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Abstract. The set Quo(A) of compatible quasiorders (reflexive and transi-
tive relations) of an algebra A forms a lattice under inclusion, and the lattice

Con(A) of congruences of A is a sublattice of Quo(A). We study how the

shape of congruence lattices of algebras in a variety determine the shape of
quasiorder lattices in the variety. In particular, we prove that a locally finite

variety is congruence distributive [modular] if and only if it is quasiorder dis-

tributive [modular]. We show that the same property does not hold for meet
semi-distributivity. From tame congruence theory we know that locally finite

congruence meet semi-distributive varieties are characterized by having no sub-

lattice of congruence lattices isomorphic to the lattice M3. We prove that the
same holds for quasiorder lattices of finite algebras in arbitrary congruence

meet semi-distributive varieties, but does not hold for quasiorder lattices of

infinite algebras even in the variety of semilattices.

1. Introduction

A class of universal algebras of the same type forms a variety if it is closed under
taking subalgebras, products and homomorphic images. Varieties are precisely the
equational classes that is, they can also be described by the equations that hold
in all of its members. It is well known that the shape of congruence lattices of
algebras in a variety is intimately connected to Maltsev conditions satisfied by the
variety [3, 13]. A.I. Mal’cev proved that a variety is congruence permutable if and
only if the variety has a ternary term satisfying p(y, x, x) ≈ y and p(x, x, y) ≈ y.
B. Jónsson proved that a variety is congruence distributive (that is, the lattice of
congruences of algebras in the variety are distributive) if and only of it has Jónsson
terms [10] satisfying a package of certain equations. H.-P. Gumm has provided
similar characterization of congruence modularity [8]. The shape of congruence
lattices also plays a central role in tame congruence theory [9], where congruence
conditions are expressed in term of congruence lattices labelled by five types.

In this paper we are attempting to start the rigorous study of the lattice of com-
patible preorders (reflexive and transitive relations): how their shape is related to
that of congruence lattices, and how to adapt techniques developed for tame congru-
ence theory. We note here that we use the term quasiorder for compatible preorders
(while usually it is used synonymously with preorders) for simplicity’s stake. The
preorders of a set X and the quasiorder of an algebra A both form an algebraic
lattice with respect to inclusion, denoted by PreX and Quo A respectively.

We note that with the natural inversion α 7→ α−1, Quo A can be studied as an
involutive lattice. However, in this paper we are only concerned about its properties
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as a lattice (while making use of the existence of inversion). We note that the fixed
points of the inversion form Con A, which is a sublattice of Quo A.

The study of more general binary relations of algebras has been studied before.
Tolerance (compatible reflexive and symmetric relations) relations of algebras were
studied in general [4] and in congruence permutable and modular varieties [6, 7].
In [6] G. Czédli and E. K. Horváth proves the analogue of our Theorems 2.6 and
2.10 for tolerances. However, an important distinction between tolerances and
quasiorders is that the tolerance lattice generally does not contain the congruence
lattice as a sublattice.

Quasiorders of an algebra generalize not only congruences but also compatible
partial orders. The study of lattices of quasiorders were mainly studied from the
prespective of lattice representation in [14]. In [5] it was proved that algebras
with a majority term have distributive quasiorder lattices. In this paper we not
only study congruence distributive and modular varieties, but also congruence meet
semi-distributive ones that satisfy the congruence quasi-equation

α ∧ γ = β ∧ γ =⇒ α ∧ γ = (α ∨ β) ∧ γ.
It turns out that even finite semilattices do not have meet semi-distributive qua-
siorder lattices. However by using some adaptation of techniques from tame con-
gruence theory we can show that quasiorder lattices of finite algebras in arbitrary
congruence meet semi-distributive variety do not have M3 as a sublattice (c.f. [9]
Theorem 9.10).

2. Distributivity and modularity

Definition 2.1. A sequence p1, . . . , pn of ternary terms is called directed Jónsson
terms if they satisfy the identities

x = p1(x, x, y),

pi(x, y, y) = pi+1(x, x, y) for i = 1, . . . , n− 1,

pn(x, y, y) = y, and

pi(x, y, x) = x for i = 1, . . . , n.

It is already known that if locally finite variety has Jónsson terms, then it also
has directed Jónsson terms (M. Kozik), and later this implication was also proved
for general varieties [11]. However, we present a quick proof of this fact using a
result of L. Barto [1].

Lemma 2.2. If a locally finite variety V has Jónsson terms, then it has directed
Jónsson terms.

Proof. Let F2 be the free algebra in V freely generated by x and y, and let
R = SgF3

2
((x, x, x), (x, y, y), (y, x, y)) be the generated subalgebra of F3

2. Consider

the relational structure S = (F2;R) on the underlying set of F2 with the ternary
relation R. Clearly, this finite relational structure has Jónsson polymorphisms (the
Jónsson term operations are compatible with R), so by the result of L. Barto [1],
S has a compatible near-unanimity polymorphism t of arity n. It is important to
realize that t is not necessarily a term operation of F2, it is just a near-unanimity
operation that happens to preserve the relation R.
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Now consider the tuples

(ai, bi, ci) = t((y, x, y), . . . , (y, x, y), (x, y, y), (x, x, x), . . . , (x, x, x))

for i = 1, . . . , n, where the argument (x, y, y) appears on the i-th coordinate. Since
t is a near-unanimity operation on F2, we have bi = t(x, . . . , x, y, x, . . . , x)
= x for all i, a1 = x, and cn = y. On the other hand, ci = t(y, . . . , y, y, x, . . . , x)
= ai+1 for i = 1, . . . , n− 1.

