
Let S = (S,∧,m) be a finite algebra so that (S,∧) is a semilattice, and m is
a majority operation on S. For subsets S1 ⊆ S2 of S we say that S1 absorbs S2

(S1 Cm S2) if m(x, y, z) ∈ S1 whenever x, y, and z are both in S2, and at least
two of them are in S1. If furthermore x ∧ y ∈ S1 whenever x and y are in S2, and
one of them is in S1, then we call S1 and ideal of S2, denoted by S1 C S2. We call
an operation of S m-generated if it is a term of (S,m). We recursively define for
natural z the 3z-ary term m(z) with m(1) = m, and

m(z)(x1, . . . , x3z ) :=

m(m(z−1)(x1, . . . , x3z−1),m(z−1)(x3z−1+1, . . . , x2∗3z−1),m(z−1)(x2∗3z−1+1, . . . , x3z ))

for z > 1. So an m-generated operation is just a polymer of an m(z) for a large
enough z.

We sort linear identities to four groups:

• symmetry-type identities: identities of the form t1(xi1 , . . . , xin) = t2(xj1 , . . . , xjl),
where the sets {xi1 , . . . , xin} and {xj1 , . . . , xjl} coincide,
• irrelevance-type identities: identities of the form t1(xi1 , . . . , xin) = t2(xj1 , . . . , xjl),

where the sets {xi1 , . . . , xin} and {xj1 , . . . , xjl} differ,
• restricted majority-type identities: identities of the form t(xi1 , . . . , xin) = x

with |{k : xik 6= x}| > |{xik : xik 6= x}|,
• unrestricted majority-type identities: identities of the form t(xi1 , . . . , xin) =
x with |{k : xik 6= x}| = |{xik : xik 6= x}|.

Definition 1. For an n-ary term t, we call a set R ⊆ {1, 2, . . . , n} big for t if t
satisfies a majority-type identity t(xi1 , . . . , xin) = x with {r : xir = x} = R.

Proposition 2. If t is an n-ary lattice term, and R is big for t, then t satisfies
any majority-type identity t(xi1 , . . . , xin) = x with {r : xir = x} = R.

Proof. PROOF NEEDED. EASIER FOR DISTRIBUTIVE LATTICE TERMS,
BUT NOT HARD FOR GENERAL EITHER. �

Therefore, a lattice term satisfies a restricted majority identity iff it satisfies the
corresponding unrestricted identity.

For any n-ary term t we introduce the following set:

M(1)
t := {u ∈ Term(maj.) : u(y1, . . . , yn) = y

is an identity in the majority-generated variety whenever {r : yr = y} is big for t},

and then the S-term

t
(1)

:=
∧

u∈Mt

u.

Even though Mt is infinite, t
(1)

must be a meet of one of its finite subsets (as S is

finite), therefore indeed t
(1) ∈ Term(S).

Lemma 3. For all x1, . . . , xn ∈ S,

t
(1)

(x1, . . . , xn) =
∧
{s ∈ S : ∀S′ Cm [x1, . . . , xn]m : ({r : xr ∈ S′} is big for t ⇒ s ∈ S′)},
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where [x1, . . . , xn]m denotes the subset of S m-generated by x1, . . . , xm, i.e. the set

{f(x1, . . . , xn) : f ∈ Termn(S), f is m-generated}.

Proof. For subsets I1, . . . , Ih of {1, 2, . . . , n}, we introduce the notation

M(1)
I1,...,Ih

:= {u ∈ Term(maj.) : u(y1, . . . , yn) = y

is an identity in the majority-generated variety whenever {r : yr = y} ∈ {I1, . . . , Ih}}.

Furthermore,

M(1)
I1,...,Ih

(x1, . . . , xk) := {u(x1, . . . , xk) : u ∈MI1,...,Ih}

and

M(1)
t (x1, . . . , xk) := {u(x1, . . . , xk) : u ∈Mt}.

ThusM(1)
I1,I2

=M(1)
I1
∩M(1)

I2
, butM(1)

I1,I2
(x1, . . . , xn) andM(1)

I1
(x1, . . . , xn)∩M(1)

I2
(x1, . . . , xn)

may differ.

Suppose that u ∈M(1)
t , and S′ Cm [x1, . . . , xn]m is such that R := {r : xr ∈ S′}

is big for t. We claim that u(x1, . . . , xn) ∈ S′. This is obviously true if u is a
projection, let us proceed with induction on the complexity of u: suppose that
u = m(u1, u2, u3) with u1, u2, u3 being m-generated S-terms. As u ∈ R, at least
two of the terms u1, u2, and u3 must also be in R. This means by the inductive
hypothesis that at least two of u1(x1, . . . , xn), u2(x1, . . . , xn), and u3(x1, . . . , xn)
are in S′. All three are obviously in [x1, . . . , xn]m. Thus, u(x1, . . . , xn) is in S′.

