on synchronization see Arkady Pikovsky,
Michael Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear
Sciences (Cambridge, England: Cambridge University Press, 2001). See also lan Stew-
art and Steven H. Strogatz, “Coupled Oscillators and Biological Synchronization,”
Scientific American, Dec. 1993, 68.

Page 46  For the story behind the Watts-Strogatz discovery, see Duncan ]. Watts,
Small Worlds (Princeton, N.].: Princeton University Press, 1999).

Page 46  While networks diverted Duncan Watts’ attention from synchronisation, a
number of researchers have revisited the link between networks and synchronisation.
See for example J. Jast and N. P. Jog, “Spectral Properties and Synchronisation in Cou-
pled Map Lattices,” Physical Review, E 65 (2002): 016201; X.E Wang and G.R. Chen,
“Synchronisation in a Scale-Free Dynamical Network: Robustness and Fragility, “IEEE
Transaction on Circuits and Sysytems 1 49 (2002):54-62; M. Barahona and L. M. Pecora,
“Synchronisation in Small-World Systems,” http://xxx.lanl.gov/abs/nlin.CD/0112023;
J. Ito and K. Kaneko, “Spontaneous Structure Formation in a Network of Chaotic Units
with Variable Connection Strengths,” Physical Review Letters, 88 (2002): 02801.

Page 46  The term clustering coefficient was first used by Watts and Strogatz in D. J.
Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’ Networks,” Nature
393 (1998): 440-442. The same quantity, under the name of “fraction of transitive
triplets,” was used in the sociology literature. See, e.g., the now classic S. Wasserman
and K. Faust, Social Network Analysis: Methods and Applications (Cambridge, England:
Cambridge University Press, 1994), 598-602.

Page 47  For an extensive discussion on Erd6s numbers, see the Erdds site maintained
by Jerrold W. Grossman, http://www.oakland.edu/~grossman.erdoshp.html. For a list of
famous scientists and their Erdés number see Rodrigo De Castron and Jerrold W. Gross-
man, “Famous trails to Paul Erd&s,” Mathematical Intelligencer, 21 (Summer 1999): 51-63.

Page 48  Note that in particle physics, which is a very active subfield of physics, it is
common that hundreds of physicists scattered over many continents and often never
introduced to each other contribute to the discovery of a new elementary particle.
Thus for them coauthorship cannot be taken as a signature of acquaintanceship or
social ties. In most research fields, however, such large collaborations are the excep-
tion rather the norm.
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Page 49  Our work on collaboration networks between mathematicians and neuro-

scientists is summarized in A.-L. Barabasi, H. Jeong, R. Ravasz, Z. Néda, T. Vicsek,
and A. Schubert, On the Topology of Scientific Collaboration Networks, http://xxx.
lanl.gov/abs/ cond-mat/0104162 (forthcoming in Physica A, 2002). Similar results
were obtained independently by Mark Newman, focusing on physicists, computer sci-
entists, and other fields. See M. E. ]. Newman, “The Structure of Scientific Collabora-
tion Networks,” Proceedings of the National Academy of Sciences 98 (2001): 404-409;
“Scientific Collaboration Networks: 1. Network Construction and Fundamental Re-
sults,” Physical Review, E 64 (2001): 016131; “Scientific Collaboration Networks: II.
Shortest Paths, Weighted Networks, and Centrality,” Physical Review, E 64 (2001):
016132.

Page 49 What would the random network model tell us about the clustering coeffi-
cient? Since the clustering coefficient is the probability that two of my friends are con-
nected, for the Erdés-Rényi model that is nothing but the probability that any two
nodes have a link between them. Indeed, we can calculate the clustering coefficient for
a random graph with N nodes by dividing the total number of links that are present in
the network (L) with the total number of possible links N(N-1)/2, giving C = 2L/N(N
— 1), which turns out to be the control parameter of the Erdés-Rényi model, often de-
noted by p, denoting the probability that any two nodes are connected to each other.
In other terms, the clustering coefficient is given by C = <k>/N, where <k> is the aver-
age number of links per node in the network.

Page 49  With a bit of familiarity about how scientists collaborate, we can begin to
understand the origin of the enormous clustering uncovered by Newman’s and our
study. Indeed, many scientific papers are written by three or more authors. Each such
paper generates a complete graph, similar to our circle of friends, because each author
is connected to all other authors of the paper. Thus the collaboration graph is sprin-
kled with tiny complete graphs, each of which has a high clustering coefficient, in-
creasing the average clustering of the whole network. But there is a social factor too.
Even if two of my graduate students did not coauthor a paper while in graduate
school, each of them is still only two steps from each other, since they all wrote papers
with me. Continuing to work in the same field, they will likely sometime in the future
write a paper together, enhancing my clustering coefficient.

Page 50  For further information about the worm Caenorhabditis elegans see http://ele-
gans. swmed.edu/ or http://www.nematodes.org/.

Page 50 While the C. elegans worm’s neural wiring diagram has been fully mapped
out, it would be impossible to attempt something similar for the human brain. This is
not because there are billions of neurons to map out, some with thousands of links to
other neurons, but rather because the connections between neurons in the human
brain change, creating new links and severing old ones as we learn and age. C. elegans,
however, stands out as a reliable study with a statically wired brain, in which connec-
tions are genetically predetermined.

Page 50 For a study on the topology of the Caenorhabditis elegans wiring diagram,
see D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World” Net-
works,” Nature 393 (1998): 440-442, which contains the study on the power net-
work and Hollywood actors, as well. See also S. Horita, K. Oshio, Y. Osama, Y. Fun-
abashi, K. Oka, K. Kawamara, “Geometrical Structure of the Neuronal Network of

Caenorhabditis Elegans,” Physica A, 298 (2001): 553-561.
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Page 50  For clustering in the World Wide Web, sce L. A. Adamic, “The Small World
Web,” Proceedings of the European Conference on Digital Libraries 1999 Conference
(Berlin: Springer Verlag, 1999): 443. For clustering in the Internet topology see, e.g.,
Soon-Hyung Yook, Hawoong Jeong, Albert-Laszlo Barabidsi, Modeling the Internet’s
Large-Scale Topology, http://xxx.lanl.gov/abs/cond-mat/0107417; and Romualdo Pas-
tor-Satorras, Alexei Vazquez, Alessandro Vespignani, Dynamical and Correlation Proper-
ties of the Internet, Physical Review Letters, 2001: Article no. 238701. Clustering in the
economy is discussed in Bruce Kogut and Gordon Walker, “The Small World of Ger-
many and the Durability of National Networks,” American Sociological Review 66
(2001): 317-335. For clustering in the ecological network see Richard ]. Williams, Neo
D. Martinez, Eric L. Berlow, Jennifer A. Dunne, and Albkert-Ldszlé Barabdsi, Two De-
grees of Separation in Complex Food Webs, http://www.santafe.edu/sfi/publications/
Abstracts/01-07-036abs.html.

Page 51  For additional examples of clustering in complex networks, see R. Albert
and A-L. Barabdsi, “Statistical Mechanics of Complex Networks,” Reviews of Modern
Physics 74, No. 1 (January 2002), 47-97.

Page 52  The original model suggested by Watts and Strogatz in Nature 393 (1998):
440-442, did not add extra links but rewired some of the existing links to distant
nodes, with identical effect. The version described here was proposed by M. Newman
and D. J. Watts; see, e.g., “Renormalization Group Analysis of the Small-World Net-
work Model,” Physics Letters, A, 263 (1999): 341; “Scaling and Percolation in the
Small-World Network Model,” Physical Review, E, 60 (1999): 7332. Thanks to the
model’s algorithmic simplicity, it is often preferred over the original Watts-Strogatz
model by those trying to calculate the properties of the model.

THE FIFTH LINK: HUBS AND CONNECTORS

Page 55 Malcolm Gladwell, The Tipping Point (New York: Little, Brown, 2000).

Page 55 The phone book test used by Gladwell was invented by sociologists to esti-
mate the number of social links people have. For a recent review on methods for mea-
suring the size of a person’s social links, see Linton C. Freeman and Claire R. Thomp-
son, “Estimating Acquaintanceship Volume,” in The Small World, ed. Manfred
Kochen (Norwood, N.J.: Ablex, 1989), 147-158.

Page 57 On the technical level, we can easily ind out how many outgoing links a
given page has by simply visiting it and counting the URLs on it. It is harder, how-
ever, to count the number of incoming links. Incoming links represent the links from
other Websites that point to a given document. For example, my graduate students
have Webpages of their own, and they all have links to my Webpage. If you visit their
page, with one click you can get to mine. However, when you visit my page, you have
no way of knowing what other pages link to it. To find out how many incoming links
my Webpage has, you have to visit each of the one billion pages that are on the Web
and check if they have a link to my Website. The number of incoming links a Web-
page has reflects its popularity: The more incoming links a page has, the more people
must have visited and liked it. Most important, the more incoming links it has, the
easier it is to find it by surfing the web. If nobody points at your Webpage, then for
practical purposes it does not exist.

Page 57  Several search engines, such as Google or AltaVista, allow anybody to find
pages that link to a given Webpage. You can reach this function by typing “link:”
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followed by the URL into the search window. For example, for finding the links
pointing to www.nd.edu/~networks you type link:http://www.nd.edu/~networks.

Page 57 For the study on the Notre Dame Website, see Réka Albert, Hawoong
Jeong, and Albert-Laszl6 Barabasi, “Diameter of the World Wide Web,” Nature
401 (1999): 130-131. The raw data giving information about which page is con-
nected to which other pages, allowing you to reconstruct the network behind the
Web sample and to determine how many hubs are out there, is available at
http://www.nd.edu/~networks/database/index.html.

Page 58 For a summary of the 200-million-Webpage study see A. Broder, R. Kumar,
E Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, “Graph
Structure in the Web,” paper presented at the Ninth International World Wide Web
Conference, http://www9.org/w9cdrom/160/160.html.

Page 58 The degree distribution, which allowed me to identify the connectivity of
most of the connected nodes mentioned in the text when referring to the 200 million
sample, was provided by A. Tomkins.

Page 58  The number of outgoing links, k_, depends entirely on the Webpage's cre-
ator because he or she is the only one who can add them to the document. How many
such links did we expect to see on a typical page? The power of the Web is that it is a
hypertext, which allows the Webpage designer to structure the information into pages
and subpages linked to the main page. Thus any decent book on Webpage design will
warn us not to overcrowd our Webpage. The first page should be a roadmap, informa-
tive and easy to read. All details should go in the background, on extra pages, organ-
ized in a hierarchy of increasingly specific documents. How many links can we put on
a page without making it too crowded? We typically have space for a few hundred
words, including perhaps five to fifteen links. If everyone followed the advice of Web
design books, most pages would have an optimal number of links, striking a healthy
balance between maximum information content and readability. Of course, some
pages could have more, others less than this optimal number, depending on the es-
thetic values of the Webmaster, but there would be a golden mean and very few gross
violators. In this ideal world the distribution of links should follow a bell curve, or a
Gaussian distribution in the mathematical language, peaked around an optimal k
very similar to the prediction of the random network model.

Page 58 The highly connected nodes on the World Wide Web are often called hubs
and authorities, referring to nodes with many outgoing or incoming links, respec-
tively. See, e.g., J. Kleinberg, “Authoritative Sources in a Hyperlinked Environment,”
Proceedings of the 9th Association for Computing Machinery—Society for Industrial and
Applied Mathematics. Symposium on Discrete Algorithms (1998); extended version in
Journal of the ACM, 46 (1999): 604-632.

Page 58  Craig Fass, Mike Ginelli, and Brian Turtle, Six Degrees of Kevin Bacon (New
York: Plume, 1996).

Page 59 The Oracle of Bacon at Virginia can be found at http://www.cs.virginia.
eduforacle/.

Page 60  The important role of the actor hubs in Hollywood is illustrated by the fact
that the shortest paths from Marilyn Monroe, Mike Meyer, or Charlie Chaplin to Ba-
con pass through the same actor, Robert Wagner. Wagner is the most important hub
in Bacon’s neighborhood, being his crucial link to historical Hollywood. Indeed,

out?
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Wagner has played in at least 101 movies and collected 2,017 links. Though he is not
the most connected actor, he occupies the prominent twenty-fourth spot, a rank that
would make Bacon rather envious.