Since t preserves the relation R, we have (ai, bi, ci) ∈ R, therefore there are
ternary terms p1, . . . , pn in V so that

(ai, bi, ci) = pi((x, x, x), (x, y, y), (y, x, y)).

Thus pi(x, y, x) = bi = x, p1(x, x, y) = a1 = x, pn(x, y, y) = cn = y and pi(x, y, y) =
ci = ai+1 = pi+1(x, x, y) for i = 1, . . . , n − 1. These equalities hold in F2, which
proves that p1, . . . , pn is a sequence of directed Jóbsson terms of V. �

Definition 2.3. For an arbitrary α ∈ PreX, α∗ denotes the equivalance α ∩ α−1.

Naturally, if α is a quasiorder of A then α∗ is a congruence, and α/α∗ is a
compatible poset on A/α∗.

Lemma 2.4. If a finite algebra has directed Jónsson terms, then the lattice of its
quasiorders is distributive.

Proof. Let A be a finite algebra and α, β, γ ∈ Quo(A) be three of its quasiorders.
It is enough to show that

(α ∨ β) ∧ γ ≤ (α ∧ γ) ∨ (β ∧ γ)

as this inequality implies distributivity [3]. Take a pair (a, b) of elements from
the left hand side, so (a, b) ∈ γ and there is a sequence a = a1, a2, . . . , an = b of
elements such that (ai, ai+1) ∈ α ∪ β. For any of the directed Jónsson terms pi we
have

pi(a, a, b) = pi(a, a1, b)
α∪β−−−→ pi(a, a2, b)

α∪β−−−→ · · ·

· · · α∪β−−−→ pi(a, an−1, b)
α∪β−−−→ pi(a, an, b) = pi(a, b, b)

with a = pi(a, aj , a)
γ−→ pi(a, aj , b)

γ−→ pi(b, aj , b) = b for all j = 1, . . . , n. By
using the equations of the directed Jónsson terms we can combine the above paths
between pi(a, a, b) and pi(a, b, b) into a single path

a = c1
α∪β−−−→ c2

α∪β−−−→ · · · α∪β−−−→ cm = b

where a
γ−→ ci

γ−→ b for i = 1, . . . ,m.
Now we are ready to prove the lemma by induction on the number of γ∗ con-

gruence classes between a/γ∗ and b/γ∗ in the poset γ/γ∗. If a/γ∗ = b/γ∗, that is,
(b, a) ∈ γ, then

ci
γ−→ b

γ−→ a
γ−→ ci+1

so (ci, ci+1) ∈ (α∪β)∩γ = (α∩γ)∪(β∩γ), which proves that (a, b) ∈ (α∧γ)∨(β∧γ).
If a/γ∗ 6= b/γ∗, then let k be the smallest index such that a/γ∗ 6= ck/γ

∗. Then
we have

a = c1
(α∩γ)∪(β∩γ)−−−−−−−−→ c2

(α∩γ)∪(β∩γ)−−−−−−−−→ · · · (α∩γ)∪(β∩γ)−−−−−−−−→ ck−1
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because a/γ∗ = c1/γ
∗ = · · · = ck−1/γ

∗. On the other hand, ck−1
γ−→ a

γ−→ ck, so we
also have

ck−1
(α∩γ)∪(β∩γ)−−−−−−−−→ ck.

Therefore, we have (a, ck) ∈ (α ∩ γ) ∨ (β ∩ γ) as well. Since ck
γ−→ b we can apply

the induction hypothesis for the sequence of elements

ck
α∪β−−−→ ck+1

α∪β−−−→ · · · α∪β−−−→ cm = b

to get that (ck, b) ∈ (α ∩ γ)∪ (β ∩ γ). This implies (a, b) ∈ (α ∩ γ)∪ (β ∩ γ), which
concludes the proof of the lemma. �

Actually we have proved more than we stated. We could replace α∪ β with any
reflexive relation % of A and the whole proof would go through. Therefore, we have
the following proposition.

Proposition 2.5. Let A be a finite algebra with directed Jónsson terms, and let
% and σ be two reflexive relations of A. Then % ∩ σ = % ∩ σ where the line over a
reflexive relation means the transitive closure. �

Theorem 2.6. For any locally finite variety V the following are equivalent:

(1) V is congruence distributive,
(2) V has Jónsson terms,
(3) V has directed Jónsson terms, and
(4) V has distributive quasiorder lattices.

Proof. (1) ⇒ (2) is well known [10], and (2) ⇒ (3) is proved by Lemma 2.2. For
finite algebras Lemma 2.4 proves (3) ⇒ (4). In particular, the finitely generated
free algebras in the variety have distributive quasiorder lattices, which in a natural
way can be used to show that all algebras in the variety have distributive quasiorder
lattices. Finally, (4) ⇒ (1) holds trivially as congruence lattices are sublattices of
quasiorder lattices. �

We will now prove the analogue of the above theorem for congruence modular
varieties.

Definition 2.7. A sequence p1, . . . , pn, q of ternary terms is called directed Gumm
terms if they satisfy the identities

x = p1(x, x, y),

pi(x, y, y) = pi+1(x, x, y) for i = 1, . . . , n− 1,

pn(x, y, y) = q(x, y, y),

q(x, x, y) = y, and

pi(x, y, x) = x for i = 1, . . . , n.

Lemma 2.8. If a locally finite variety V has Gumm terms, then it has directed
Gumm terms. �

We won’t repeat the details, but this can be proved the same way as Lemma 2.2
by using an edge term instead of a near-unanimity one and the main result in [2].
Also, the lemma was proved for general varieties in [11].
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Theorem 2.9. If A is a finite algebra admitting directed Gumm terms, then its
lattice of quasiorders is modular.

Proof. We have to prove that for compatible preorders α, β and γ, α ⊆ γ implies
(α∨β)∧γ ⊆ α∨(β∧γ). Assume that there is a pair (a, b) which is an element of the
left side but not an element of the right. There are elements c0 = a, c1, . . . , cn = b
such that for all i (ci, ci+1) ∈ α∪ β. Choose this counterexample in a way that the
“height difference” between a and b in γ (meaning the maximal l such that there
are a = d0, d1, . . . , dl = b ∈ A so that for all i (di, di+1) ∈ γ\γ−1) is minimal. Now
take the α-β chain of the previous theorem:

a = p1(a, a, b)
α∪β−−−→ p1(a, c1, b)

α∪β−−−→ . . .
α∪β−−−→ p1(a, b, b) = p2(a, a, b)

α∪β−−−→ . . .
α∪β−−−→ pk(a, b, b) = q(a, b, b)

α∪β−−−→ . . .
α∪β−−−→ q(b, b, b) = b.

Every element of this chain up until q(a, b, b) is between a and b in γ (as a =

pi(a, cj , a)
γ−→ pi(a, cj , b)

γ−→ pi(b, cj , b) = b), and from each of them there obviously
is an α ∨ β-edge to b. By the minimal height choice of (a, b), each element of
the chain between a and q(a, b, b) is either in the same γ∗-class as a, or has an
α ∨ (β ∧ γ)-edge going from it to b. But this is only possible if q(a, b, b) is of the
γ∗-class of a: otherwise take the first element of the chain not in the γ∗-class of
a, and denote it with c. Thus there is an α ∨ (β ∧ γ)-edge from c to b, but there
also is an α∨ (β ∧ γ)-edge from a to c, as the α-β chain from a to c only has edges

that are in γ. This contradicts the choice of (a, b). Thus q(a, b, b)
γ−→ a, and as

b = q(a, a, b)
γ−→ q(a, b, b), a and b are in the same γ∗-class. Note that this means

a
α∨(β∧γ)−−−−−−→ q(a, b, b), because the above path lies in the same γ∗-block up until

q(a, b, b).
More generally, for any pair (d, d′) that is in both in α ∨ β and γ∗,

(d, q(d, d′, d′)) ∈ α ∨ (β ∧ γ),

because either (d, d′) ∈ α ∨ (β ∧ γ), and so

d
α∨(β∧γ)−−−−−−→ d′ = q(d, d, d′)

α∨(β∧γ)−−−−−−→ q(d, d′, d′),

or (d, d′) is a counterexample of minimal height difference (that is, 0) between d
and d′, in which case the argument for (a, b) applies for (d, d′).

Now we specialise further the choice of the counterexample: we assume that n
is minimal among all counterexamples (a, c1, . . . , cn−1, b) where a, b lie in the same
γ∗-class. Notice that the assumption (a, b) 6∈ α∨ (β ∧ γ) means that n is at least 2.
We will differentiate between the cases whether there is an α-edge on at least one
end of the α-β chain of length n between a and b.

Assume first that both a
β−→ c1 and cn−1

β−→ b. Notice that

b = q(b, b, b) = q(q(a, a, b), b, b)
γ−→ q(q(a, b, b), b, b)

while

b = q(q(a, cn−1, b), q(a, cn−1, b), b)
β−→ q(q(a, b, b), q(c1, cn−1, b), b)

α∪β−−−→
q(q(a, b, b), q(cn−1, cn−1, b), b) = q(q(a, b, b), b, b),
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and the α-β chain connecting b to q(q(a, b, b), b, b) is of length n− 1. By the choice

of (a, b) this means that b
α∨(β∧γ)−−−−−−→ q(q(a, b, b), b, b).

To arrive at a contradiction, we need to prove the existance of an α∨(β∧γ)-edge
from a to b, hence we alter the above edge to have its target be at b:

b = q(q(q(a, b, b), b, b), q(q(a, b, b), b, b), b)
α∨(β∧γ)←−−−−−− q(q(q(a, b, b), b, b), b, b).

It’s enough now to show that

a
α∨(β∧γ)−−−−−−→ q(q(q(a, b, b), b, b), b, b).

We have proved that a
α∨(β∧γ)−−−−−−→ q(a, b, b), so the pair (q(a, b, b), b) must be a coun-

terexample too, with b
γ−→ q(a, b, b). Now we can, in the same way as we proved

a
α∨(β∧γ)−−−−−−→ q(a, b, b), deduce

q(a, b, b)
α∨(β∧γ)−−−−−−→ q(q(a, b, b), b, b).

Hence a
α∨(β∧γ)−−−−−−→ q(q(a, b, b), b, b), and (q(q(a, b, b), b, b), b) is another counterexam-

ple (with b
γ−→ q(q(a, b, b), b, b)), so again repeating the earlier argument, we get

q(q(a, b, b), b, b)
α∨(β∧γ)−−−−−−→ q(q(q(a, b, b), b, b), b, b).

The first case is done.
Now take the other case, where a

α−→ c1 or cn−1
α−→ b holds, we will assume the

former (the other case is similar).

Notice that as b = q(a, a, b)
γ−→ q(a, c1, b)

γ−→ q(c1, c1, b) = b, the pair (q(a, c1, b), q(a, b, b))
is in γ∗ and α∨ β, and there is an α-β chain between them of length n− 1. By the
choice of (a, b), this means

b = q(a, a, b)
α−→ q(a, c1, b)

α∨(β∧γ)−−−−−−→ q(a, b, b),

from which we get

q(q(a, b, b), b, b)
α∨(β∧γ)−−−−−−→ q(q(a, b, b), q(a, b, b), b) = b.

As in the previous case, we can deduce that a
α∨(β∧γ)−−−−−−→ q(q(a, b, b), b, b), which

yields a contradiction for the second case. �

From this, we can prove the following the same way as we did in the distributive
case.

Theorem 2.10. For any locally finite variety V the following are equivalent:

(1) V is congruence modular,
(2) V has Gumm terms,
(3) V has directed Gumm terms, and
(4) V has modular quasiorder lattices. �

Problem 2.11. Is there a direct proof showing that if a (locally finite) variety
has distributive [modular] quasiorder lattices, then it has directed Jónsson [Gumm]
terms?

Problem 2.12. Are Theorems 2.6 and 2.10 true for arbitrary varieties?
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a b c

a ∧ b a ∧ c b ∧ c

a ∧ b ∧ c

a b c

a ∧ b a ∧ c b ∧ c

a ∧ b ∧ c

a b c

a ∧ b a ∧ c b ∧ c

a ∧ b ∧ c

α β γ

Figure 1. The quasiorders α, β, γ of FS(3) satisfying α ∧ γ =
β ∧ γ < (α ∨ β) ∧ γ

3. Congruence ∧-semi-distrivutive varieties

It is a natural question to ask whether Lemma 2.4 is true if we replace “distribu-
tivity” with “semi-distributivity”. While we could not answer this question (but
leaning towards “yes”), the analogue question to meet semi-distributivity is easily
answerable in the negative.

Theorem 3.1. Quo(FS(3)) (the 3-generated free semilattice) is not a meet semi-
distributive lattice.

Proof. Let X = {a, b, c}. Take α0, β0, and γ as the quasiorders of FS(X) generated
respectively by (a, b), (b, c), and (a, c). Both (γ ∧ α0)\β0 and (γ ∧ β0)\α0 contain
only a single edge, namely, (a ∧ b ∧ c, b ∧ c), and (a ∧ b, a ∧ b ∧ c), respectively.
Therefore, with α = Tr(α0∪{(a∧ b, a∧ b∧ c)}), and β = Tr(β0∪{(a∧ b∧ c, b∧ c)}),

α ∧ γ = β ∧ γ < (α ∨ β) ∧ γ,

the inequality holding because only the right side contains (a, c). Note that α and
β are quasiorders: both (a ∧ b ∧ c, b ∧ c), and (a ∧ b, a ∧ b ∧ c) are mapped into
themselves or a loop by any unary polynomial, so α0 ∪ {(a ∧ b, a ∧ b ∧ c)} and
β0 ∪ {(a ∧ b ∧ c, b ∧ c)} are compatible reflexive relations, hence their transitive
closures are quasiorders. Thus Quo(FS(X)) fails meet semi-distributivity. �

Corollary 3.2. Congruence meet semi-distributivity of a variety does not imply
that the quasiorder lattices of the finite algebras are meet semi-distributive, not
even if the variety is assumed to be locally finite.

By [9] Theorem 9.10, an equivalent characterization of congruence meet semi-
distributivity for locally finite varieties is that congruence lattices in the variety do
not contain sublattices isomorphic to M3. We will prove that this second condition
(contrary to meet semi-distributivity itself) yields its analogue for quasiorders –
but only for finite algebras of the variety.

We will need tame congruence theory (see [9]). Some concepts (types of quo-
tients, traces, pseudo-meet operations etc.) will only be used for congruences.
Others we generalize for quasiorders. We will only give the definitions here for the
latter.

Suppose µ < ν are quasiorders of a finite algebra A. An U ⊆ A is called a
(µ, ν)-minimal set if there is a unary polynomial f of A such that f(A) = U , and
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f(ν) 6⊆ µ, and there is no such f for proper subsets of U . We call A a (µ, ν)-minimal
algebra if A is a (µ, ν)-minimal set.

From a (µ, ν)-minimal set U ⊆ A a (µ, ν)-minimal algebra A|U can be gained
the following way: its underlying set is U , and for every polynomial p ∈ Polk(A)
such that p(Uk) ⊆ U add the restriction of p to U as an operation of A|U .

Though the definition of a tame pair of congruences, and the properties of mini-
mal algebras for tame pairs (Theorem 2.8. of [9]) can be carried over to quasiorders,
we will only need the following properties (Lemma 2.3. and Lemma 2.10. of [9],
the proofs there can be applied essentially word-for-word).

Proposition 3.3. Let B be a finite algebra and I[α, β] an interval in Quo(B).

(1) If this interval doesn’t have a non-constant meet endomorphism µ satisfying
η < µ(η) for all η < β, then each (α, β)-minimal set of B is the range of
an idempotent unary polynomial.

(2) If U is an (α, β)-minimal set such that it is the range of an idempotent unary
polynomial e of A satisfying e(β) 6⊆ α, then the mapping from Quo(A) to
Quo(A|U ) that maps each quasiorder of A to its restriction to U , is a lattice
homomorphism.

Lemma 3.4. Suppose that B is a finite algebra generating a congruence meet semi-
distributive variety, e ∈ Pol1(B) is an idempotent polynomial. Then B|e(B) also
generates a congruence meet semi-distributive variety.

Proof. A finite algebra generates a congruence meet semi-distributive variety iff it
has a collection of ternary terms satisfying an idempotent Maltsev condition [9]. If
B has such terms ti (i = 1 . . . n), then e(ti) ∈ Pol1 B are terms of B|e(B) satisfying
the same identities. �

Lemma 3.5. Suppose that L is a lattice of partial orders of a finite set C (that is,
a sublattice of the lattice of preorders of C such that no element of this sublattice
contains a double edge). Then L is join semi-distributive.

Proof. Suppose that α ∨ β = α ∨ γ in L, and suppose that c1, c2 ∈ C such that

c1 ≺ c2 in α∨β. There are elements of d0, . . . , dk ∈ C such that c1 = d0
α−→ d1

β−→ α−→
. . .

β−→ dk = c2. All the edges of this path are α∨ β edges, and as α∨ β contains no
double edges, all the elements of the path are in {c1, c2}. This means that (c1, c2)
is in either α or β. Likewise, it is in either α or γ. Putting the two together we get
that (c1, c2) ∈ α ∨ (β ∧ γ).

Hence all the covering edges of α∨β are in α∨(β∧γ). As the latter is a preorder,
and C is finite, the whole of α ∨ β (the transitive closure of its covering edges) is
in α ∨ (β ∧ γ). Thus L is join semi-distributive. �

The preceding lemma does not stand if we omit the finiteness of C (see Lemma
4.2).

Lemma 3.6. Suppose that C is a finite set, L ≤ PreC is a lattice of preorders on
C, and β, β−1 ∈ L. Then the mapping δ 7→ δ∧β−1 is a lattice homomorphism from
the ideal (β] of L to the ideal (β∗].
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Proof. It is obvious that this mapping preserves meets. We need to show that for
any δ1, δ2 ≤ β:

(δ1 ∨ δ2) ∧ β−1 ⊆ (δ1 ∧ β−1) ∨ (δ2 ∧ β−1).

Consider an edge (a, b) from the left hand side. There must be elements of C
a = c0, c1, . . . , ck = b so that for each 0 ≤ i < k, (ci, ci+1) is in either δ1 or δ2. As

a = c0
β−→ c1

β−→ . . .
β−→ ck = b

β−→ a,

all the ci are in the same β∗-block, so each (ci, ci+1) is in either δ1 ∧ β−1 or δ2 ∧
β−1. �

Theorem 3.7. Let A be a finite algebra in an SD(∧) variety. There exists no
sublattice of Quo A isomorphic to M3.

Proof. Suppose the contrary, and choose a counterexample of the smallest cardi-
nality. Denote the sublattice isomorphic to M3 in Quo A with K, its elements with
α, β, γ1, γ2, γ3, with α being the smallest and β the largest element. There can be
more than one such sublattice, choose one such that β is minimal, and among these
one such that α is maximal.

Note that there cannot be a double edge in α, otherwise factoring out by α∧α−1

would yield a counterexample with a smaller cardinality. β, on the other hand, must
have a double edge, because K is not a join semi-distributive lattice, thus by Lemma
3.5 it is not a lattice of orderings of a finite set.

Claim 1. β is a congruence.

By Lemma 3.6, if we change the elements of K to their respective meets with
β−1, we get a sublattice of Quo A isomorphic to a homomorphic image of M3. As
α ∧ β−1 6= β ∧ β−1 (because β has a double edge, and α does not), and M3 is a
simple lattice, we have obtained an other sublattice of Quo(A) isomorphic to M3.
From the minimality of β we get β = β ∧ β−1, which proves the claim.

Claim 2. A is an (α, β)-minimal algebra.

Note that K satisfies the conditions of the first statement of Lemma 3.3, as the
existance of such a µ would yield a sublattice of Quo(A) with smallest element
larger than α (applying it pointwise to the elements of K). Thus if A is not (α, β)-
minimal, then it has an (α, β)-minimal set U and an idempotent unary polynomial e
such that e(A) = U . Now, by the second statement of Lemma 3.3, the restriction of
the elements of Quo(A) to U is a homomorphism from Quo(A) to Quo(A|U ). This
homomorphism maps α and β into different quasiorders, thus maps the elements
of K to elements of Quo(A|U ) forming a sublattice isomorphic to M3, as M3 is
a simple lattice. If A was not (α, β)-minimal, A|U would be a counterexample of
smaller cardinality.

Claim 3. A is a (0, β)-minimal algebra.

Take a unary polynomial of A that is not bijective. As A is (α, β)-minimal, it
maps β-edges into α-edges. But β is a congruence, thus all its edges are double
edges, and α doesn’t have any non-loop double edges. So all non-bijective polyno-
mials must map any β-edge into a loop. Claim 3 is proved.
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Take an arbitrary congruence β′ such that β′ ≺ β in Con A. Obviously A is
also (β′, β)-minimal, and as A is in a variety omitting 1 and 2, it has a pseudo-
meet binary polynomial p for the covering pair (β′, β). Consider the (β′, β)-trace
of A, this has two β′-classes, one of them has only the element 1 which is neutral
for p. The trace cannot have more than 2 elements: for any a 6= 1 in the trace
the unary polynomials p(x, a) and p(a, x) cannot be bijective (mapping both 1 and
a into a), which means by the (0, β)-minimality of A that for any b in the trace
p(b, a) = p(a, b) = a stands. This fact clearly rules out the existence of more than
one non-1 element in the trace.

Thus β must have a two element (say: x and y) block. Now (x, y) must be in γ1

or γ2 by γ1 ∧ γ2 = β. Likewise, it must be in either γ1 or γ3, and in either γ2 or γ3.
So (x, y) is an element of at least two of the γi-s, and thus (x, y) ∈ α. Similarly,
(y, x) ∈ α, which contradicts the fact that α does not have a double edge. �

4. Infinite semilattices

The aim of this section is to show that Theorem 3.7 does not hold if we omit
the finiteness of A, even if we add the condition that the variety itself is locally
finite. This may be surprising: in the distributive and modular cases, we first
proved Theorem 2.4 and Theorem 2.9 for finite algebras, and it was an immediate
consequence that it is also true for infinite algebras in locally finite varieties. This
difference is due to meet semi-distributivity not being a lattice identity, hence it
is possible that an algebra is not quasiorder meet semi-distributive, while all of its
finitely generated subalgebras are so.

We begin with giving a counterexample to the infinite generalization of Lemma
3.5.

Example 4.1. Take C as the set of finite ternary fractions in the interval [0, 1].
We define on C the preorders γ1, γ2, γ3 by giving a generating set for each (to

which we will refer to as their cores). The set of the core edges consists of all the
pairs of the form ( a3j ,

a+1
3j ), where a, j are integers, 0 ≤ j and 0 ≤ a ≤ 3j − 1.

A core edge is called an up, a neutral, or a down edge, depending on whether the
remainder of a modulo 3 is 0, 1, or 2.

The allocation of the core edges to exactly one of the γi will be done recursively.
The pair (0, 1) is in the core of γ1. Assume that ( a3j ,

a+1
3j ) is in the core of γi. Then

( 3a
3j+1 ,

3a+1
3j+1 ) and ( 3a+2

3j+1 ,
3a+3
3j+1 ) will be in the core of γi+1, while ( 3a+1

3j+1 ,
3a+2
3j+1 ) will be

in the core of γi−1.

In the above example and henceforth, the index i is meant to be modulo 3.

Lemma 4.2. In Example 4.1, the sublattice generated by γ1, γ2 and γ3 in the lattice
of preorders of C contains only partial orders, and it is isomorphic to M3.

Proof. It is enough to show that the intersection of any two of the γi is 0C , as by
γi ⊆ γi+1 ◦ γi−1 ◦ γi+1 the join of any two of them is the natural full order ≤ of C.

We have to prove that if x < y, and there is a path of core γi-edges from x to y,
then there is no path of core γi+1-edges from x to y. Suppose the contrary. Notice
that in a path of core edges (of a given γi) there is at most one neutral edge, which
must precede all the up edges, and must be preceded by all the down edges. If
there is no neutral edge, any down edge must precede any up edge.
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Figure 2. The core edges of the γi

Suppose that a
3j ≤ x < y ≤ a+1

3j (where j is minimal).
If there are only up edges in the core γi-path from x to y, then the length of

any edge of this path is at most the third of the length of the preceding edge. This
means that the first edge is ( 3a

3j+1 ,
3a+1
3j+1 ). Any neutral or down core γi+1-edge from

3a
3j+1 is at least 1

3j long, which is longer than the length of the γi-path. Hence the
γi+1-path must contain only up edges. This is impossible: the first edge of this
path is either at least thrice, or at most third the length of the first edge of the
γi-path. In the first case the length of the γi+1-edge is at least twice the length of
the γi-edge, in the second case at most half of it.

Thus, the path of core γi-edges, and likewise, the path of core γi+1-edges, must
start with either a neutral or a down edge. But there is either a single neutral or
a single down edge starting at any element of C (besides 1), and that cannot be a
core edge of both γi and γi+1. �

Now, we inject Example 4.1 into a semilattice, namely, FS(C). All elements
of FS(C) are intersections of finitely many elements of C, we will refer to those
elements as the factors of the given semilattice element (so, for example, 0∧ 1 is an
element of FS(C) having two factors: 0 and 1).

Note that the γi are binary relations of this semilattice, but they are not qua-
siorders (not even preorders, as reflexivity fails). In order to get a sublattice in
Quo(FS(C)) isomorphic to M3 we will use a similar construction as in the proof of
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Theorem 3.1: from preorders of the free generator, we take the quasiorders gener-
ated by them, then add any edge that is in two of them to the third. The difference
is that this time, this construction does not yield quasiorders, and so we repeat
this step (generating quasiorders, then adding edges so their pairwise intersections
coincide) infinitely, then take the limit.

So, denote the quasiorders of FS(C) generated by γi with γ
(0)
i . Fortunately,

these quasiorders are easily understandable (the proof of the following lemma is
trivial):

Lemma 4.3. Let X be a set, δ ∈ Quo(X), and δ(0) the quasiorder of FS(X)

generated by δ. Then for c1, . . . , cm, d1, . . . , dn ∈ X, c1 ∧ · · · ∧ cm
δ(0)−−→ d1 ∧ · · · ∧ dn

holds iff for each 1 ≤ i ≤ m and each 1 ≤ j ≤ n there are i′, j′ such that ci
δ−→ dj′

and ci′
δ−→ dj. �

Any two of the γ
(0)
i generate the same quasiorder, but their pairwise intersections

do not coincide. This is because by the previous lemma, for any a, b, c, d ∈ C
satisfying

a
γ1−→ b

γ2←− c γ1−→ d,

the edge (a ∧ c ∧ d, a ∧ b ∧ d) is in γ
(0)
1 ∧ γ(0)

2 . It is easy to choose such elements of
C:

0
γ1−→ 1 =

3

3

γ2←− 2

3
=

18

27

γ1−→ 19

27
.

As neither 0, 1, or 19
27 is above 2

3 in the quasiorder γ3,

(0 ∧ 2

3
∧ 19

27
, 0 ∧ 1 ∧ 19

27
) ∈ (γ

(0)
1 ∧ γ(0)

2 )\γ(0)
3 .

Set recursively for k > 0

γ
(k)
i = γ

(0)
i ∨ (γ

(k−1)
i−1 ∧ γ(k−1)

i+1 ),

it is immediate by induction that for each i these form an ascending chain. Let γi
be their union. The goal is to prove that the γi generate a sublattice of Quo(FS(C))
isomorphic to M3. The easier part is the following lemma.

Lemma 4.4. The pairwise meets of the γi-s coincide, as do their pairwise joins.

Proof. For any element e ∈ γi−1∧γi+1, there is a k such that e ∈ γ(k)
i−1 and e ∈ γ(k)

i+1,

hence e ∈ γ(k+1)
i ⊆ γi.

For joins, notice that as the pairwise joins of the γ coincide, so do the pairwise

joins of the γ
(0)
i , denote this join with ν. (Actually, ν is the quasiorder of FS(C)

generated by the full order < on C). Clearly, for any i and any k, γ
(k)
i ≤ ν, thus

γi−1 ∨ γi+1 ≤ ν. As γi ≥ γ(0)
i , γi−1 ∨ γi+1 ≥ ν also holds for each i. �

We need yet to show that the γi-s do not coincide. The way we obtained the γi-s

from the γ
(0)
i -s is a little more complicated then the way we obtained the γ

(0)
i from

the γi. We need a vocabulary to deal with them, hence the need for the following
(atrociously long) definition.
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Figure 3. Diagram example

Definition 4.5. For a pair u, v ∈ FS(C), a nonnegative integer s and i ∈ {1, 2, 3},
we say that a pair (K, d), where K is a finite set and d is a mapping d : K →

{0, 1, . . . , s} (called the height function), is a diagram verifying u
γ
(s)
i−−→ v, if the

following hold:

• The elements of K are elements of FS(C) indexed by a nonnegative in-
teger (essentially, K is a subset of FS(C), with certain elements possibly
appearing multiple times),
• there is a natural m such that there are elements k0, . . . , km ∈ K such that:

– k0 = u, km = v, and k0, . . . , km are precisely the elements of K whose
height is s,

– for any 0 ≤ j < m, either kj
γ
(0)
i−−→ kj+1, or there are subsets L+, L− ⊆

K such that the pairs (L+, d+) and (L−, d−) are diagrams respectively

verifying kj
γ
(s−1)
i+1−−−−→ kj+1 and kj

γ
(s−1)
i−1−−−−→ kj+1, where d+ and d− are just

the restrictions of d to L+ and L− with the exception that d+(kj),
d+(kj+1), d−(kj) and d−(kj+1) equal s − 1 instead of s (we call such
diagrams subdiagrams),

• for any proper subset K ′ of K, the pair (K ′, d|K′) does not satisfy the
preceding property.

It is immediate from the definition that two elements of FS(C) are in γ
(s)
i iff

there is a diagram verifying it. We make the following observations of diagrams.

Lemma 4.6. For a diagram (K, d) verifying u
γ
(s)
i−−→ v, there is both a γ

(0)
i ∪ γ

(0)
i+1

path and a γ
(0)
i ∪ γ(0)

i−1 path from kj1 to kj2 in K for any 0 ≤ j1 < j2 ≤ m (so
specifically also from u to v).

Proof. We use induction on s. It is enough to prove that there are such paths from

kj to kj+1 for all 0 ≤ j < m. If kj
γ
(0)
i−−→ kj+1, this is immediate. Otherwise, there
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are subdiagrams of (K, d) verifying both kj
γ
(s−1)
i−1−−−−→ kj+1 and kj

γ
(s−1)
i+1−−−−→ kj+1, and

by using the inductive assumption we gain the needed paths. �

Lemma 4.7. Suppose u, v ∈ FS(C), and (K, d) a diagram verifying u
γ
(s)
i−−→ v. Take

the denominators of all the factors of the elements of K (written so the nominators
and denominators are coprime). The largest of these denominators appears as a
denominator of one of the factors of u or v.

Proof. We use induction on s, without fixing i. Define (for all i) γ
(−1)
i as the

equality relation on FS(C). Note that this is in accordance with γ
(k)
i = γ

(0)
i ∨

(γ
(k−1)
i−1 ∧ γ(k−1)

i+1 ).
Now the lemma is obvious for s = −1. For s > −1, an element of K containing

a factor with a maximal denominator either equals a kj for some 0 ≤ j ≤ m, or is

in a subdiagram verifying kj′
γ
(s−1)

i′−−−−→ kj′+1 for some 0 ≤ j′ < m and i′ ∈ {1, 2, 3}.
By the inductive assumption, in the latter case there also is a kj having a factor
with a maximal denominator.

Suppose that kj = c1 ∧ · · · ∧ ct, where c1 = b
3r , with 3r being the largest

denominator appearing among the factors of the elements of K, and b not being
divisible by 3. We will assume that the remainder of b modulo 3 is 1 (the other case
is similar, only it yields that u has a factor with denominator 3r). Thus ( b

3r ,
b+1
3r )

is a neutral core edge of γi′′ for an i′′ ∈ {1, 2, 3}.
By Lemma 4.6, there is both a γ

(0)
i ∪ γ

(0)
i−1 path and a γ

(0)
i ∪ γ

(0)
i+1 path from kj

to v in K.
Suppose first that i differs from i′′, in this case we will consider the first of these

paths.
By Lemma 4.3, the path

kj = d0
γ
(0)
i−−→ d1

γ
(0)
i−1−−−→ d2

γ
(0)
i−−→ . . .

γ
(0)
i−1−−−→ dh = v

in K implies a path

b

3r
= e0

γi−→ e1

γi−1−−−→ e2
γi−→ . . .

γi−1−−−→ eh

in C, with et being a factor of dt for all 0 ≤ t ≤ h.
There is no γi edge, and at most one γi−1 edge from b

3r whose target has de-

nominator not greater than 3r: the edge ( b
3r ,

b+1
3r ). If this is indeed a γi−1 edge

(this is so in the i′′ = i − 1 case), then ( b+1
3r ,

b+2
3r ) is a (down) γi+1 edge, which

means that there is no γi or γi−1 edge from b+1
3r with a target whose denominator

is not greater than 3r. Therefore, all the et are equal to b
3r or b+1

3r (those equal to
the first preceding in the above path those equal to the second).

Now suppose that i = i′′, and consider the γ
(0)
i ∪ γ

(0)
i+1 path. As in the first case,

we have the paths

kj = d0
γ
(0)
i−−→ d1

γ
(0)
i+1−−−→ d2

γ
(0)
i−−→ . . .

γ
(0)
i+1−−−→ dh = v
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and
b

3r
= e0

γi−→ e1

γi+1−−−→ e2
γi−→ . . .

γi+1−−−→ eh,

with et being a factor of dt for all 0 ≤ t ≤ h. Now ( b
3r ,

b+1
3r ) is a γi edge, but

( b+1
3r ,

b+2
3r ) is neither a γi or γi+1 edge, and again all the et are equal to either b

3r

or b+1
3r .

As eh is a factor of v, and (in both cases) equals either b
3r or b+1

3r where the
remainder of b modulo 3 is 1, the proof is finished. �

Lemma 4.8. γ1 6= γ2.

Proof. Suppose 0
γ2−→ 1. There must be a diagram verifying it, and by Lemma

4.7 that diagram can only contain elements of FS(C) that have only factors with
denominator 1. Such a diagram can only contain 0, 1, or 0 ∧ 1, and it is obvious
that no such diagram exists. �

With the preceding lemma, we have proved the following theorem.

Theorem 4.9. Quo(FS(ω)) contains a sublattice isomorphic to M3. �
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