Consequentially,

t
(1)

(x1, . . . , xn) ≥
∧
{s ∈ S : ∀S′ Cm [x1, . . . , xn]m : ({r : xr ∈ S′} is big for t ⇒ s ∈ S′)},

because the left side is the meet of all elements of S of the form u(x1, . . . , xn) with

u ∈ M(1)
t , and all such elements are in the set of which the right side is the meet

of. We need to prove the converse inequality. To do that, it is enough to show that
for any s ∈ S satisfying

∀S′ Cm [x1, . . . , xn]m : ({r : xr ∈ S′} is big for t ⇒ s ∈ S′),

there is an u ∈M(1)
t with u(x1, . . . , xn) = s.

Suppose that J1, J2 ⊆ {1, 2, . . . , n} are big for t. Define T1 and T2 as the smallest
absorbing subset of [x1, . . . , xn]m containing {xi : i ∈ J1} and {xi : i ∈ J2},
respectively. It is easy to see that for a large enough z

T1 = {m(z)(a0...0, . . . , a2...2 : ae1e2...ez ∈ {x1, . . . , xn},
∀(f1, . . . , fz) ∈ {0, 1}z : af1f2...fz ∈ {xi : i ∈ J1}},

and

T2 = {m(z)(a0...0, . . . , a2...2 : ae1e2...ez ∈ {x1, . . . , xn},
∀(f1, . . . , fz) ∈ {0, 1}z : af1f2...fz ∈ {xi : i ∈ J2}}.

This means that there are indexes b0...0, . . . , b2...2, c0...0, . . . , c2...2 ∈ {1, . . . , n} such
that xbf1f2...fz

∈ J1 and xcf1f2...fz
∈ J2 for any (f1, . . . , fz) ∈ {0, 1}z, and

s = m(z)(xb0...0 , . . . , xb2...2) = m(z)(xc0...0 , . . . , xc2...2)



3

.
Notice that there is an 1 ≤ i∗ ≤ n such that i∗ ∈ J1 ∩ J2. Take the term

vJ1,J2
(y1, . . . , yn) := m(m(z)(yb0...0 , . . . , yb2...2),m(z)(yc0...0 , . . . , yc2...2), yi∗).

Check that vJ1,J2 ∈M
(1)
J1,J2

, and vJ1,J2(x1, . . . , xn) = s. Hence, s ∈M(1)
J1,J2

(x1, . . . , xn).

Suppose that I1, . . . , Ih are the subsets of {1, 2, . . . , n} that are big for t. Assume

that s 6∈ M(1)
t = M(1)

I1,...,Ih
. There is a minimal k such that there is a k-element

set {J1, . . . , Jk} ⊆ {I1, . . . , Ih} with s 6∈ M(1)
J1,...,Jk

. We have proven that k > 2.

That means that there is an m-generated k-ary near-unanimity operation m′. By

the minimality of k, there are terms v1, . . . , vk such that vi ∈ M(1)
J1,...,Ji−1,Ji+1,...,Jk

and vi(x1, . . . , xn) = s for all 1 ≤ i ≤ k. But then,

v := m′(v1, . . . , vk) ∈M(1)
J1,...,Jk

,

and v(x1, . . . , xn) = s, a contradiction. �

Theorem 4. The mapping t 7→ t
(1)

on the set of lattice terms preserves all
symmetry-type and majority-type identities.

Proof. The case for unrestricted majority types is immediate from the definition.
By Proposition 2, the restricted case follows.

Take an identity t1(z1, . . . , zk) = t2(z′1, . . . , z
′
l), where {z1, . . . , zk} = {z′1, . . . , z′l}

is the n-element set of variables {y1, . . . , yn}. Note that for any Y ⊆ {y1, y2, . . . , yn},
{i : zi ∈ Y } is big for t1 if and only if {i : z′i ∈ Y } is big for t2. (An easy consequence
of Proposition 2.) Putting an element of S xi into each variable yi (not necessarily
all different), we deduce that for any S′ ⊆ S, the set {r : xr ∈ S′} is big for t1 iff it
is big for t2. Therfore, t1(x1, . . . , xn) = t2(x1, . . . , xn), because by Lemma 3, they
are the meet of the same subset of S. �

NOTATIONS HENCEFORTH MAY NOT BE COMPATIBLE WITH THE ONES
BEFORE.