Page 62 The ranking of Hollywood actors was based on a measurement Hawoong
Jeong made in 2000 after downloading the IMDb.com database and reconstructing the
network behind Hollywood. The results of similar measurements are often quoted in the
press. Because the data were taken at different times, there could be minor differences
regarding the precise order in which the most connected actors appear or the number of
links they have. The measurements are consistent, however, regarding the identity of
the most connected actors and their separation from the rest of Hollywood.

Page 63  For evidence of hubs in the molecular network of the cell, see, e.g., Chapter
13, and Hawoong Jeong, Bdlint Tombor, Réka Albert, Zoltin N. Oltvai, and Albert-
L4szl6 Barabasi, “The Large-Scale Organization of Metabolic Networks,” Nature 407
(2000): 651; Hawoong Jeong, Sean Mason, Albert-Laszl6 Barabdsi, and Zoltan N. Olt-
vai, “Centrality and Lethality of Protein Networks,” Nature 411 (2001): 41-42; An-
dreas Wagner and David Fell, “The Small World Inside Large Metabolic Networks,”
Proceedings of the Royal Society of London B, Vol. 268 (Sept. 7, 2001): 1803-1810.

Page 63  For hubs in the Internet’s topology see M. Faloutsos, P. Faloutsos, and C.
Faloutsos, “On Power-Law Relationships of the Internet Topology,” Proceedings of
ACM Special Interest Group on Data Communication (SIGCOMM), 1999 (Cambridge,
Mass., Aug. 1999).

Page 63  For the phone call graph see J. Abello, P. M. Pardalos, and M. G. C. Re-
sende, Disc. Math. and Theor. Comp. Sci., DIMACS ser., 50 (1999): 119; William
Aiello, Fan Chung, Linyuan Lu, A Random Graph Model for Massive Graphs, Proceed-
ings of the 32nd ACM Symposium on Theor. Comp. (2000).

Page 63  Emanuel Rosen, The Anatomy of Buzz (New York: Doubleday, 2000).

Page 63 The FDR acquaintanceship network is discussed in H. Rosenthal, Acquain-
tances and Contacts of Franklin Roosevelt (master’s thesis, Massachusetts Institute of
Technology, 1960). See also Linton C. Freeman, and Claire R. Thompson, “Estimat-
ing Acquaintanceship Volume,” 147-158, in The Small World, Edited by Manfred
Kochen (Norwood: Ablex, NJ, 1989).

Page 63  For the discussion on hubs in the p53 network within the cell, see Bert Vo-
gelstein, David Lane, and Arnold J. Levine, “Surfing the p53 Network,” Nature 408
(2000): 307-310.

Page 64  For a discussion on keystone species, see Simon Levin, Fragile Dominion
(Cambridge, Mass.: Perseus, 1999). For a discussion on hubs and keystonc species, see
Ricard V. Solé and José M. Montoya, Complexity and Fragility in Ecological Networks,
http://www.santafe.edu/sfi/publications/Abstracts/00-11-060abs.html.

THE S1xTH LINK: THE 80/20 RULE

Page 65 The anecdote about Pareto is recalled in several places. See, ¢.g., the biog-
raphical note by Arthur Livingston in the English translation of Trattato di Sociologia
Generale, The Mind and Society (New York: Harcourt Brace, 1942).

Page 66  The 80/20 law has generated numerous articles in the business world, even-
tually getting its own book. See Richard Koch, The 80/20 Principle—The Secret to Suc-
cess by Achieving More with Less (New York: Currency, 1998).
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Page 67  Our finding that a power law described the World Wide Web’s topology was
published in Réka Albert, Hawoong Jeong, and Albert-L4szlé Barabdsi, “Diameter of
the World Wide Web,” Nature 401 (1999): 130-131. An independent study arrived at
the same conclusion. See R. Kumar, P. Raghavan, S. Rajalopagan, and A. Tomkins,
“Extracting Large-Scale Knowledge Bases from the Web,” Proceedings of the 9th ACM
Symposium on Principles of Database Systems 1 (1999).

Page 68 In scientific articles the power-law nature of the degree distribution is often
written in terms of probabilities. The probability that a randomly selected node has
exactly k links follows P(k) ~ k™", where 7y is called the degree exponent.

Page 68 For an elementary introduction to power laws and their occurrence in vari-
ous systems see Mark Buchanan, Ubiquity: The Science of History . . . Or Why the
World Is Simpler Than We Think (New York: Crown Publishers, 2001). For power laws
appearing in another much studied context, called self-organized criticality, see Per
Bak, How Nature Works (Oxford, England: Oxford University Press, 1996).

Page 69  For the power-law nature of the Hollywood actor network see Albert-Laszlé
Barabasi and Réka Albert, “Emergence of Scaling in Random Networks,” Science 286
(1999), 509-512; Albert-Las:16 Barabdsi, Réka Albert, and Hawoong Jeong, “Mean-
Field Theory for Scale-Free Random Networks,” Physica A, 272 (1999), 173-187.

Page 69  For power laws in science collaborations see A.-L. Barabdsi, H. Jeong, E.
Ravasz, Z. Néda, T. Vicsek, A. Schubert, On the Topology of the Scientific Collaboration
Networks, http://xxx.lanl.gov/abs/cond-mat/0104162. Similar results were obtained
independently by Mark Newman, focusing on physicists, computer scientists, and
other fields. See M. E. J. Newman, “The Structure of Scientific Collaboration Net-
works,” Proceedings of the National Academy of Sciences 98 (2001): 404—-409; “Scientific
Collaboration Networks: . Network Construction and Fundamental Results,” Physics
Review, E 64 (2001), 016131; “Scientific Collaboration Networks: II. Shortest Paths,
Weighted Networks, and Centrality,” Physics Review, E 64 (2001): 016132.

Page 69  For power laws within the cell see H. Jeong, B. Tombor, R. Albert, Z. N.
Oltvai, and A.-L. Barabési, “The Large-Scale Organization of Metabolic Networks,”
Nature 407 (2000): 651-654; Hawoong Jeong, Sean Mason, Albert-L4szl6 Barabasi,
and Zoltan N. Oltvai, “Lethality and Centrality in Protein Networks,” Nature 411
(2001): 41-42; Adreas Wagner and David A. Fell, “The Small World Inside Large
Metabolic Networks,” Proceeding of the Royal Society, London, 268 (2001): 1803-1810.

Page 69  For the frequency of scientific citations see Sid Redner, “How Popular [s
Your Paper? An Empirical Study of the Citation Distribution,” Euro. Phys. Journal, B,
4 (1998), 131; see also S. Bilke and C. Peterson, “Topological Properties of Citation
and Metabolic Networks,” Physical Review, E 64 (2001): 036106.

Page 70 To be sure, the U.S. routing map is meticulously designed by the airlines to
maximize profit. As a result, as Luis Amaral and colleagues from Boston University have
shown, the distribution of the number of passengers visiting an airport has an exponen-
tial tail. Yet, since the network’s topology is dominated by hubs, it has all the visual at-
tributes of power law networks, therefore it offers an excellent example for remembering
the main features of scale-free networks. For a study on the airline system, sce L. A N.
Amaral, A. Scala, M. Barthélé¢my, and H. E. Stanley, “Classes of Small-World Net-
works,” Proceedings of the National Academy of Sciences 97 (2000): 1114911152,
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Page 73 Foran extensive but fascinating biography of water written for a general au-
dience sce Philip Ball, Life’s Matrix (New York: Farrar, Straus and Giroux, 1999).

Page 74 For an excellent prerenormalization-group introduction into critical phe-
nomena see the classic book by H. Eugene Stanley, Introduction to Phase Transitions
and Critical Phenomena (Oxford, England: Oxford University Press, 1971).

Page 75 Note that, though both water and magnetic systems undergo a phase transi-
tion, they do so in very ditferent ways. The water-ice phase transition is what physi-
cists call a first-order phase transition, meaning that the relevant thermodynamic
quantities change discontinuously at the transition point (i.e., they jump). Magnetic
systems, in contrast, display a so-called second-order phase transition (i.e., the ther-
modynamic quantities change continuously at the transition point). It turns out that
the theoretical tools required to describe these different phase transitions, though
having the same roots, are rather different when we get to the heart of the matter. It is
the second-order phase transition that always leads to power laws as we approach the
critical point.

Page 75 Kadanoff’s Christmas discovery in the context of the history of critical phe-
nomena is recalled in Leo P. Kadanoff’s, From Order to Chaos, Essays: Critical, Chaotic
and Otherwise (Singapore: World Scientific, 1993): 157-163. Kadanoff does share the
credit with others, as the scaling ideas that he introduced were independently discov-
ered by several other researchers, including Michael Fisher, Ben Widom, A. Z.
Patashinskii, V. L. Pokrovskii. It is believed that Wilson was awarded an unshared
Nobel prize for critical phenomena precisely because there were too many credited
with discovering the crucial prerequisite, the scaling concepts. Unfortunately the
prize left several truly crucial contributions unhonored. Many of us feel that several
other people’s crucial contributions also deserve recognition.

Page 76 For Wilson’s two seminal papers see Kenneth G. Wilson, “Renormaliza-
tion Group and Critical Phenomena: I. Renormalization Group and the Kadanoff
Scaling Picture,” Physics Review, B, 4 (1971): 3174-3183; “Renormalization Group
and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior,”
Physical Review B, 4 (1971): 3184-3205. For a recent pedagogic review of the field,
see . J. Binney, N. J. Dowrick, A. ]. Fisher, and M. E. ]. Newman, The Theory of
Critical Phenomena: An Introduction to the Renormalization Group (Oxford, England:
Oxford University Press, 1992).

Page 77 Second-order phase transitions are normally reversible, which means that
we observe power laws independent of our direction as we cross the critical point, go-
ing from order to disorder, or the other way, from disorder to order.

Page 78 Universality became the guiding principle for understanding many dis-
parate phenomena. It told us that down the line the laws of physics governing com-
plex systems and the transition from disorder to order are simple, reproducible, and
ubiquitous. We now know that the same universal mechanisms that generate the
shapes of snowflakes also govern the shape of neurons in the retina. Power laws and
universality emerge in economic systems, describing how companies grow and how
cotton prices fluctuate. They explain how birds and fish flock and how earthquakes
differ in magnitude. They are the guiding principle behind the two most intriguing
discoveries of the second half of the twentieth century: chaos and fractals. As a
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result, a second revolution in statistical mechanics, which took place in the eighties
and nineties, has focused on the important question of how power laws can appear in
many different systems, some of which do not seem to undergo a phase transition.
Self-organized criticality, a subfield of statistical mechanics, has united many re-
searchers aiming to give a generic answer to this question.

Page 78 While it is relatively easy to give credit for scaling and renormalization
group, it is much harder to catch the origin of the universality concept. Kadanoff
used it a year after his seminal paper on scaling in a review article. He remembers
hearing it during a conversation in a Moscow dollar bar with Sasha Polykov and
Sasha Migdal, two prominent Russian physicists working at the border of phase
transitions and field theory, a branch of physics commonly frequented by both par-
ticle physics and condensed matter physics. But it has been used within statistical
mechanics by several others under different contexts. Little noticed, however, is
the fact that universality has grown to take on a new meaning implying that the
properties of rather different systems are identical while undergoing a transition
from disorder to order.

THE SEVENTH LINK: R1CH GET RICHER

Page 81  The paper written on the plane was published about five month later as Al-
bert-L4sz16 Barabdsi and Réka Albert, “Emergence of Scaling in Random Networks,”
Science 286 (1999): 509-512.

Page 82  Regarding the amount of information that will be stored on the Web in ten
years, see Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike
Franklin, Hector Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V. Jagadish,
Michael Lesk, Dave Maier, Jeff Naughton, Hamid Pirahesh, Mike Stonebraker, and
Jeff Ullman, “The Asilomar Report on Database Research,” ACM Sigmod Record 27,
no. 4 (1998): 74-80.

Page 82 The information regarding the growth of the Hollywood network is based
on data collected by Hawoong Jeong from the IMDb.com database.

Page 83  For a detailed analysis of Model A see Albert-Lészlé Barabési, Réka Albert,
and Hawoong Jeong, “Mean-Field Theory for Scale-Free Random Networks,” Physica
A, 272 (1999): 173-187.

Page 84  For online advertising budgets, see Michell Jeffers and Evanthei Schibsted,
“The Sizzle: What’s New and Now in Marketing and Advertising for E-Business and
E-Commerce,” Business 2.0 (May 2000): 161-162.

Page 85  Of course, when it comes to news outlets, we all have similar preferences,
navigating to the few sites that can afford to bring us smart, up-to-the-minute cover-
age. For less mainstream subjects, however, our choices are less predictable, and there-
fore, more random. Indeed, we might be the only people linking to our high-school
friend’s Webpage. But in the majority of cases we all follow an unconscious bias, link-
ing with a higher probability to the more connected nodes.

Page 85  Direct quantitative evidence has been found for the existence of preferen-
tial attachment in networks as diverse as the Internet, Hollywood, collaboration net-
works, and citation networks. See H. Jeong, Z. Néda, A.-L. Barabasi, “Measuring Pref-
crential Attachment for Evolving Networks,” htep://xxx.lanl.gov/abs/cond-mat/
0104131; M. E. J. Newman, “Clustering and Preferential Atrachment in Growing
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Networks,” Physical Review, E 64, (2001): 025102; Ramualdo Pastor-Satorras, Alexei
Vazques, Alessandro Vespignani, “Dynamical and Correlation Properties of the Inter-
net,” Physical Review Letters, 87 (2001): 2587015 K. A. Eriksen, and M. Hornquist,
“Scale-Free Growing Networks Imply Preferential Attachment,” Physical Review, E
63, (2001): 017102.

Page 86 The scale-free model, together with the two basic concepts, growth and
preferential attachment, was introduced in Albert-Liszlé Barabdsi and Réka Albert,
“Emergence of Scaling in Random Networks,” Science 286 (1999): 509-512; Albert-
Liszlé Barabdsi, Réka Albert, and Hawoong Jeong, “Mean-Field Theory for Scale-
Free Random Networks,” Physica A, 272 (1999): 173-187. Note that, though for sim-
plicity we have chosen to link the new nodes to exactly two other nodes in the
example discussed in this book, in general they can be linked to an arbitrary number
of nodes without changing the model’s basic features.

Page 88  The fact that the scale-free model generates a power law with a degree expo-
nent equal to three has been proven exactly by some of Erd@s'’s former collaborators. See
B. Bollobds, O. Riordan, J. Spencer, G. Tusnddy, “The Degree Sequence of a Scale-Free
Random Graph Process,” Random Structures and Algorithms 18 (May 2001): 279-290.

Page 89 The extension of the scale-free model to include internal links was pub-
lished in Réka Albert and Albert-Lészl6 Barabdsi, “Topology of Evolving Networks:
Local Events and Universality,” Physical Review Letters 85 (2000): 5234.

Page 89  The work of the Boston University group on aging was published in L. A.
N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes of Small-World Net-
works,” Proceedings of the National Academy of Sciences 97 (2000): 11149-11152.

Page 89  The Porto group published two papers very close together. See S. N. Dorogovt-
sev, ]. E E Mendes, “Evolution of Reference Networks with Aging,” Physical Review, E 62
(2000): 1842; S.N. Dorogovtsev, E E Mendes, and A. N. Samukhim, “Structure of Grow-
ing Networks with Preferential Linking” Physical Review Letters 85 (2000): 4633.

Page 90  The effect of nonlinearities on the topology of scale-free networks, account-
ing for the fact that the attachment rate could be proportional to k7, was published in
P. L. Krapivsky, S. Redner, and F Leyvraz, “Connectivity of Growing Random Net-
works,” Physical Review Letters 85 (2000): 4629-4632.

Page 90  For a detailed summary of the various extensions of the scale-free model
and a general summary of the field of complex networks, see two recent review arti-
cles: S. N. Dorogovtsev and ]. E E Mendes, “Evolution of Networks,” Advances in
Physics (in press, 2002); Réka Albert and Albert-Laszlé Barabdsi, “Statistical Mechan-
ics of Complex Networks,” Reviews of Modern Physics 74, (Jan. 2002): 47-97.

Page 92  The scale-free nature of language was addressed by several research groups.
With Soon-Hyung Yook and Hawoong Jeong we connected all synonyms by links,
finding that the network we obtained had a scale-free topology. We never published
the results. Several groups, however, have published excellent papers analyzing the
web within language, using different criteria for the links, each finding a scale-free
topology. See, e.g., Ramon Ferrer i Cancho and Ricard V. Sol¢, “The Small-World of
Human Language,” Proceedings of the Royal Society of London B, 268 (2001):
2261-2265; Mariano Sigman and Guillermo Cecchi, Global Organization of the
Wordnet Lexicon, Proceedings of the National Academy of Sciences, 99 (2002):
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1742-1747. SN. Dorogovtsev, ]. E E Mendes, “Language as an Evolving Word Web,”
Proceedings of the Royal Society of London B 268 (Dec. 2001): 2603-2606.

THE E1GHTH LINK: EINSTEIN’S LEGACY

Page 93  Yahoo! Inc. dropped Inktomi Corp. as its default search engine on June 26,
2000, and replaced it with Google. All major media outlets covered the event. The
canceled deal was not expected to have an immediate impact on Inktomi’s financial
future, since at that time it had more than eighty customers and the Yahoo! partner-
ship accounted for less than 2 percent of its tevenue. Yet Inktomi’s stock plunged over
25 5/16 points to close at 115 1/16 on NASDAQ.

Page 93 The Internet Archive’s colloquium took place on March 8 and 9, 2000, at
the Presidio, San Francisco, the home of the Archive. For more information on the
Archive’s goals see Chapter 12.

Page 94  For a detailed visual account of the birth of the Newton Apple handheld,
see Doug Menuez, Markos Kounalakis, and Paus Saffo, Defying Gravity: The Making of
Newton (Hillsboro, Ore.: Beyond Words, 1993). Unfortunately the book leaves off
where things get interesting, as Newton hits the marketplace.

Page 94  For a detailed account of successful latecomers in business see Joan Indiana
Rigdon, “The Second-Mover Advantage,” Red Herring, September 1, 2000.

Page 96  The fitness model was published in G. Bianconi, A.-L. Barabasi, “Competi-
tion and Multiscaling in Evolving Networks, Europhysics Letters 54 (May 2001):
436-442. For extensions of the model that include additional effects taking place in
real networks such as additive or multiplicative fitness, see G. Ergun and G. ]J.
Rodgers, Growing Random Networks with Fitness, Physica A 303 (Jan. 2002): 261-272.

Page 98  For a detailed historical account of the Bose-Einstein relationship, as well as
the birth of the ideas behind Bose-Einstein condensation, see William Blanpied,
“Einstein as Guru? The Case of Bose,” in Einstein: The First Hundred Years, ed. Mau-
rice Goldsmith, Alan Mackay, and James Woudhuysen (Oxford, England: Pergamon
Press, 1980), 93-99. See also Albrech Félsing, Albert Einstein: A Biography (New York:
Viking, 1997).

Page 100 A bizarre manifestation of Bose-Einstein condensation was discovered by
Pyotr Kapitza and John E Allen in 1938. Helium, the light gas used in blimps and
birthday balloons, undergoes Bose-Einstein condensation below 2.2 Kelvin, becoming
a superfluid. A striking manifestation of helium’s new state is the loss of viscosity, al-
lowing this liquid to slither up the walls and out of an open container. Imagine your
morning coffee crawling up the mug'’s wall and slipping out. But that is exactly what
helium does, a visible manifestation of Bose-Einstein condensation.

Page 100 For an elementary description of the new discoveries regarding Bose-Ein-
stein condensation as well as their potential applications see, e.g., Graham P. Collins,
“The Coolest Gas in the Universe,” Scientific American (Dec. 2000): 92-99; Wolfgang
Ketterle, “Experimental Studies of Bose-Einstein Condensation,” Physics Today 52
(Dec. 1999): 30-35; Eric A. Cornell and Carl E. Wieman, “The Bose-Einstein Con-
densate,” Scientific American (Mar. 1998): 4045,

Page 101 The link between networks and Bose-Einstein condensation was published in
G. Bianconi and A.-L. Barabasi, “Bose-Einstein Condensation in Complex Networks,”
Physical Review Letters, 86 (June 2001): 5632-5635. Several rescarchers have extended

this work, showing that the winner-takes-all phenomenon can be described without in-
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voking the link to quantum mechanics. See, e.g., S. N. Dorogovtsev and J. E E Mendes,
“Evolution of random networks,” Advances in Physics (in press, 2002.)

Page 102 Bose-Einstein condensation is not the only area where the tools of quantum
mechanics proved useful in the study of complex networks. The spectral properties of
random matrices, an area pioneered by Eugene Wigner in the 1960s, was the starting
point of studies on the spectral properties of complex networks. See for example 1. J.
Farkas, I. Derényi, A. L. Barabdsi, T. Vicsek, “Spectra of ‘Real-World” Graphs: Beyond
the Semi-Circle Law,” Physical Review E 64 (2001): 0267C4; K. 1. Goh, B. Kahng, D. Kim,
“Spectra and Eigenvectors of Scale-Free Networks,” Physical Review E 64 (2001): 051903.
The tools of field theory, a mathematically advanced branch of quantum mechanics, has
also found its applications in complex networks. See A. Krzgwicki, “Defining Statistical
Ensembles of Random Graphs,” http://www.laml.gov/abs/cond-mat/ 0110574; Z. Burda,
J. D. Correia, A. Krzgwicki, “Statistical Ensemble of Scale-Free Random Graphs,” Physi-
cal Review E 64 (2001): 046118.

Page 103 Note that a phenomenon very similar to Bose-Einstein condensation is pre-
dicted in networks with nonlinear preferential attachment. See P. L. Krapivsky, S.
Redner, and E Leyvraz, “Connectivity of Growing Random Networks,” Physical Re-
view Letters, 85 (2000): 4629-4632.

Page 104 The network describing the operation systems market is a so-called bipartite
graph. Bipartite graphs are made of two different sets of nodes such that each node is al-
lowed to link only to nodes belonging to the other set. Direct links between nodes be-
longing to the same set are forbidden. In the Microsoft example one set of nodes are the
operating systems, and the other are the numerous consumers choosing (linking to) an
operating system. A similar bipartite graph describes Hollywood as well. There one set of
nodes are the actors, and the other are the movies in which they played. In this bipartite
graph, actors are not linked to each other. Rather, each actor links to movies only. From
this bipartite graph one can easily generate the actor network discussed in Chapter 5 by
linking together all actors that point to the same movie. For a discussion of bipartite
graphs see, e.g., M. E. ]. Newman, S. H. Strogatz, and D. ]. Watts, “Random Graphs with
Arbitrary Degree Distributions and Their Applications,” Physical Review E, 64, (2001):
026118; Steven H. Strogatz, “Exploring Complex Networks,” Nature 410 (2001):
268-276.

Page 104 For a subjective history of operating systems see Neal Stephenson, In the Be-
ginning Was the Command Line, http://www.cryptonomicon.com.

Page 105 The data regarding the market share of computer makers comes from [DC
and is available at http://www.idc.com/.

Page 105 The operation systems market-share information comes from Stephanie
Miles and Joe Wilcox, “Windows 95 Remains the Most Popular Operating System,”
Cnet.com, July 20, 1999.

Page 106 An example of a system where fitness had to be called in to explain the net-
work topology is the Internet. See, e.g., Romualdo Pastor-Satorras, Alexei Vazquez,
and Alessandro Vespignani, “Dynamical and Correlation Properties of the Internet,”

Physical Review Letters, 87 (2001): 258701.

THE NINTH LINK: ACHILLES’ HEEL
Page 109 For a vivid description of the scene in Denver during the July 2, 1996, Den-
ver electric power failure, see, e.g., L. M. Collins, “Power Grid Fails, Blackout Affects
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1.5 Million in West,” Denver News-Times, July 3, 1996; “Power Grid Fails, Blackout
Affects Millions in West,” Nando.net, July 2, 1996. For the August repeat of the same
event, see Sagging power lines, hot weather blamed for blackout, CNN, August 11, 1996.

Page 110 The various electric power breakdowns hitting the United States, as well as
the vulnerability of the electricity network were widely discussed both in the popular
press and by various professional organizations. See, e.g., Massoud Amin, “Toward
Self-Healing Infrastructure Systems,” IEEE Computer (Aug. 2000): 2-11; D. N.
Kosterev, C. W. Taylor, and W. A. Mittlestadt, “Model Validation of the August 10,
1996 WSCC System Outage,” IEEE Transactions on Power Systems 14 (Aug. 1999):
967-977. For a general discussion on deregulation and its impact on the infrastruc-
ture, see Alan Weisman, “Power Trip: The Coming Darkness of Electricity Deregula-
tion,” Harper’s, Oct. 2000, 76-85.

Page 111 For a discussion of the number of species on Earth, biodiversity, and extinc-
tions, see, e.g., Robert M. May, “How Many Species Inhabit the Earth?” Scientific
American, Oct. 1992, 42-48; Joel L. Swerdlow, “Biodiversity: Taking Stock of Life,”
National Geographic 192 (Feb. 1999): 2—41; Virginia Morell, “The Sixth Extinction,”
National Geographic 192 (Feb. 1999): 43-59.

Page 111 A much-cited source of nature’s robustness is redundancy, a property inherent
in all networks but virtually absent from most human designs. In most networks there
are a huge number of alternate paths between most pairs of nodes. Indeed, though the
local senator might offer a short path to the president of the United States, he or she is
not indispensable. Should he or she decline to introduce us, there are many other
paths, often equally short, that link us to the president. A similar redundancy is built
into the Internet. If a router does not work, messages will be rerouted along alternative
paths. Redundancy is present in ecosystems as well. A predator only very rarely feeds
only on one species. Indeed, upon the successful elevation of mice to pet status in the
household, the cat grudgingly survives on canned food. Alternative routes are an im-
portant source of redundancy and error tolerance. That is, in most natural systems the
malfunction of several nodes is not fatal, because the paths eliminated by their absence
can be replaced by one of the many alternative routes. Many of us have experienced
this phenomenon when choosing an alternative route to our destination after the radio
announces congestion along the shortest route or when bad weather or a cancelled
flight reroutes us to a different hub during air travel. But could there be something be-
yond redundancy when it comes to robustness?

Page 112 The breakdown of a random network under random node removal is an in-
verse percolation problem. Percolation theory tells us that the transition from a frag-
mented to a fully connected network is a second-order phase transition. For a review of
percolation see D. Stauffer and A. Aharony, Introduction to Percolation Theory (London:
Taylor and Francis, 1994); A. Bunde and S. Havlin, eds., Fractals and Disordered Systems
(Berlin: Springer, 1996); idem, eds., Fractals in Science, (Berlin: Springer, 1995).

Page 113 Our error tolerance study showing that scale-free networks are not vulnera-
ble to attacks was published in Réka Albert, Hawoong Jeong, and Albert-Lészl$
Barabasi, “Attack and Error Tolerance of Complex Networks,” Nature 406 (2000):
378. For a summary and a perspective, see the accompanying News & Views article,

Yuhai Tu, “How Robust Is the Internet?” Nature 406 (2000): 353-354.
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Page 113 For a discussion of the Internet’s stability sec, e.g., Craig Labovitz, Abha
Ahuja, and Farnam Jahanian, “Experimental Study of [nternet Stability and Wide-
Arca Backbone Failures,” Proceedings of Institute of Electrical and Electronics Engineers
(IEEE) Symposium on Fault-Tolerant Computing FTCS (Madison, Wis.: June 1999).

Page 114 In considering robustness we cannot ignore the dynamic properties of com-
plex systems. Most systems known to be robust have numerous controls and feedback
loops to ensure that they survive errors and failures. Indeed, Internet protocols were
carefully designed to “route around the trouble,” avoiding routers that malfunction;
cells have numerous feedback mechanisms to correct errars, dismantling faulty pro-
reins and shutting down malfunctioning genes. Our computer simulations indicated a
new component to error tolerance, however. We learned that nature has carefully se-
lected the structure of most complex systems, offering them an unparalleled degree of
error and failure tolerance. By virtue of their topology only, these systems display a
high degree of resilience, a property we called topological robustness.

Page 115 The calculation of the percolation threshold of scale-free networks was
published in Reuven Cohen, Keren Erez, Daniel ben-Avraham, and Shlomo Havlin,
“Resilience of the Internet to Random Breakdowns,” Physical Review Letters 85
(2000): 4626. Similar results were obtained independently in D. S. Callaway, M. E. ].
Newman, S. H. Strogatz, and D. J. Watts, “Network robustness and fragility: Percola-
tion on random graphs,” Physical Review Letters 85 (2000): 5468-5471.

Page 115 For a detailed list of links on MafiaBoy see http://www.mafiaboy.com.

Page 115 Note that not everybody believes that Operation Eligible Receiver did really
exist. Some critics maintain that it is nothing more than a Pentagon ghost story, re-
peated often to journalists. See, e.g., http://www.soci.niu.edu/~crypt/other/eligib.htm.

Page 116 According to the Computer Currents Internet Dictionary (http://www.
computeruser.com/resources/dictionary/dictionary.html) a cracker is “a person who
breaks into computer systems, using them without authorization, either maliciously or
just to show off.” In contrast, a hacker is “one who is knowledgeable about computers
and creative in computer programming, usually implying the ability to program in as-
sembly language or low-level languages. A hacker can mean an expert programmer
who finds special tricks for getting around obstacles and stretching the limits of a sys-
tem.” Therefore, to distinguish from the well-meaning hackers, we use the term
cracker for those whose aim it is to launch a malicious attack against the Internet. For
a more detailed discussion see, e.g., Pekka Himanen, The Hacker Ethic and the Spirit of the
Information Age (New York: Random House, 2001); Richard Power, Tangled Web: Tales
of Digital Crime from the Shadows of Cyberspace (Indianapolis, Ind.: Que, 2000); Steven
Levy, Hackers: Heroes of the Computer Revolution (New York: Penguin Books, 1994).

Page 116 The fragility of networks against attacks was first discussed in the same publi-
cation as the error tolerance, i.e., Réka Albert, Hawoong Jeong, and Albert-L4szl6
Barabisi, “Attack and Error Tolerance of Cornplex Networks,” Nature 406 (2000): 378.

Page 117 For an analytical approach to the attack problem see, e.g., Reuven Cohen,
Keren Erez, Daniel ben-Avraham, and Shlomo Havlin, “Breakdown of the Internet un-
der Intentional Attack,” Physical Review Letters 86 (2001): 3682; and D. S. Callaway, M.
E.]. Newman, S. H. Strogatz, and D. J. Watts, “Network robustness and fragility: Perco-
lation on random graphs,” Physical Review Letters 85 (2000): 5468-5471.
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Page 117 For the resilience of the protein network to mutations and drug attacks, see
Hawoong Jeong, Sean Mason, Albert-Lészl6 Barabasi, and Zoltdn N. Oltvai, “Lethal-
ity and Centrality in Protein Networks,” Nature 411 (2001): 41-42.

Page 117 For a discussion of the breakdown of the ecosystems under the removal of
keystone species, see, e.g., Ricard V. Solé and José M. Montoya, Complexity and
Fragility in Ecological Networks, http://xxx.lanl.gov/abs/cond-mat/0011196; and Fer-
enc Jorddn and Istvdn Scheuring, “Can Keystones Help in Background Extinction?”
(preprint, 2000). For the effect of human activities on the stability and potential
breakdown of the ecosystem, see, e.g., Stuart L. Pimm and Peter Raven, “Biodiversity:
Extinction by Numbers,” Nature 403 (2000): 843-845. For protecting our biodiver-
sity, see Norman Myers, Russell A. Mittermeier, Cristina G. Mittermeier, Gustavo A.
B. da Fonseca, and Jennifer Kent, “Biodiversity Hotspots for Conservation Priorities,”
Nature 403 (2000): 853-858. For a phenomenal photographic journey into these
hotspots, see Russell A. Mittermeier, Norman Myers, Patricio Robles Gil, and
Cristina G. Mittermeier, Hotspots: Earth’s Biologically Richest and Most Endangered Ter-
restrial Ecoregions (Mexico City: Cemex Conservation International, 2000).

Page 118 The phrase Achilles’ heel, as applied to networks and the Internet, was sug-
gested to me by Janet Kelley after [ explained to her our results. Originally included in
the title of our Nature paper, the phrase appeared only on the magazine’s cover.

Page 118 The concept of keystone species was introduced by Robert Paine, in R. T.
Paine, “A Note on Trophic Complexity and Community Stability,” American Natural-
ist, 103 (Jan.—Feb. 1969): 91-93. For a general discussion on the sea otter, see chapter
1 in Simon Levin, Fragile Dominion: Complexity and the Commons (Cambridge, Mass.:
Perseus, 1999).

Page 119 For a detailed discussion of the 1996 summer electricity breakdown, see D. N.
Kosterev, C. W. Taylor, and W. A. Mittlestadt, “Model Validation of the August 10, 1996,
WSCC System Outage,” IEEE Transactions on Power Systems 14 (Aug. 1999): 967-977.

Page 121 For a discussion of cascading failures, see, e.g., Duncan J. Watts, A Simple
Model of Fads and Cascading Failures, http://www.santafe.edu/sfi/publications/Abstracts/
00-12-062abs.html.

THE TENTH LINK: VIRUSES AND FADS

Page 123 The story of Gaetan Dugas as Patient Zero is recalled in Randy Shilts, And
the Band Played On (New York: St. Martin’s Press, 2000), a moving and frightening
day-to-day chronicle of the AIDS epidemic. For an up-to-date status report on the
AIDS epidemic see “Nature Insight—AIDS,” Nature 410, no. 9 (2001): 961-1007.

Page 124 The story of Mike Collins and the Florida ballots cartoon is told by Collins to
Robb Mandelbaum in “Only in America,” New York Times Magazine, Nov. 26, 2000.

Page 126 For information on epidemics and diseases see Rob DeSalle, ed., Epidemic!
The World of Infectious Discase (New York: New Press, 1999).

Page 126 Note that there are important differences between the various diffusion
processes, such as the spread of ideas or viruses. For example, with many diseases you
could be cured, unable to transmit the virus further, or could develop an immunity so
that you were unable to be infected again. With ideas, though you may reject them, once
you accept them you will continue to propagate them. Also, some of the viruses, such as
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Ebola, would quickly kill their hosts, offering only a short time frame to pass them on, a
rhenomenon that is again absent from the spread of most tads and ideas. Despite these
Jifferences, many of the fundamental features of the spreading of fads and biological and
computer viruses are rather similar, and thus we will often lump them together.

Page 127 The lowa farmers study is published in Bryce Rvan and Neal C. Gross, “The
Dittusion of Hybrid Seed Corn In Two lowa Communities,” Rural Sociology 8, no. 1
(1943): 15-24.

Page 128 For a simple description of the bell curve and its impact on buzz and market-
ing, see Emanuel Rosen, The Anatomy of Buzz (New York: Doubleday, 2000), 94-95.

Page 128 For the physician study see James Coleman, Elihu Katz, and Herbert Men-
zel, “The Diffusion of an Innovation Among Physicians,” Sociometry 20, no. 4 (1957):
253-270). For an earlier study on opinion leaders, see Elihu Katz and Paul E Lazars-
feld, Personal Influence: The Part Played by People in the Flow of Mass Communications
(Glencoe, Il1., Free Press, 1955).

Page 131 For threshold models see Mark Granovetter, “Threshold Models of Collec-
tive Behavior,” American Journal of Sociology 83, no. 6 (1978): 1420-1443. For a gen-
eral review of the subject, see also Thomas W. Valente, Network Models of the Diffu-
sion of Innovations (Cresskill, N.Y.: Hampton Press, 1995); Eric Abrahamson and Lori
Rosenkopf, “Social Network Effects on the Extent of Innovation Diffusion: A Com-
puter Simulation,” Organization Science 8, no. 3 (1997): 239-309.

Page 132 For a general audience diary of the Love Bug see Lev Grossman, “Attack of
the Love Bug,” Time, May 15, 2000.

Page 133 Computer Viruses carried by email, such as Love Bugs, spread on a social
network whose nodes are email users, connected if they used to send emails to each
other. Recently, German scientists have shown that this network is scale-free. See
Holger Ebel, Latz-Ingo Mielsch, Stefan Bornholdt, Scale-Free Topology of Email Net-
works, http://xxx.lanl.gov/abs/cond-mat/0201476.

Page 134 For a general article on computer virus spreading see Jeffrey O. Kephart,
Gregory B. Sorkin, David M. Chess, and Steve R. White, “Fighting Computer
Viruses,” Scientific American (Nov. 1997): 88-93. For more detailed approaches, see
Jeffrey O. Kephart, Gregory B. Sorkin, William C. Arnold, David M. Chess, Gerald ].
Tesauro, and Steve R. White, “Biologically Inspired Defenses Against Computer
Viruses,” in Machine Learning and Data Mining: Methods and Applications, ed. R. S.
Michalski (New York: John Wiley, 1998); Steve R. White, “Open Problems in Virus
Research,” International Virus Bulletin (Munich, Germany, Oct. 22-23, 1998).

Page 135 The absence of a threshold in spreading on a scale-free network was de-
scribed in Romualdo Pastor-Satorras and Alessandro Vespignani, “Epidemic Spreading
in Scale-Free Networks,” Physical Review Letters 86 (2001): 3200-3203; Epidemic Dy-
namics and Endemic States in Complex Networks, Physical Review, E 63 (2001): 066117.
For a perspective on these results see Alun L. Lloyd and Robert M. May, “How Viruses
Spread Among Computers and People,” Science 292 (2001): 1316.

Page 137 Fredrik Liljeros, Christofer R. Edling, Luis A. Nunes Amaral, H. Eugene
Stanley, and Yvonne Aberg, “The Web of Human Sexual Contacts,” Nature, 411
(2001): 907-908. The story behind the Stockholm-Boston discovery was revealed to
me by Fredrick Liljeros and Christopher R. Edling, the first two authors of the study.
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Page 137 The Trieste study predicts that the threshold for diffusion in a scale-free net-
work vanishes when the degree exponent, ¥, is smaller than three. For exponents larger
than this critical value that threshold reemerges, and the behavior is similar to that
seen in the random networks, i.e., less contagious viruses will die out. The exponents
obtained by the Stockholm-Boston collaboration do not give unique guidance in this
respect. For the one-year data they obtained y = 3.54 + 0.2 (females) and y=3.31 + 0.2
(males), while the more extensive (but potentially more biased as well) data on all
partners gives Y = 3.1 + 0.3 (females) and y= 2.6 + 0.3 (males). Whereas the first two
exponents are clearly larger than three, the latter two are smaller or are at the border.
Clearly, more extensive surveys are needed to obtain a definitive answer.

Page 138 The famous 20,000 line comes from Wilt Chamberlain, A View from Above
(New York: Villard Books, 1991).

Page 138 For asurvey of the two-decades-long AIDS epidemic and its impact on soci-
ety see, e.g., Sharon Begley, “AIDS at 20,” Newsweek, June 11, 2001.

Page 138 For a detailed description of the laws governing the spreading of viruses, see
Martin A. Nowak and Robert M. May, Virus Dynamics: Mathematical Principles of Im-
munology and Virology (Oxford, England: Oxford University Press, 2000).

Page 140 Strictly speaking, our simulations assumed that the hubs, once treated,
could be again infected if they came into contact with an another infected node. As
the situation stands today, those treated with the currently available drugs will indeed
have a smaller virus count and are thus less likely to spread the disease. When it
comes to AIDS, there are many other details that one needs to keep in mind. Our
goal was only to show that the epidemic threshold will return if one focuses on the
hubs. Therefore, irrespective of the details of the spreading process, curing the hubs
would be a far more effective policy than random drug distribution, assuming that the
number of cures is limited. The goal would be, of course, to get the cure to everyone
who needs it. For our study, see Zoltan Dezs&, Albert-Laszlé Barabasi, Can We Stop the
AIDS Epidemic? http://xxx.lane.gov/abs/cond-mat/ 0107420. See also Romualdo Pas-
tor-Satorras, Allesandro Vespignani, “Immunization of Complex Networks,” Physical

Rewiew, E 65 (2002): 036104.

THE ELEVENTH LINK: THE AWAKENING INTERNET

Page 143 The Baran quote comes from John Naughton, A Brief History of the Future
(Woodstock, NY: Overlook Press, 2000), 93. For more on Baran’s life see Chapter 6 in
Naughton’s book.

Page 144 Recently a number of books and articles have focused on the history of the
Internet. In addition to the above-cited Naughton book, see, e.g., James Gillies and
Robert Cailliau, How the Web Was Born: The Story of the World Wide Web (Oxford,
Eﬁgland: Oxford University Press, 2000). The latter focuses mainly on the Web but
covers some clements of Internet history as well.

Page 145 DPaul Baran’s historical RAND memoranda are available on the web at
http:/fwww.rand.org/publications/RM/baran.list html. The one interesting to us regarding
the network’s topology is Paul Baran, Introduction to Distributed Communications Net-
works, RM~3420-PR, available on the same Web page. Figure 11.1 comes from this paper.

Page 146 Note that the genesis of packet switching has been disputed lately. Some
believe that Leonard Kleinrock also arrived at the idea independently of Baran and
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Davies. For a discussion of the historical dispute see Katie Hafner, “A Paternity Dis-
pute Divides Net Pioneers,” New York Times, Nov. 8, 2001.

Page 147 As James Gillies and Robert Cailliau discuss in the above cited How the Web
Was Born, despite all appearances, the working principle of the Internet is closer to
that of the post office than the telephone network. In the traditional analog telephone
system, when you call somebody your phone is connected through a succession of wires
and switches directly to the phone of the person with whom you wish to speak. Once
the connection is established, a physical line is apportioned entirely to serving the two
of you, inaccessible to anyone else’s call whether you say anything or not. The postal
system works on a different principle. Post offices are connected by a network of roads.
Letters collected by each office are sorted according to their destination and placed on
trucks and planes that carry all letters that share the same route. In contrast to the
phone system, you would never have a single truck take vour letter directly from your
house to its destination. Similarly, on the Internet, computers communicate by break-
ing messages into tiny parcels called packets. Just like a letter, each packet contains in-
formation about its destination. Each time a router receives a packet, it looks at the ad-
dress and sends it to the router closest to its destination. Packets of the same message
often travel different routes, since there are several alternate paths connecting any
source and destination. When all the packets arrive, the recipient computer reassem-
bles them, creating the e-mail message or the Webpage displayed on your screen.

Page 148 For a better idea of the work of the CAIDA collaboration see, e.g., K. C.
Claffy, T. Monk, and D. McRobb, “Interriet tomography,” Nature (Jan. 1999) avail-
able at http://www.nature.com/nature/webmatters/.

Page 148 For a detailed and colorful description of the efforts behind mapping the
Web and the Internet, see Martin Dodge and Rob Kitchin, Atlas of Cyberspace (New
York: Addison-Wesley, 2002). See also Martin Dodge and Rob Kitchin, Mapping Cy-
berspace (London: Routledge, 2000).

Page 148 For a general discussion on the effect of self-organization on the Internet’s
topology see, e.g., Albert-Lészlé Barabdsi,,“The Physics of the Web,” Physics World
(July 2001): 33-38. :

Page 149 For the birth of email see John Naughton, A Brief History of the Future
(Woodstock, NY: Overlook, 2000).

Page 150 Vern Paxson and Sally Floyd, “Why We Don’t Know How To Simulate the
Internet,” Proceedings of the 1997 Winter Simulation Conference, ed. S. Andradottir, K.
J. Healy, D. H. Withers, and B. L. Nelsor. The “Sucess disaster” phrase also comes
from this paper (see pg. 149).

Page 150 The discovery that the Internet has a power-law degree distribution was re-
ported in M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relationships
of the Intemet Topology,” [ACM SIGCOMM 99, comp.] Computer Communications
Review 29 (1999): 251. For more recent measurements, confirming this finding on
much larger samples, see, e.g., R. Succ and H. Tangmunarunkit, “Heuristics for Inter-
net Map Discovery,” Proceedings of Infocom (March 2000).

Page 151 For the timeline of the first Internet nodes, see John Naughton, A Brief His-
tory of the Future.

Page 152 Note that the first Internet model was introduced in Bernard M. Waxman,
“Routing of Multipoint Connections,” IEEE Journal on Selected Areas in Communications
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6 (Dec. 1988): 1617-1622. Waxman laid down a large number of nodes on a plane
and connected them randomly to each other. So far, this was no different from the
random model of Erd&s and Rényi. However, aware of the high costs of wiring, he
wanted to discourage very long links. Therefore, he assumed that the probability that
two nodes on the Internet are linked decrease exponentially with the distance be-
tween them. Waxman’s simple model has dominated Internet modeling for decades.
It was questioned only in 1999, when the Internet’s scale-free nature was uncovered.
But the exponential distance dependence made its way, together with growth and
preferential attachment, into more modern Internet models as well. First, simulations
indicate that with such a drastic distance dependence as the Waxman model offers,
scale-free networks cannot develop. Second and even more important, Yook and
Jeong’s measurements indicate that the probability of connecting two nodes at dis-
tance d from each other decreased linearly with d—much weaker dependence than
the exponential form assumed by Waxman.

Page 152 The presence of preferential attachment on the Internet is discussed in sev-
eral publications. See, e.g., Soon-Hyung Yook, Hawoong Jeong, and Albert-L4szl6
Barabd4si, Modeling the Internet’s Large-Scale Topology, http://xxx.lanl.gov/abs/cond-
mat/0107417; Hawoong Jeong, Zoltan Néda, Albert-L4szl6 Barabdsi, Measuring Pref-
erential Attachment for Evolving Networks, http://xxx.lanl.gov/abs/cond-mat/0104131;
Romualdo Pastor-Satorras, Alexei Vazquez, Alessandro Vespignani, “Dynamical and
Correlation Properties of the Internet,” Physical Review Letters, 87 (2001): 258701.

Page 152 Assuming that nodes pop up proportionally to the population density and
that the probability that a node will link to an another node with k links located at a
distance r is proportional to k/ro, where G is a free parameter that allows us to tune the
effect of the spatial component: If 6 is large, then distance is very important, whereas
if 6 = 0, then only preferential attachment matters for the Internet’s evolution. The
simulations offered a rather clear answer: As long as G is smaller than two, a scale-free
network emerges. However, if 6 > 2, then the restricting effect of distance wins, and
the network develops an exponential degree distribution. Our measurements have
clearly indicated that for the Internet ¢ = 1, explaining why, despite the expenses of
laying down the longer cables to get more bandwidth, the scale-free topology sur-
vives. Beyond explaining why the Internet is a scale-free network, these results also
indicated how important it is to uncover, in quantitative terms, the different compet-
ing principles that govern network evolution. See Soon-Hyung Yook, Hawoong
Jeong, and Albert-Ldszl6 Barabdsi, Modeling the Internet’s Large-Scale Topology,
http://xxx.lanl.gov/ abs/cond-mat/0107417.

Page 152 For other recent Internet models that incorporate the Internet’s scale-free
topology, see Alberto Medina, Ibrahim Matta, and John Byers, “On the Origin of
Power Laws in Internet Topologies,” [ACM SIGCOMM] Computer Communications
Review 30, no. 2 (2000): 18-28); G. Caldarelli, R. Marchetti, and L. Pietronero, “The
Fractal Properties of the Internet,” Europhysics Letters 52 (2000): 386; K.I. Goh, B.
Kahng, D. Kim, Universal Behavior of Load Distribution in Scale-Free Networks, Physical
Review of Letters, 87 (2001): 278701; A. Capocci, G. Caldarelli, R. Marchetti, L.
Pietronero, “Growing Dynamics of Internet Providers,” Physical Review, E 64 (2001):
035101.
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Page 152 Fractals, self-similar objects with nontrivial geometrical properties, were in-
troduced by Benoit Mandelbrot. Subsequently, they were found to describe many nat-
ural objects, from snowflakes to cell colonies. See, e.g., B. Mandelbrot, The Fractal
Geometry of Nature (New York: W. H. Freeman, 1977). For a more recent review, see
T. Vicsek, Fractal Growth Phenomena (Singapore: World Scientific, 1992).

Page 153 The routing failure at MAI was described in several news accounts. See,
e.g., “Router Glitch Cuts Net Access,” CNET, April 25, 1997.

Page 155 For a discussion on the Code Red worm, see Carolyn Meinel, “Code Red for
the Web,” Scientific American, October 2001, 42-51.

Page 155 For parasitic computing, see Albert-Laszl6 Barabdsi, Vincent W. Freeh, Ha-
woong Jeong, and Jay B. Brockman, “Parasitic Computing,” Nature 412 (2001):
894-897. For further information, see http://www.nd.edu/~parasite/.

Page 157 For a detailed discussion of distributed computing, see, e.g., [an Foster, “In-
ternet Computing and the Emerging Grid,” Nature (Dec. 2000), available at http://
www.nature.com/nature/webmatters.

Page 158 For a truly interesting discussion on the electronic skin developing around
the Earth see Neil Gross, “The Earth Will Don and Electronic Skin,” Business Week
(August 30, 1999): 68-70.

THE TWELFTH LINK: THE FRAGMENTED WEB

Page 162 For the reaction of the search engines on the NEC study see Thomas E. We-
ber’s, “Fast Forward: Media in Motion,” Wall Street Journal, April 3, 1998.

Page 163 For Inquirus, see Steve Lawrence and C. Lee Giles, “Inquirius: The NECI
Meta Search Engine,” Seventh International World Wide Web Conference, Bris-
bane, Australia (Amsterdam: Elsevier Science, 1998), 95-105.

Page 163 The findings of the NEC group have been published in two papers: Steve
Lawrence and C. Lee Giles, “Searching the World Wide Web,” Science 280 (1998):
98-100; and Steve Lawrence and C. Lee Giles, “Accessibility of Information on the
Web,” Nature 400 (1999): 107-109.

Page 164 For a detailed discussion of the size of the Web, see http://searchengine.com.
For the latest statistics on the search engine sizes see Danny Sullivan’s “Search Engine
Sizes” Search Engine Report, August 15, 2001, available at http://searchengine.com/re-
ports/sizes.html; see also “Numbers, Numbers—But What Do They Mean?” Search En-
gine Report, March 3, 2000, http://searchengine.com/sereport/00/03-numbers.html.

Page 166 The fragmented structure of the Web is known as the bow-tie theory and was
first observed in A. Broder, R. Kumar, E Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the Web,” Ninth International World
Wide Web Conference, Amsterdam, http:/fwww9.org/w9cdrom/160/160.html.

Page 168 As they age and become known, Webpages naturally travel across the con-
tinents. Their position is jointly determined by the creator of the Webpage and by the
interest of the World Wide Web community in the pages’ content. As links and Web-
pages are constantly added, removed, modified, and enriched and robbed of links, the
population of these continents are in constant flux, compared to which the big in-
fluxes from Europe to the United States at the end of the twentieth and the beginning
of this century are small, negligible events. A single well-placed link can determine
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the fate and location of thousands of Webpages, the whole landscape being reorgan-
ized by small or huge avalanches.

Page 169 For recent research on the properties of directed networks see S. N. Doro-
govtsev, J. E E Mendes, and A. N. Samukhin, Giant Strongly Connected Component of
Directed Networks, http://xxx.lanl.gov/abs/cond-mat/0103629; M. E. ]J. Newman, S.
H. Strogatz, and D. ]. Watts, “Random Graphs with Arbitrary Degree Distributions
and Their Applications,” Physical Review, E 64 (2001): 026118; B. Tadic, “Dynamics
of Directed Graphs: the World Wide Web,” Physica, A 293 (2001): 273-284.

Page 170 Cass R. Sunstein, Republic.com (Princeton, Princeton University Press,
2001).

Page 171 Justice Stewart’s quote on pornography is cited in many places. See, e.g.,
“The Task of Defining What's Too Explicit to Be Seen,” USA Today, Jan. 26, 1999,
available at http://www.usatoday.com/life/cyber/tech/ctb114.htm.

Page 171 For the NEC work on communities on the Web, see Gary William Flake,
Steve Lawrence, and C. Lee Giles, “Efficient Identification of Web Communities,”
Proceedings of the Sixth International Conference on Knowledge Discovery and Data Min-
ing (Boston, Mass.: ACM Special Interest Group on Knowledge Discovery in Data
and Data Mining, August 2000), 156-160. Several other groups have worked on very
similar problems. See David Gibson, Jon Kleinberg, and Pranhakar Raghavan, “Infer-
ring Web Communities from Link Topology,” Proceedings of the 9th ACM Conference
on Hypertext and Hypermedia (1998); and Ray R. Larson, Bibliometrics of the World
Wide Web: An Exploratory Analysis of the Intellectual Structure of Cyberspace,
http://sherlock.berkeley.edu/asis96/asis96.html.

Page 171 For a discussion of NP complete problems, see M. Garey and D. S. Johnson,
Computers and Intractability: A Guide to the Theory of NP-Completeness (San Francisco:
H. W. Freeman, 1979).

Page 172 Lada A. Adamic, “The Small World Web,” Proceedings of ECDL'99, LNCS
1696 (Springer, 1999), 443-452. See also Lada A. Adamic and Eytan Adar, Friends
and Neighbors on the Web, http://www.hpl.hp.com/shl/papers/web10/.

Page 173 Lawrence Lessig, Code and Other Laws of Cyberspace (New York: Basic
Books, 1999).

Page 176 To know more about the Internet Archives, visit their Website at
http://www.archive.org/.

Page 177 Most of our creative life is turning towards the Web. The modern photogra-
pher uses a digital camera and manipulates the bits to better express his vision. Some
of these pictures will be printed and displayed in galleries. Most, however, are avail-
able only in electronic format on the Web. The bulk of poems are not published in
anthologies any longer; they are available in Web archives. The Web is the primary
medium for an increasing number of visual artists whose work cannot be appreciated
without a browser. Yet all of this will be irreversibly lost thanks to badly curated sites,
broken computers, and vanishing resources. We will not have Van Goghs in the fu-
ture because their work, if unappreciated by their contemporaries, will not survive for
future generations. The creative geniuses of the online world will be tossed out with
computer upgrades or technology changes, not in centuries but in a few short years.

There is only one way to halt this tragic loss of history and creativity housed in the
Web these days. We must archive everything out there for the generations to come. |
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helieve that we should make a serious, perhaps government-supported cffort to go
well beyond the goals and possibilities of the Internet Archives and map the full Web.
Every single page of it. We should make its past and current content instantly avail-
able to anybody anywhere.

Page 178 While in this chapter we focused mainly on the topology of the Web, re-
cently a series of results have investigated our surfing patterns and our dynamical be-
havior on the Web, finding further evidence of emerging behavior and power laws.
See Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow, and Rajan M.
Lukose, “Strong Regularities in World Wide Web Surfing,” Science 280 (1998):
95-97; Anders Johansen and Didier Sornette, Download Relaxation Dynamics on the
WWW Following Newspaper Publication of URL, http://xxx.lanl.gov/abs/cond-
mat/9907371; and Bernardo A. Huberman, The Laws of the Web (Cambridge, Mass.:
MIT Press, 2001).

THE THIRTEENTH LINK: THE MAP OF LIFE

Page 179 For leading causes of death in the United States (including depression), see
the Website of the Centers for Disease Control and Prevention (CDC), http://we-
bapp.cdc.gov/.

Page 179 For research on manic depression specifically, see Nick Craddock and lan
Jones, “Molecular Genetics of Bipolar Disorder,” British Journal of Psychiatry 174,
suppl. 41 (2001): 128-133. For research on depression with discussion on manic-de-
pression as well, see Charles B. Nemeroff, “The Neurobiology of Depression,” Scien-
tific American, June 1998, 42.

Page 180 The decoding of the human genome has been covered widely by the press,
both for the occasion of the official White House announcement on June 25, 2000, as
well as the publication of the genome on February 15 and 16, 2001. See Science 291
(Feb. 2001), and Nature 409 (Feb. 2001).

Page 181 For a recent discussion of postgenomic biology and changing views of the
role of the gene, see Evelyn Fox Keller, The Century of the Gene (Cambridge, Mass.:
Harvard University Press, 2000).

Page 181 For more insight into the increasing role of networks in understanding the
cell, see J. Craig Venter et al, “The Sequence of the Human Genome,” Science 291
(2001): 1304-1351, especially 1347-1348.

Page 182 For an excellent introduction to cell biology see Bruce Alberts, Dennis
Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson, Molecular Biol-
ogy of the Cell (New York: Garland, 1994).

Page 182 The research on metabolism goes back to the nineteenth century, respond-
ing to the French wine maker’s need to control the steps by which yeast cells change
glucose into alcohol and bubbles of carbon dioxide. This ancestry is preserved in the
name enzyme, whose root means “in yeast.” Therefore, biochemistry can be viewed as
a giant mapping project struggling to create an inventory of all possible chemicals and
reactions present in the cell. For a detailed history of mapping out metabolism, see
Horace Freeland Judson, The Eighth Day of Creation: Makers of the Revolution in Biology
(Plainview, NY: Cold Spring Harbor Laboratory Press, 1996).

Page 182 Note that various subnetworks, such as the metabolic or the protein inter-
action network, are not independent of one another. Indeed, the proteins of the
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regulatory network catalyze chemical reactions, thereby controlling the links of the

metabolic network. Similarly, frequent protein-gene interactions couple the protein

interaction network with the genes and the DNA.

Page 184 The Watson quote came from James D. Watson, Molecular Biology of the
Gene, 2nd ed. (New York: W. A. Benjamin, 1970): 99.

Page 185 WIT (What Is There?) is an integrated system for comparative analysis of
sequenced genomes. What was important for us is that it also supports metabolic re-
construction from the sequence data. It can be reached through its Webpage found at
http://www-unix.mcs.anl.gov/compbio/.

Page 185 Our results on the scale-free nature of the metabolism was published in H.
Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabdsi, “The large-scale organ-
ization of metabolic networks,” Nature 407 (2000): 651-654.

Page 186 Andreas Wagner and David A. Fell’s work on metabolism was published as
“The Small World Inside Large Metabolic Networks,” Proceedings of the Royal Society,
London, B, 268 (2001): 1803-1810.

Page 187 Comparing the metabolic network of different organisms can shed light on
the evolutionary relationships between different species as well. See ]. Pod4ni, Z. N.
Oltvai, H. Jeong, B. Tombor, A.-L. Barab4si, and E. Szathm4ry, “Comparable System-
Level Organization of Archaea and Eukaryotes,” Nature Genetics 29 (2001): 54-56; C.
V. Forst and K. Schulten, “Phylogenetic Analysis of Metabolic Pathways,” Journal of
Molecular Evolution 52 (2001): 471-489.

Page 188 The yeast two-hybrid technique was developed in S. Fields and O. Song, “A
Novel Genetic System to Detect Protein-Protein Interactions,” Nature 340 (1989):
245-246. For recent developments in the technique, see also Li Zhu and Gregory J.
Hannon, eds., Yeast Hybrid Methods (Natick, MA: Eaton, 2000).

Page 188 The comprehensive interaction map for yeast was published by P. Uetz, et
al. in “A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces
cerevisiae” Nature 403 (2000): 623-627; T. Ito et al’s “Toward a Protein-Protein Inter-
action Map of the Budding Yeast: A Comprehensive System to Examine Two-Hybrid
Interactions in All Possible Combinations Between the Yeast Proteins,” Proceedings of
the National Academy of Sciences 97 (2000): 1143-1147; and “A Comprehensive Two-
Hybrid Analysis to Explore the Yeast Protein Interactome,” Proceedings of the National
Academy of Sciences 98 (2001): 4569-4574.

Page 188 The scale-free nature of the protein interaction networks in yeast is discussed
in Hawoong Jeong, Sean Mason, Albert-L4szl6 Barabasi, and Zoltan N. Oltvai, “Central-
ity and Lethality of Protein Networks,” Nature 411 (2001): 41-42. This paper contains
the discussion of the relationships between lethality and topology as well. For a perspec-
tive on the results, see the News and Views article accompanying the paper J. Hasty and
J.J. Collins, “Protein Interactions—Unspinning the Web,” Nature 411 (2001): 30-31.

Page 189 For independent confirmation of power laws in the yeast protein network,
as well as the potential link to gene duplication, see Andreas Wagner, “The Yeast Pro-
tein Interaction Network Evolves Rapidly and Contains Few Redundant and Dupli-
cate Genes,” Molecular Biology and Evolution 18 (2001): 1283-1292.

Page 189 For the results on protein domain networks, see Stefan Wuchty, “Scale-Free
Behavior in Protein Domain Networks,” Molecular Biology and Evolution 18 (2001):

1694-1702. For a different approach to the yeast protein network also demonstrating a
scale-free structure see Jong Park, Michael Lappe, and Sarah A. Teichmann, “Mapping
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Protein Family Interactions: Intramolecular and Intermolecular Protein Family Interac-
tion Repertoires in the PBD and Yeast,” Journal of Molecular Biology 307 (2001):
929-938. For results on the H. pylori protein network, see Hawoong Jeong, Sean Mason,
Albert-Liszlo Barabisi, and Zoltan N. Oltvai, “Centrality and Lethality of Protein Net-
works,” Nature 411 (2001): 41-42.

Page 190 On gene duplication and its evolutionary role, see John Maynard Smith and
Eors Szathmdry, The Origins of Life (Oxford, England: Oxford University Press, 1999).

Page 190 The papers that independently suggested gene duplication as the source of
the scale-free topology in regulatory networks are A. Bhan, D. J. Galas, and T. G.
Dewey, “A Gene Duplication Growth Model of Scaling in Gene Expression Networks
(to be published); A. Vasquez, A. Flammini, A. Maritan, and A. Vespignani, Modeling
of Protein Interaction Networks (http://xxx.lanl.gov/abs/cond-mat/0108043); and R. V.
Solé, R. Pastor-Satorras, E. D. Smith, and T. Kepler, “A Mode of Large-Scale Pro-
teome Evolution (Santa Fe Preprint, available at www.santafe.edu 2001). See also ].
Giam, N.M Luscombe, and M. Gerstein, “Protein Family and Fold Occurrences in
Genomes: Power-law Behavior and Evolutionary Model,” Journal of Molecular Biol-
ogy, 313 (2001): 673-681. Note that the gene duplication models have a number of
fascinating properties from the perspective of network theory. For a more detailed dis-
cussion see ]. Kim, P.L. Krapivsky, B. Kahng, and S. Redner, “Evolving Protein in In-
teractive Networks,” http://xxx.lanl.gov/abs/condmat/0203167.

Page 192 Lane, Levine, and Vogelstein have been awarded all of the possible honors
and prizes in medicine, leading many to believe that it is just a matter of time before
they receive the Nobel as well. Indeed, David Lane, currently one of the top cited sci-
entists in the UK, was knighted Sir David Lane by Queen Elizabeth in 2000. Arnold
J. Levine, currently the president of the prestigious Rockefeller University in New
York, was the first recipient of the Albany Medical Center Prize, which at $500,000 is
second among medical awards only to the Nobel prize in value. Vogelstein, currently
a Howard Hughes Investigator at Johns Hopkins School of Medicine, continues to
produce an unparalleled string of significant discoveries, three of his publications now
ranking among the ten most cited papers in medicine.

Page 192 For the suggestion that networks play a key role in understanding cancer,
see Bert Vogelstein, David Lane, and Arnold J. Levine, “Surfing the p53 Network,”
Nature 408 (2000): 307-310. Note that this paper does not perform a quantitative
analysis of the network; it offers rather compelling empirical arguments on the scale-
free nature of the networks. We have subsequently analyzed the network’s topology,
finding that, indeed, with a good approximation, it is scale-free (Hawoong Jeong, D.
A. Mongru, Z. N. Oltvai, and A.-L. Barab4si, unpublished).

Page 194 The microarray technology, introduced in 1991 by Stephen Fodor and his
collaborators (see S. P. A. Fodor, . L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and
D. Solas, “Light-Directed, Spatially Addressable Parallel Chemical Synthesis,” Sci-
ence 251 [1991]: 767-773), allows researchers to decipher the dynamics of gene in-
teractions within the cell. The consequences of this breakthrough have already fun-
damentally altered the way biology is done in most laboratories. It is only a question
of time before everything from diagnostics in the doctor’s office to drug develop-
ment is changed. A DNA chip, or microarray, is a silicon or glass wafer patterned
with a technology used by computer chip makers. Photolithography machines etch
an array of tiny holes just barely large enough to allow robotic arms to place in these
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holes short DNA strands, each hole containing a different gene. Thus with 30,000
holes you can place a copy of each gene of the human genome on a single chip.
When the DNA in a cell generates proteins, a gene is first copied into a unique
messenger RNA (mRNA) molecule, which later is translated into a protein. Thus
the number and type of mRNA molecules in a cell closely track the orders given by
the DNA. Each mRNA molecule can stick to only one microarray hole, the one
that contains the matching piece of DNA that produced the mRNA molecule in
the first place. If a biologist studying a rare disease places a culture of the ill cells on
the DNA chip, the holes corresponding to the active genes will fill up with mRNA
strands, while all other holes will stay empty. A laser reader will scan through each
hole, indicating which genes are busy producing proteins. Therefore, the measure-
ment will tell you which genes function normally and which are those that are shut
down by some genetic disorder.

Page 195 For a very general discussion of the effect of new biological tools—such as
microarrays—on the future of medicine and drug development, see the special issue of
Time magazine of January 15, 2001, titled “Drugs of the Future.”

Page 195 A wonderful demonstration of the microarray’s ability to follow genes being
switched on and off has been offered by several recent papers that identified groups of
genes being simultaneously active during different stages of the cell cycle. See Neal S.
Holter, Madhusmita Mitra, Amos Maritan, Marek Cieplak, Jayanth R. Banavar, and
Nina V. Fedoroff, “Fundamental Patterns Underlying Gene Expression Profiles: Sim-
plicity from Complexity,” Proceedings of the National Academy of Sciences 97 (2000):
8409-8414; and Orly Alter, Patrick O. Brown, and David Botstein, “Singular Value
Decomposition for Genome-Wide Expression Data Processing and Modeling,” Pro-
ceedings of the National Academy of Sciences 97 (2000): 10101-10106.

Page 196 Note that, though there are only about 30,000 or so genes in the human
genome, the number of proteins can be much higher. This is due to a process called al-
ternate splicing, in which the messenger RNA is chopped up and reattached in many
different ways, creating different proteins. Therefore, in eukaryotes the number of
proteins is much larger than the number of genes, defying the one gene—one protein
dogma of molecular biology, valid in bacterium.

Page 197 For a discussion of the genome’s complexity and the role of the genetic net-
work, see Jean-Michel Claverie, “What If There Are Only 30,000 Human Genes?”
Science 291 (2001): 1255-1257.

THE FOURTEENTH LINK: NETWORK ECONOMY

Page 199 For a general discussion of the role of networks in business and economy,
see E. Bonabeau, The Alchemy of Networks: Network Science Applied to Business (in
preparation).

Page 199 The Time-Warner and AOL merger is described in detail in Daniel Okrent,
“Happily Ever After?” Time, January 24, 2000. See also the extensive joint interview
with AOLs Steve Case and Time-Warner’s Jerry Levin in the same issue of the magazine.

Page 200 For the story of the Daimler-Benz and Chrysler merger, sce Bill Vlasic and
Bradley A Stertz, Taken for a Ride: How Daimler-Benz Drove Off with Chrysler (New
York: William Morrow, 2000).
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Page 200 Not all mergers are the result of an expanding market and economy—the
first wave of mergers in fact began after the worldwide depression of 1883. For a brief
historical perspective on mergers see David Besanko, David Dranove, and Mark
Shanley, Economics of Strategy (New York: John Wiley, 2000): 198—199.

Page 201 The hierarchical organization has a history of over a century. “In our scheme,
we do not ask for the initiative of our men. . .. All we want them is to obey orders we
give them, do what we say, and do it quick.” Thus wrote Frederick Winslow Taylor, the
tather of scientific management, at the beginning of the twentieth century, summarizing
a philosophy that is responsible for the wealth and material culture as we know it. As
Brink Lindsey writes in The Man with the Plan (Reason Online, 1998, www.reason.com)
before Taylor, manufacturing followed a craft system. The secrets of the craft were well
kept and passed down, grudgingly, from master to apprentice. The real work potential of
the shop was jealously guarded by the craftsmen because the compensation system was
based on the number of pieces produced and not by hourly wages. Taylor, using a stop-
watch, singlehandedly changed that. He broke down all manufacturing processes into
simple elements, standardizing the work tasks and compensation process. His ground-
breaking approach to manufacturing turned Bethlehem Steel into the world’s most mod-
ern factory, reducing yard workers’ ranks from 500 to 140 while doubling production. A
victim of his own success, Taylor was evenrually fired as a result of anger over the layoffs.
Yet after him no factory could compete without fully adopting his methods. Taylor intro-
duced a clear separation of ranks, reducing workers to drone-order executors. He in-
vented the white-collar worker, responsible for planning every single manufacturing step
and making sure that the workers faithfully execute them. His most important legacy is
what we call the vertical organization, which set in stone for a full century the structure
of the web within the firm. The life of and work of Frederick W. Taylor has been the sub-
ject of several biographies and scientific monographs. See Robert Kanigel, The One Best
Way: Frederick Winslow Taylor and the Enigma of Efficiency (New York: Viking Penguin,
1997). For a standard biography see Frank Barkley Copley, Frederick W. Taylor, Father of
Scientific Management, 2 vols. (New York: Taylor Society, 1923). Taylor’s own influential
work is The Principles of Scientific Management (New York: Harper & Brothers, 1915:
reprint, Mineola, N.Y.: Dover, 1998).

Page 201 Note that Ford’s factories also played a key role in the birth of modern manu-
facturing. It is there the moving assembly line was developed, a key component of all
mass-production plants. For a short summary of the history of the developments at Ford
and the players behind the development of the assembly line, see Joseph B. White, The
Line Starts Here (www.wsj.com/public/current/articles/SB915733342173968000.htm,
Wall Street Journal Interactive, 2000).

Page 201 Classical economic theory views organizations, firms, and corporations as
optimized networks aiming to achieve the largest financial output with the fewest re-
sources. This is Taylor’s legacy, maintaining that running a company is an optimiza-
tion process aimed at increasing profits. Such profit-driven optimization favors a tree
structure. Indeed, if manufacturing is the company’s primary goal, costs can be signifi-
cantly reduced by assigning all repetitive, specialized tasks to low-income workers.
Recent studies indicate that information is also most efficiently managed within a hi-
erarchical organization, since a tree avoids unnecessary duplication of information
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and communication. As each firm’s activity is a combination of manufacturing and
information management, the pyramid structure appears to be here to stay. For a de-
tailed discussion of the hierarchical tree within the firm, see Patrick Bolton and
Mathias Dewatriport, “The Firm as a Communication Network,” Quarterly Journal of
Economics 109 (Nov. 1994): 809-839.

Page 202 For a general discussion on the shift within the firm toward a network or-
ganization, see Business Week's special double issue “The 21st Century Corporation,”
August 21-28, 2001.

Page 202 For a concise review of network theories for organizations, see Peter R.
Monge and Noshir S. Contractor, “Emergence of Communication Networks,” in The
New Handbook of Organizational Communication, ed. Fredric M. Jablin and Linda L.
Putnam (Thousand Oaks, Calif.: Sage Publications, 2001): 440-502.

Page 203 For Jordan’s role in the Clinton-Lewinsky scandal, see Eric Pooley, “The
Master Fixer Is a Fix,” Time, Feb. 2, 1998.

Page 203 For a more regional example of interlocked directorships in the Chicago
area, see Melissa Allison, “Directors Weave a Complex Web,” Chicago Tribune, June
17, 2001, sec, 5, p. 1-2.

Page 204 For a detailed discussion of the corporate network, see Gerald E Davis,
Mina Yoo, and Wayne E. Baker’s “The Small World of the Corporate Elite” (Preprint,
February 2001).

Page 204 For a mathematical analysis of the director’s network, see M. E. J. Newman,
S. H. Strogatz, and D. J. Watts, “Random Graphs with Arbitrary Degree Distributions
and Their Applications” Physical Review, E 64 (2001): 026118.

Page 205 For Jordan’s path in the corporate world, see chapter 12 in Vernon E. Jor-
dan, jrs autobiography, with Annette Gordon-Reed, Vernon Can Read (A Memoir)
(New York: Public Affairs, 2001) and the above cited work of Davis, Yoo and Baker.

Page 206 For the power of networks in Silicon Valley, see Emilio J. Castilla, Hokyo
Hwang, Ellen Granovetter, and Mark Granovetter, “Social Networks in Silicon Val-
ley,” in The Silicon Valley Edge: A Habitat for Innovation and Entrepreneurship, ed.
Chong-Moon Lee, William FE Miller, Marguerite Gong Hancock, and Henry S.
Rowen (Cambridge, England: Cambridge University Press, 2001), 218-247.

Page 207 Walter W. Powell, Douglas White, and Kenneth W. Koput, “Dynamics and
Movies of Social Networks in the Field of Biotechnology: Emergent Social Structure
and Process Analyses,” (preprint, April 12, 2001).

Page 207 For detailed mathematical analysis of the networks behind the pharmaceu-
tical industry see M. Riccaboni, E Pammolli, and G. Caldarelli, “Complexity of Con-
nections in Social and Economical Structures” (preprint, 2001).

Page 208 For an another example of small worlds in the economy, sce Bruce Kogut
and Gordon Walker, “The Small World of Germany and the Durability of National
Networks,” American Sociological Review 66 (2001): 317-335.

Page 208 Besides being scale-free, a network economy displays clustering as well. There
is first a strong geography-based clustering, where companies have more links to local
consumers. Globalization, the buzzword of the last decade, actually means the prolifera-
tion of long-range, geography-defying links—companies finding consumers and vendors
not locally but worldwide. Then there is industry-based clustering—companies in the
same market or business sharing many links. Such links, though geographically biased,
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cut casily across large distances. The clustered nature of the economy has been docu-
mented recently in Bruce Kogut and Gordon Walker, “The Small World of Germany
and the Durability of National Networks.” American Sociological Review, 66 (2001):
317-335. They investigate firm ownership in Germany, mapping out the links between
five hundred nonfinancial corporations, twenty-five banks, and twenty-five insurance
tirms. In this network two firms are connected if they have a common owner. The ob-
tained network in a way is rather similar to the actor network, where the actors corre-
spond to companies, and movies to owners. A typical owner owns multiple companies,
just as there are many actors in a single movie. The analysis of the obtained company
network clearly indicates that German firms are part of a small world. The diameter of
the network is 4.81, i.e., the majority of these companies are linked though a chain of
four owners. Kogut and Walker have found a huge clustering coefficient as well. If the
companies were to form a random network, the chance of finding a link between two
neighbors of a certain firm is expected to be 0.5 percent. In contrast, in the real network
two neighbors of any firm have a 67 percent chance of having a common owner. This is
clearly a significant difference underlying the very high degree of clustering characteriz-
ing the economy.

Page 209 Walter W. Powell, “Inter-Organizational Collaboration in the Biotechnol-
ogy Industry,” Journal of Institutional and Theoretical Economics 512 (1996): 197-215.
Page 209 One of the pioneers of the idea that the economy should be viewed as an
evolving network is Alan Kirman of University of Aix-Marseille. His papers offer a
truly excellent discussion of the shortcomings of current economic thinking and the
role of networks in economic theories. See “The Economy as an Evolving Network,”
Journal of Evolutionary Economics 7 (1997): 339-353; “Aggregate Activity and Eco-
nomic Organization,” Revue europeenne des sciences sociales 37, no. 113 (1999):
189-230; and “The Economy as an Interactive System,” in The Economy as an Evolv-
ing Complex System II (Proceedings of the Santa Fe Institute Studies in the Sciences of
Complexity, vol. 27), ed. W. Brian Arthur, Steven N. Durlauf, and David A. Lane

(Reading, MA, Addison-Wesley, 1997), 491-532.

Page 209 The Asian economic crisis was widely documented in the press and in
scholarly articles alike. For a day-to-day breakdown of the events, see the Website
maintained by Nouriel Roubini, associate professor of economics and international
business at the Stern School of Business of New York University. The site, titled
“Chronology of the Asian Currency Crisis and Its Global Contagion,” is available at
http://www.stern.nyu.edu/~nroubini/asia/AsiaChronology I.html. For a discussion of
the origins of the crisis, see Giancarlo Corsetti, Paolo Pesenti, and Nouriel Roubini,
“What Caused the Asian Currency and Financial Crisis?” Japan and the World Econ-
omy, Sept. 1999, 305-373.

Page 210 Economic Report of the President (Washington, D.C.: U.S. Government
Printing Office, 1999).

Page 210 Paul Krugman, What Happened to Asia? (January 1998) http://web.mit.edu/
krugman/www/DISINTER.html. ,

Page 212 For a detailed discussion of the effects of outsourcing and the story of Cisco,
Compagq, and other apostles of the network economy, see Bill Lakenan, Darren Boyd,
and Ed Frey, “Why Cisco Fell: Outsourcing and Its Perils,” Strategy + Business (3rd
quarter 2001): 54-65. '
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Page 213 The Hotmail story is described by Steve Jurvetson, the partner in the ven-
ture capital firm that secured the seed funding for the company, in “Turning Cus-
tomers into Sales Force,” Business 2.0, Nov. 1, 1998. See also the portrait of Sabeer
Bhatia in Stuart Whitmore “Driving Ambition,” Asiaweek.com, http://www.asia
week.com/asiaweek/technology/990625/bhatia.html.

Page 216 Note that there is increasing interest in academic literature on economic
networks. For some representative examples of the work in this area, see Matthew O.
Jackson and Alison Watts, “The Evolution of Social and Economic Networks,” Journal
of Economic Literature (in press, 2001); Alison Watts, “A Dynamic Model of Network
Formation,” Games and Economic Behavior 34 (2001): 331-341; Matthew O. Jackson
and Alison Watts, “On the Formation of Interaction Networks in Social Coordination
Games,” Journal of Economic Literature (in press, 2001); Venkatesh Bala and Sanjeev
Goyal, “A Noncooperative Model of Network Formation,” Econometrica 68 (2000):
1181-1229; “Learning, Network Formation and Coordination” (preprint); and “A
Strategic Analysis of Network Reliability,” Review of Economic Design 5 (2000):
205-228; Nigel Gilbert, Andreas Pyka, and Petra Ahrweiler, “Innovation Networks: A
Simulation Approach,” Journal of Artificial Societies and Social Simulation 4, no. 3
(2001); Lawrence E. Blume and Steven N. Durlauf, The Interactions-Based Approach to
Socioeconomic Behavior, http://www.ssc.wisc.edu/econ/archive/wp2001.htm; Nicholas
Economides, “Desirability of Compatibility in the Absence of Network Externalities,”
American Economic Review 78 (1989): 108--121; “Compatibility and the Creation of
Shared Networks,” in Electronic Services Networks: A Business and Public Policy Chal-
lenge, ed. Margaret Guerin-Calvert and Steven Wildman (New York: Praeger, 1991);
“Network Economics with Application to Finance,” Financial Markets, Institutions &
Instruments 2 (1993): 89-97; Nicholas Economides and Steven C. Salop, “Competi-
tion and Integration Among Complements and Network Market Structure,” Journal
of Industrial Economics 40, no. 1 (1992): 105-123. See also D. McFadzean, D. Stew-
art, and L. Tesfatsion, “A Computational Laboratory for Evolutionary Trade Net-
works,” IEEE Transactions on Evolutionary Computation 5 (2001): 546-560; L. Tesfat-
sion, “A Trade Network Game with Endogenous Partner Selection,” in
Computational Approaches to Economic Problems, ed. H. M. Amman, B. Rustem, and
A. B. Whinston (Kluwer Academic, 1997), 249-269. See also the Websites of Leigh
Tesfatsion, http://www.econ.iastate.edu/tesfatsi/netgroup.htm, and Nicholas Econo-
mides, http://www.stern.nvu.edu/networks/site.html, with numerous links to re-
searchers and papers focusing on network economics.

Page 216 Note that a rapidlyv expanding field within physics aims to address economic
phenomena in quantitative terms, using the tools of statistical mechanics. For a short
introduction, see Rosario N. Mantegna and H. Eugene Stanley, An Introduction 10
Econophysics: Correlations and Complexity in Finance (Cambridge, England: Cambridge
University Press, 2000); Jean-Phillipe Bouchaud, Marc Potters, Theory of Financial
Risk: From Statistical Physics to Risk Management (Cambridge, England: Cambridge
University Press, 2000). See also J. Doyne Farmer, “Physicists Attempt to Scale the
Ivory Towers of Finance,” IEEE Computing in Science and Engineering (Nov.—Dec.
1999): 26-39. Most of this network focuses on the properties of stock fluctuations. For
the relationship between nerworks and the stock market, see Hyun-Joo Kim, Youngki
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bee, Im-mook Kim, and Byungnam Kahng, “Scale-Free Networks in Financial Corre-
lations,” heep://xxx.lanl.gov/abs/cond-mat/0107449.

Page 216 Many companies are experimenting with the incorporation of network
ideas under various business models. For example, Ecrush.com asks you to tell them if
you have a crush on somebody. They will send your crush a secret message saying
“someone likes you” and invite them to sign up, too. If your crush signs up and lists
you as a crush, the program matches you up. If your crush does not list you as a crush,
they can never find out who it was that approached her or him. IC(Q.com, another
network-obsessed startup that boasts a whopping 116 million users, is less ambitious
and more down to earth. It offers you an environment to activate your links effi-
ciently. Free software monitors your list of friends, telling you which of them is online,
offering you the possibility to reach them instantly.

Page 216 For a discussion of interactions between economic institutions and policy
making, see P. Cooke and K. Morgan, “The Networks Paradigm: New Departures in
Corporate and Regional Development,” Environment and Planning, D: Society and
Space 11 (1993): 543-564.

Page 217 For a discussion on policy networks, see David Marsh, ed., Comparing Policy
Networks (Buckingham: Open University Press, 1998); Dirk Messner, The Network
Society (London: Frank Cass, 1997); and Manuel Castell, The Rise of the Network Soci-
ety (London: Blackwell, 1996).

THE LAST LINK: WEB WITHOUT A SPIDER

Page 222 For a discussion of the network behind the terrorist cell responsible for the
September 11 attack, see www.orgnet.com, Valdis Kreb's Website. See also Thomas A.
Steward, “Six Degrees of Mohamed Atta,” Business 2.0, Dec. 2001, 63.

Page 223 For a discussion of fighting a network organization in a netwar, see John Ar-
quilla and David E Ronfeldt, eds., Networks and Netwars (Santa Monica, CA: RAND
Corp., 2001); and Thomas A. Steward, “Americas’ Secret Weapon,” Business 2.0, Dec.
2001, 58-68.

Page 224 The work of Christo and Jean-Claude is the subject of many books and
monographs. See Jacob Baal-Teshuva, Christo and Jeanne-Claude (Cologne, Germany:
Taschen, 2001). The “revelation through concealment” phrase comes from David
Bourdon, Christo (New York: Abrahams, 1970).

Page 225 Note that complexity is a huge subject, and many researchers from physi-
cists to mathematicians and biologists are working on various ways to approach it. For
an array of books covering different approaches, see notes to Chapter 1.
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