For all natural h and lattice term t, we will define an S-term t
(h)

, a set L(h)
t and

a set M(h)
t of S-terms so that the following hold:

(1) The mapping t 7→ t
(h)

preserves all the symmetry-type identities and all
linear identities where on one side there is an at most h-ary term (MAYBE
HAVE A NAME FOR THOSE IDENTITIES),

(2) If t at most h-ary, then t
(h)

= t
(h−1)

,
(3) Suppose that t satisfies exactly l identities of the type

t(vi) = si(x1, . . . , xh),

(YES, HAVE A NAME FOR THOSE) then L(h)
t = {ui,j : 1 ≤ i < j ≤ l},

where ui,j is an S-term satisfying

ui,j(vi) = si
(h−1)(x1, . . . , xh)

and

ui,j(vj) = sj
(h−1)(x1, . . . , xh),
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(4) M(h)
t is the set of all S-terms that can be represented by a binary-ternary

tree whose leaves are some ui,j with {u1,i, . . . , ui−1,i, ui,i+1, . . . , ui,l} being a
dominant set of leaves for all 1 ≤ i ≤ l (YOU NEED SOME DEFINITIONS
FOR THIS),

(5) For all h,

t
(h)

=
∧

u∈M(h)
t

u.

We will define t
(h)

, L(h)
t and M(h)

t recursively. Notice that by the above condi-

tions, if we define the set L(h)
t , we have the definitions for M(h)

t and t
(h)

as well
(for a given t and h).

Lemma 5. Suppose that t
(h′)

, L(h′)
t and M(h′)

t are defined for all t and all 1 ≤
h′ < h satisfying the conditions (1)–(5). Then for all t there is a set L(h)

t satisfying
condition (3).

Proof. Denote with n the arity of t. We have to define the S-terms ui,j . Note that
this ui,j depends on t and h (and the enumeration of the HAVE THAT NAME
identities satisfied by t). We will fix (i, j) = (1, 2). In the remainder of the proof,
we will denote other things by i and j.

We start with h = 1. Suppose that the equalities t(v1) = x and t(v2) = x

are satisfied, where v1 = (v
(1)
1 , . . . , v

(1)
1 ) and v2 = (v

(1)
2 , . . . , v

(1)
2 ) are n-tuples of

variables, some of them equaling x (there is x on the right side instead of a unary
term because S is an idempotent algebra).

Take the set A1, A2 ∈ {1, 2, . . . , n}, where A1 = {r : v
(r)
i = x} and A2 = {r :

v
(r)
j = x}. Note that A1 and A2 cannot be disjoint, otherwise taking the n-tuple

w(w
(1)
1 , . . . , w

(1)
1 ) with w

(r)
1 = x for r ∈ A1 and w

(r)
1 = y for r 6∈ A1 we would get

x = t((w)) = y. Now take an element r0 ∈ A1 ∩A2, and set u1,2(x1, . . . , xn) = xr0 .

Now suppose h > 1, and that t satisfies the identities t(v1) = s1(x1, . . . , xh) and
t(v2) = s2(x1, . . . , xh).

Claim 1. There is a lattice term t′ with ar t′ = n′ ≤ n, and n′-tuples v′1 and
v′2 containing only the variables x1, . . . , xh such that t′(v′1) = s1(x1, . . . , xh) and
t′(v′2) = s2(x1, . . . , xh) are satisfied.

PROVE FOR DIST. LAT. TERMS ONLY.
We can assume without loss of generality that

t(x1, . . . , xn) = (xa1,1 ∧ · · · ∧ xa1,p) ∨ · · · ∨ (xaq,1 ∧ · · · ∧ xaq,p).

Take the normal forms s1(x1, . . . , xh) = e1∨· · ·∨eb, and s2(x1, . . . , xh) = f1∨· · ·∨fc,
where all the ei and fi are meets of variables.

If we write v1 into t, then we get e1 ∨ · · · ∨ eb. It can be checked that this

means that e1, . . . , eb are precisely the maximal elements of the set {v(a1,1)
1 ∧ · · · ∧

v
(a1,p)
1 , . . . , v

(aq,1)
1 ∧ · · · ∧ v(aq,p)

1 } (maximality meant in the free distributive lattice).

Suppose that e1 = v
(a1,1)
1 ∧ · · · ∧ v

(a1,p)
1 .

FINISH (IF NEEDED). THERE IS NO WAY IT WILL BE UNDERSTAND-
ABLE LIKE THIS.
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We can assume that t = t′, v1 = v′1, and v2 = v′2, because if find an S-term for
the identity-pair for t′, then that term will be good for the corresponding identity-
pair for t. So henceforth, both v1 and v2 only contains the variables x1, . . . , xh.

For 1 ≤ i < j ≤ h, we consider the minors of s1 and s
(h−1)
1 obtained by writing

xi instead of xj . Denote this by s1[j → i] and s1[j → i]. Consider the HAVE
THAT NAME identities satisfied by s1. Each is a consequence of (at least) one of
the identities of the type

s1(x1, . . . , xj−1, xi, xj+1, . . . , xh) = s1[j → i](x1, . . . , xj−1, xj+1, . . . , xn)

(provided that s1 depends on all its variables WHAT IF NOT–THEN YOU AL-
READY FOUND YOUR U-1,2 FOR SMALLER H).

�


