
TYPES FOR QUASIORDERS

We want to generalize the notion of the type of a prime quotient in the congruence
lattice of a finite algebra into its quasiorder lattice. Note that a prime qutient in
the congruence lattice is not necessarily a prime quotient in the quasiorder lattice.

1. Preliminaries

The notion of minimality can be generalized for quasiorders effortlessly, see
[QLAT]. We need the following two propositions.

Proposition 1. Let B be a finite algebra and I[α, β] an interval in Quo B. If U is
an (α, β)-minimal set such that it is the range of an idempotent unary polynomial
e of A satisfying e(β) 6⊆ α, then the mapping from Quo A to Quo A|U that maps
each quasiorder of A to its restriction to U , is a lattice homomorphism.

Proposition 2. If B is a finite algebra, α ≺ β in Quo B, and U1 and U2 are (α, β)-
minimal sets of B, then the algebras A|U1 and A|U2 are polinomially isomorphic,
and both are images of an idempotent unary polynomial e satisfying e(β) 6⊆ α.

2. Algebras minimal to a non-prime congruence quotient

Given a prime quasiorder quotient, we wish to find a congruence quotient cor-
responding to it, so the former may inherit the type of the latter. In the following
section, we will find that corresponding congruence quotient, but it will not gener-
ally be a prime quotient. On the other hand, assuming minimality for the quasiorder
quotient will essentially also mean minimality for the congruence quotient.

The following definition is, for technical reasons, more liberal than [H-M 4.16].

Definition 3. A pseudo-meet operation for an element a of an algebra is any binary
polynomial p which satisfies the equations p(a, x) = p(x, a) = p(x, x) = x.

For quasiorders γ < δ, a pseudo-meet operation for the quotient (γ, δ) is a pseudo-
meet operation for a sink or a source of a δ\γ-edge. A pseudo-meet–pseudo-join pair
for this qutient is a collection of two pseudo-meet operations, one for the source,
one for the sink of a δ\γ-edge.

Proposition 4 (HM 4.15., 4.17.). If (γ, δ) is a congruence prime quotient of type
3, 4 or 5, there is a pseudo-meet operation for this quotient. If it is of type 3, or
4, then there is a pseudo-meet–pseudo-join pair for it.

Proposition 5. Suppose A is (α, β)-minimal, and α 6≺ β in Con A. Then the
interval [α, β] omits types 3, 4, and 5.

Proof. Suppose a prime quotient (µ, ν) in the interval is of type 3, 4, or 5. Then
there is a pseudo-meet operation p for ν\µ, meaning an edge (a, b) ∈ ν\µ∪ (ν\µ)−1

such that all x ∈ A satisfies p(a, x) = p(x, a) = p(x, x) = x.
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2 TYPES FOR QUASIORDERS

Take a pair (x1, x2) ∈ β\α. We can assume that the element p(x1, x2) is not in
the α-class of x1 (if it is, switch x1 and x2). Thus the polynomial p(x1, x) does
not map the β-edge (x1, x2) into an α-edge, hence it is bijective. As p(x1, x1) =
p(x1, a) = x1, this means that x1 = a.

Now, (b, x2) ∈ α, otherwise the preceding would yield that either b = a or
x2 = a. Therefore, only one β-block is not an α-block, and that contains exactly
two α-blocks, so obviously α ≺ β. �

Proposition 6. [H-M 4.20] If (γ, δ) is a congruence prime quotient of type 2, then
there is an idempotent ternary polynomial m such that for any x that is in the
(γ, δ)-body of the A, and any y ∈ A, m(x, x, y) = m(y, x, x) = x. (Consequently,
m is a Malcev-operation on the (γ, δ)-body of the A.)

Lemma 7. Suppose that α0 ≺ α1 ≺ · · · ≺ αn in Con A, A is (α0, αn)-minimal,
and all the (αi, αi+1) types are 2. Then for each pair (a, b) ∈ αn, there is a bijective
unary polynomial of A mapping a/α0 to b/α0.

Proof. For all 1 ≤ i < n, two distinct αi-classes in the same αi+1-class can be
mapped into one another by a unary polynomial, as there is an addition (modulo αi)
on any (αi, αi+1)-trace of the algebra. By minimality, this polynomial is bijective.
Using a sucession of such polynomials, we can map any α0-class into any other of
its αn-class. �

3. Definition of types for quasiorder quotients

Suppose that A is a finite algebra, α ≺ β in Quo A. All the induced (α, β)-
minimal algebras of A are isomorphic, so it is sufficient to define the type of (α, β)
in the case where A is (α, β)-minimal (otherwise, the algebra will inherit the type
of the algebra induced by a minimal set). We will differentiate between two cases.

Definition 8. Suppose A is (α, β)-minimal, and α∗ 6= β∗. If α∗ ≺ β∗ in Con A,
then set typ(α, β) = typ(α∗, β∗). Otherwise, set typ(α, β) = 1.

This may seem a little heavy-handed, as there are algebras minimal to one of
their non-prime quotients omitting 1 (the most basic example is a multidimensional
vector space), but as the next proposition shows, these non-prime qutients cannot
be the respective congruence parts of a quasiorder prime quotient.

Proposition 9. If α ≺ β in Quo A, A is (α, β)-minimal, and there is a congruence
γ such that α∗ < γ < β∗, then the interval [α∗, β∗] does not omit type 1, more
precisely, typ(α∗, µ) = 1 for any congruence α∗ ≺ µ < β∗.

Proof. From µ < β and µ 6≤ α we deduce α∨µ = β. This means that there exists an
α-crossedge, i.e. an α-edge between different µ-classes. A is of course also (α∗, β∗)-
minimal, and so by Lemma 7, this crossedge can be mapped bijectively so its source
is mapped into any α∗-class of its β∗-class. Hence, there is an α-crossedge from
every α∗-class in that β∗-class, and so there is an α-crossedge from every element
of that β∗-class. But that means that there is a circle of α-crossedges, and by that,
we get that there is an α∗-class intersecting µ-classes, a contradiction. �

Now assume α∗ = β∗. First we need to understand what (α, β)-minimality
means in this case. Take an edge (x, y) of β\α such that x/β∗ ≺ y/β∗ in β.
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Proposition 10. If (a, b) is a β\α-edge, then a/β∗ ≺β/β∗ b/β∗. Furthermore, if
(c, d) is an other β\α-edge, then (a/β∗, b/β∗) and (c/β∗, d/β∗) can be mapped into
each other by an automorphism of the poset A/β∗.

Proof. Obviously, a/β∗ 6= b/β∗. There are elements u′ and v′ in A/β∗ such that
a ≤ u′ ≺ v′ ≤ b in β/β∗, and (u′, v′) 6∈ α/β∗. Take any representants u and v of
u′ and v′ respectively. As α ≺ β in Quo A, there are elements u = c0, . . . , cl = v
in A such that each (ci, ci+1) is in α, or is a polynomial image of the edge (a, b).
There edges cannot all be in α, and by (α, β)-minimality the one that is not in
α is the image of (a, b) by a bijective polynomial. The inverse of this polynomial
maps (u′, v′) into (a/β∗, b/β∗), which finishes the proof (bijective polynomials are
automorphisms of compatible relations).

The second statement is a result of the same argument: simply consider that β
is also generated by α ∪ {(c, d)}. �

Definition 11. The enlargement of A by the quasiorder β (denoted by A+) is the
subalgebra of A3 consisting of triples (a, b, c) satisfying (a, b), (b, c) ∈ β. For an
arbitrary δ ∈ Quo A, the enlargement of δ is a congruence of A+ defined by

δ+ = Tr({((a, b, c), (a, b′, c)) ∈ A2
+ : (b, b′) ∈ δ ∪ δ−1}).

Informally, two triples are in δ+ if their first and last components coincide, and
there is a δ ∪ δ−1-path in A between their middle components that is entirely in
between the shared first and last component in β. It is easy to see that δ+ is indeed
a congruence of A+.

Proposition 12. The mapping δ 7→ δ+

• is a ∨-endomorphism from Quo A into Con A+,
• maps a quasiorder δ ≥ β into the product congruence 0A × 1A × 0A (so

(a1, a2, a3)δ+(b1, b2, b3) iff a1 = b1 and a3 = b3),
• maps α and β into different congruences, moreover,

β+\α+ = {((c, a, d), (c, b, d)) : (a, b) ∈ (β\α) ∪ (β\α)−1, cβ∗a, dβ∗b}.
Proof. The first two points are easy deductions from the definition. We will only
prove the formula of the third point.

Any element of the right hand side is immediately in β+. That they are not in
α+ follows from the fact that (by Proposition 10) c/β∗ ≺β/β∗ d/β∗, so the elements
of A between c and d in β are the elements of the β∗-blocks of c and d. Among
these elements, there cannot be an α ∪ α−1-path between a and b, because that
would mean that (a, b) ∈ α.

Conversely, take an element ((k, x, l), (k, y, l)) of β+\α+. Note that ((k, x, l), (k, l, l))
and ((k, l, l), (k, y, l)) are both in β+. One of two (assume that the first) must not
be in α+. This means that (x, l) ∈ β\α. Similarly, either (k, x) or (k, y) is in β\α.
The former is impossible by the second statement of Proposition 10, as (k/β∗, x/β∗)
obviously cannot be mapped into (x/β∗, l/β∗) by an automorphism of A/β∗.

This leaves (k, y) ∈ β\α, and, again by Proposition 10, there k/β∗ can be mapped
into x/β∗ by an A/β∗-automorphism. But as (k, x) is in β, we deduce that k and
x are in the same β∗-block. Consequently, (x, y) ∈ β\α. By the same argument, l
and y are in the same β∗-block.

�
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Definition 13. Suppose A is (α, β)-minimal, and α∗ = β∗. If the interval [α+, β+]
in Con A+ does not omit 4, then we set typ(α, β) = 5, otherwise, typ(α, β) = 5 if
the interval does not omit 5, and typ(α, β) = 1 if it does.

Admittedly, this definition is premature: we will soon prove that the interval
[α+, β+] necessarily omits 2 and 3, and cannot contain both types 4 and 5. It
is convenient, though, to be able to speak of quasiorder types even before this is
proved.

4. Properties of different types

By the definition of the previous section, the type of a prime quasiorder quotient
is inherited from the type of its congruence part, or the type of the congruence
parts of the enlargements of the quasiorders. We will refer to a prime quasiorder
quotient as *-quotient or +-qutient depending on whether the former or the latter
is the case.

First we prove that a prime quotient being a +-quotient is equivalent to the
congruence parts of the two quasiorders coinciding (this is true by definition only
if the algebra is minimal to this quotient).

Proposition 14. A prime quotient (α, β) is a +-quotient iff α∗ = β∗.

Proof. We have to show that if the congruence parts of α and β differ on A,
then they also differ on an (α, β)-minimal set M of A. This follows from the fact
(Proposition 1) that the restriction to M is a lattice homomorphism from Quo A
to Quo A|M , thus α|M ∨ β∗|M = (α ∨ β∗)|M = βM , so (by αM 6= βM ) α∗M and β∗M
must differ. �

To understand types in the +-case, first we need the following lemma. It infor-
mally states that when we “descend” to a minimal set of an enlargement, we do not
lose too much information, and the minimal set is at least as large as the original
(minimal) algebra.

Lemma 15. If A is (α, β)-minimal, then for any (α+, β+)-minimal set M of A+

any c ∈ A, c is a middle component of one of the elements of M .

Proof. Take any polynomial p ∈ Pol1 A+ that does not map β+ into α+. The
middle component of p is itself a unary polynomial of A, so by the (α, β)-minimality
of A, it is enough to show that the middle component does not map β into α. We
do that by proving that if ((a, b, c), (a, b′, c)) ∈ β+\α+, then (b, b′) ∈ β ∪ β−1.

Assume for the sake of simplicity that β∗ = 0A (otherwise, take each element’s
β∗-class). Notice that by the (α, β)-minimality of A, and the fact that α ≺ β,
one concludes that the β\α edges can be mapped into each other by bijective
polynomials. Also, these edges are covering edges of β (because otherwise all the
covering edges, being not bijective images of this edge, would be in α, but then α
would have to coincide with β).

Suppose that ((a, b, c), (a, b′, c)) ∈ β+\α+. Either (a, b) or (a, b′) must be in β\α,
and also either (b, c) or (b′, c), and this can happen only if (a, c) is a covering edge
in β, and {a, c} = {b, b′}. �

Now we can state the following crucial property of +-quotients.
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Lemma 16. Suppose A is (α, β)-minimal, where (α, β) is a +-quotient. Then for
any α+ ≤ µ ≺ ν ≤ β+ (in Con A+), the type of the congruence quotient (µ, ν)
cannot be 2 or 3. If the type is 5, there is a pseudo-meet operation, if 4, a pseudo-
meet–pseudo-join pair for the quasiorder quotient (α, β).

Proof. If the type was 2 or 3, there would be a polynomial of A+ mapping a
β+\α+ edge into a (β+\α+)−1 edge. By Proposition 12, the middle component of
this polynomial would map a β\α edge into a (β\α)−1 edge (in the case of type 2,
note that a ν-block cannot contain more than two µ-blocks).

The statement for types 4 and 5 follows from the properties of the pseudo-meet
and pseudo-join polynomials for the quotient (µ, ν) in the algebra A+|M , Lemma
15 and the fact that M must contain an (α+, β+)-minimal set. �

Corollary 17. If a prime quasiorder quotient is of type 2 or 3, then it is a *-
quotient.

As a pseudo-meet operation for (γ, δ) is also one for (γ∗, δ∗):

Corollary 18. If an algebra is minimal with respect to a prime quasiorder quotient
of type 3,4 (of type 5), then there is a pseudo-meet–pseudo-join pair (a pseudo-meet
operation) for it.

Corollary 19 (THIS IS KNOWN ALREADY BY ?????). If a locally finite variety
omits types 1,4, and 5, then it does not have non-congruence quasiorders, hence it
is congruence n-permutable for some n.

Lemma 20. If A is minimal to the type 4 (type 5) +-quotient (α, β), then β\α con-
tains only a single edge (contains edges with either a common source or a common
sink).

Proof. Suppose that (a0, b0) ∈ β\α such that there is a pseudo-meet operation p for
a0. Take an arbitrary (a, b) ∈ β\α, and notice that either (a, p(a, b)) or (p(a, b), b)
is also in β\α. In the first case, the unary polynomial p(a, x) must be bijective
by (α, β)-minimality of A, and as p(a, a0) = p(a, a) = a, a must be equal to a0.
In the second case, the same argument shows that b = a0, which is impossible by
Proposition 10. So all the β\α-edges have a shared source. If there is a pseudo-meet
operation for b0 instead, then all the β\α-edges will have a shared sink. �

So, as we promised, the interval [α+, β+] cannot contain both types 4 and 5.

Corollary 21. If A is minimal to the type 4 +-quotient (α, β), then α+ ≺ β+ in
Con A+.

Proof. By Lemma 20, there is only one β\α-edge, obviously, both its source and
sink must be a singleton β∗-class. By Proposition 12, β+\α+ is a single double
edge. �

Lemma 22. If A is minimal to a quasiorder quotient (α, β), and there is a pseudo-
meet operation p for a ∈ A, then all β\α-edges have a as either source or sink.

Proof. For any a 6= x0 ∈ A, the unary polynomials p(x, x0) and p(x0, x) are not
bijective (mapping both x0 and a into x0), therefore they map δ into γ. This
means that for any (d1, d2) ∈ δ\γ, either d1 = a or d2 = a, because otherwise,

d1
γ−→ p(d1, d2)

γ−→ d2. �
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Lemma 16 has a converse.

Lemma 23. If A is minimal to the +-quotient (α, β), and there is a pseudo-meet
operation for this quotient, then typ(α, β) ∈ {4, 5}. If there is a psudo-meet–pseudo-
join pair for this quotient, then typ(α, β) = 4.

Proof. We only prove the first statement of the lemma, as the second is much the
same.

Take a pair of congruences α+ ≤ µ ≺ ν ≤ β+ of A+, and let M be a (µ, ν)-
minimal set. Choose an element of β+\α+ ∩ M2, by Proposition 12 it has the
form ((c, a, d), (c, b, d)), where (a, b) ∈ β\α ∪ (β\α)−1, and (a, c), (b, d) ∈ α∗. By
Lemma 22, the pseudo-meet operation p is for either a or b. We may assume that
(a, b) ∈ β\α, and that p(a, x) = p(x, a) = p(x, x) = x for all x.

There is an idempotent unary polynomial e ∈ Pol1 A+ such that e(A+) = M
(REFERENCE). We define the binary polynomial p′ on A+|M with

p′((x1, x2, x3), (y1, y2, y3)) := e((p(x1, y1), p(x2, y2), p(x3, y3))).

As p is idempotent and e is idempotent (in different senses), p′ is also idempotent.
Furthermore, p′((c, a, d), (c, b, d)) = p′((c, b, d), (c, a, d)) = (c, b, d), so p′ is a proper
binary polynomial on an (α+, β+)-trace of M . This means that typ(α, β) 6= 1. As
the type of a +-quotient cannot be 2 or 3 (Lemma 16), the proof is done. �

We summarise this section in the following theorem:

Theorem 24. If A is minimal to the prime quotient (α, β), then the type of (α, β)
is

• 3, iff β\α is a single double edge, and there is a pseudo-meet–pseudo-join
pair for it (this case is only possible if α∗ = β∗) ,

• 4, iff β\α is a single (directed) edge, and there is a pseudo-meet–pseudo-join
pair for it,

• 5, iff there is a pseudo-meet operation for it, but not a pseudo-meet–pseudo-
join pair (and in this case, the pseudo-meet operation is for either the shared
sink or the shared source of all the β\α-edges),

• 2, iff (α∗, β∗) is a prime congruence quotient of type 2,
• 1 in any other case.

Proof. The +-quotient case is covered by Lemma 16, Lemma 23, and Corollary
17. In the *-case, the statement for type 2 is the first statement of Proposition 9.
Finally, the statements for types 3,4, and 5 for *-quotients can be easily deduced
by Lemma 22. �

5. Types in a quasiorder lattice

There are two basic conditions about the labeling of congruence lattices: the
first is that prime projective quotients must have the same type, the second that
the solvability and strong solvability relations must be congruences. The first is
also true for the labelings of quasiorder lattices.

Theorem 25. Suppose that (α, β) and (γ, δ) are prime projective quotients of
Quo A. Then typ(α, β) = typ(γ, δ).
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Proof. As the minimal (α, β) and (γ, δ) sets of the algebra coincide (REFERENCE,
MAYBE), we may assume that A is both (α, β)- and (γ, δ)-minimal. Note that if
(α, β) is a +-quotient, then so is (γ, δ).

CASE 1: Both are +-quotients
In this case, both types are among 1, 4, and 5.
If typ(α, β) = 4, then by Lemma 20, |β\α| = 1. As ∅ 6= δ\γ ⊆ β\α, this

means that δ\γ = β\α, hence there is a pseudo-meet–pseudo-join pair for (γ, δ), so
typ(γ, δ) = 4.

If typ(α, β) = 5, then, as there is a pseudo-meet operation for any β\α-edge,
there is also one for (γ, δ). typ(γ, δ) = 4 is not possible, as it would mean that
there is a pseudo-meet–pseudo-join pair for (γ, δ), and it would also be one to
(α, β). Therefore typ(γ, δ) = 5.

Finally, if typ(α, β) = 1, there must not exist a pseudo-meet operation for (γ, δ),
because it would also be one for (α, β), so typ(γ, δ) = 1.

CASE 2: Both are *-quotients
First, assume that neither of the two types is 1. Then α∗ ≺ β∗, and γ∗ ≺ δ∗ (in

the congruence lattice). Notice that α∗∧δ∗ = γ∗ (as δ 7→ δ∗ is a ∧-homomorphism)
and α∗ ∨ γ∗ = β∗ (if α∗ ∨ γ∗ was α∗, then α∗ ∧ δ∗ would be γ∗). Therefore,
typ(α, β) = typ(α∗, β∗) = typ(γ∗, δ∗) = typ(γ, δ).

Now assume that 1 = typ(γ, δ) 6= typ(α, β). Again, α∗ ∧ δ∗ = γ∗, and α∗ ∨ γ∗ =
β∗, because (α∗, β∗) is a prime congruence quotient. Choose a congruence ρ such
that γ∗ ≺ ρ ≤ δ∗. By Proposition 9, typ(γ∗, ρ) = 1. But by prime projectivety,
typ(α∗, β∗) = typ(γ∗, ρ), a contradiction.

Finally, assume that typ(γ, δ) 6= typ(α, β) = 1. Choose a congruence τ such that
α∗ ≤ τ ≺ α∗ ∨ δ∗. The type of (τ, α∗ ∨ δ∗) cannot be 3, 4, or 5, because that (along
with the (α∗, β∗)-minimality of the algebra) would mean by Proposition 5 that τ =
α∗, α∗ ∨ γ∗ = β∗, and so typ(α∗, β∗) ∈ {3, 4, 5}. Hence, typ(γ, δ) = typ(γ∗, δ∗) =
typ(τ, α∗ ∨ δ∗) = 2, because (γ∗, δ∗) and (τ, α∗ ∨ δ∗) are prime projective.

Now choose a congruence ρ such that α∗ ≺ ρ ≤ α∗ ∨ δ∗. By Proposition 9,
typ(α∗, ρ) = 1. Consider an (α∗, ρ)-trace D. Denote with C the α∗ ∨ δ∗-class that
contains this D.

Notice that any α∗-class of C must contain an element of the (γ∗, δ∗)-body of the
algebra (otherwise, C would be an α∗-class). Consider the pseudo-Malcev operation
d for the congruence quotient (γ∗, δ∗). As any α∗-class of D contains an element
that is in the (γ∗, δ∗)-body, any α∗-class of D, as well as D itself, is a subalgebra
with respect to the polynomial d (because d is idempotent on the (γ∗, δ∗)-body).
Also, d acts as a Malcev-operation on the α∗-classes of D: if A1 and A2 are two
such classes, then there are a1 ∈ A1 and a2 ∈ A2 such that both a1 and a2 is
in the (γ∗, δ∗)-body, thus d(a1, a1, a2) = d(a2, a1, a1) = a2, and any element of
d(A1, A1, A2) or d(A2, A1, A1) must be in the same α∗-class as a2. This contradicts
typ(α∗, ρ) = 1.

CASE 3: (α, β) is a *-quotient, while (γ, δ) is a +-quotient
If typ(γ, δ) = 4, δ\γ is a single edge (a, b) by Lemma 24. As α∗ 6= β∗, there is

an edge (c, d) ∈ β∗\α. There is an α-γ path from c to d, which is possible in only
one fashion: if

c
α−→ a

δ−→ b
α−→ d.
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Consider the pseudo-meet operation p for a (so p(a, x) = p(x, a) = p(x, x) = x
for all x), and the path

c = p(c, a)
δ−→ p(c, b)

α−→ p(a, d) = d,

to deduce that c = a. Likewise, from the pseudo-meet operation for b we can
deduce that d = b. So the pseudo-meet–pseudo-join pair for (γ, δ) acts on the
(α∗, β∗)-trace as lattice operations, thus typ(α, β) = 3 (the type is not 3, because
that would mean that (d, c) is also in β∗\α, which would yield that (d, c) is also
coinciding with (a, b)).

If typ(γ, δ) = 5, we can assume that the edges in δ\α share a common source
a, and there is a pseudo-meet operation p for it (again by Lemma 24). As in the
previous case, we deduce that for an arbitrary (c, d) ∈ β∗\α, c is coinciding with a,
furthermore, there is a b ∈ A such that

a
δ−→ b

α−→ d.

This means that there is a pseudo-meet operation for (c, d), we need only to prove
that it has no pseudo-join pair.

Assume contrariwise that q is a bijective polynomial such that q(d, x) = q(x, d) =
q(x, x) = x. Now consider

a = q(a, a)
δ−→ q(a, b)

α−→ q(a, d) = a,

to see that q(a, b) is in the β∗-class of a, but that class only contains a and d (as
the assumption was typ(α∗, β∗) = 4). If q(a, b) = d, then (a, d) ∈ δ\γ, which is a
contradiction, as there is a pseudo-meet–pseudo-join pair for (a, d). So q(a, b) = a,
and likewise, q(b, a) = a, thus there is a pseudo-meet–pseudo-join pair for (a, b),
again a contradiction.

Finally, set typ(γ, δ) = 1. If typ(α, β) ∈ {3, 4, 5}, then we can assume there is an
edge (a, b) ∈ β∗\α and a pseudo-meet operation p for a. By Proposition 22, taking
an arbitrary δ\γ-edge, a is either a source or a sink of it, so there is a pseudo-meet
operation for (γ, δ), which contradicts typ(γ, δ) = 1 by Lemma 24.

If typ(α, β) = 2, there is a pseudo-Malcev operation m for (α∗, β∗). Take an
arbitrary edge (a, b) ∈ β∗\α∗, there is an α-δ\γ path from a to b:

a
α−→ c1

δ\γ−−→ . . .
α−→ ck

δ\γ−−→ b

This path is entirely in β, and as it is between elements of the same β∗-class, it
must lie entirely in that β∗-class. Therefore, c1 and c2 are in the (α∗, β∗)-body, so
(c2, c1) = (m(c1, c1, c2),m(c1, c2, c2)) ∈ δ, and (c1, c2) ∈ δ∗\γ∗, which contradicts
the fact that (γ, δ) is a +-quotient. �

On the other hand, the concept of solvability does not seem to extend to qua-
siorder lattices. Consider the semigroup S with the following multiplication table:

0 1 2 3
0 0 0 0 0
1 1 1 1 1
2 0 1 2 2
3 0 1 2 3
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The usual definition of solvability (α and β being in the same block iff typ[α ∧
β, α ∨ β] ⊆ {1, 2}) does not yield a congruence in this case. Neither does the
definition of strong solvability (α and β being in the same block iff typ[α∧β, α∨β] ⊆
{1}).
Proposition 26. There are α, β, γ, δ ∈ Quo S such that α ≺ β, γ ≺ δ < β ∨ γ,
typ(α, β) = 1, and typ(γ, δ) = 5.

Proof. Put

α = 0S, β = {1, 0)}, γ = {(0, 1), (0, 2), (0, 3), (2, 1)},
δ = {(0, 1), (0, 2), (0, 3), (2, 1), (2, 3)},

with ω denoting the set of non-loop edges of a relation ω.
As the set {0, 1} is (α, β)-minimal, and the algebra induced on it is trivial,

typ(α, β) = 1. S is itself a (γ, δ)-minimal algebra (2, 3) ∈ δ\γ, and the multiplica-
tion is a pseudo-meet operation for 3 (with there being no pseudo-meet operation
for 2), typ(γ, δ) = 5 by Theorem 24. �

One may try to alter the definition of the solvability relation for quasiorders (or
even the definition of types for quasiorders) to circumvent this problem. The next
proposition shows a limit to this approach.

Proposition 27. There is no congruence ρ of Quo S such that ρ|ConS =∼s, more
precisely, the congruence of Quo S generated by the congruence solvability relation
is 1QuoS.

Proof. Let ∼ be the congruence of Quo S generated by the congruence solvability
relation. We will need the following elements of Quo S:

τ = {(0, 1), (1, 0)}
η1 = {(0, 1), (0, 2), (2, 1), (3, 1)}

η2 = {(0, 1), (0, 2), (2, 1), (3, 1), (3, 2)}
η3 = {(0, 1), (0, 2), (0, 3), (2, 1)}

η4 = {(0, 1), (0, 2), (0, 3), (2, 1), (2, 3)}
η5 = {(0, 1), (3, 2)}
η6 = {(0, 1), (2, 3)}

η7 = {(0, 1), (0, 2), (2, 1)}
Of course, τ is a congruence such that (0S, τ) is a congruence prime quotient of

type 1. Therefore, 0S ∼ τ , so as η1 ∨ τ = η2 ∨ τ and η3 ∨ τ = η4 ∨ τ , η1 ∼ η2 and
η3 ∼ η4. Note that η5 ≤ η2, η6 ≤ η4, and η1 ∧ η5 = η3 ∧ η6 = η5 ∧ η6. From these
we can deduce that η5 ∼ η5 ∧ η6 ∼ η6.

As η7 ≥ η5 ∧ η6, we get that

η7 = η7 ∨ (η5 ∧ η6) ∼ η7 ∨ η5 ∨ η6 ∼ η7 ∨ η6 ∨ η5 ∨ τ = 1S.

But as ∼s is closed to inversion (meaning that δ1 ∼s δ2 implies δ−11 ∼s δ−12 ), ∼
must also be closed to inversion. Thus, η−17 ∼ 1S, and 0S = η7 ∧ η−17 ∼ 1S, so ∼ is
the full relation on Quo S. �
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We note that the above proof did not use the simmetry of ∼, so the quasiorder
of Quo S generated by the congruence solvability relation is also the full relation.

Problem 28. Is the solvability relation on the quasiorder lattices of algebras that
omit 1 for quasiorders/for congruences a lattice congruence? What about varieties
omitting 1?

An other difference for quasiorders is that Proposition 5 is not true for them:
a counterexample is the two-element lattice, which is obviously a minimal al-
gebra, yet its quasiorder lattice is the direct square of the two-element lattice.
A more elaborate counterexample: consider the semilattice ({0, 1, 2, 3},max). If
α = {(0, 1), (0, 2), (1, 2)}, and β is the full order <, then the semilattice is (α, β)-
minimal, but the reader can easily chech that the interval [α, β] is the four-element
chain. However, there are (in a way) no more counterexamples.

Theorem 29. Suppose A is (α, β)-minimal, and α 6≺ β in Quo A. Then the
interval [α, β] either:

• contains only types 4, and is isomorphic to the direct square of the two-
element lattice, or
• contains only types 5, and is a distributive lattice, or
• contains only types 1 and 2.

Proof. First suppose that (γ1, γ2) is a type 3 or a type 4 quasiorder prime quotient
in the interval, and take an edge (a, b) ∈ γ2\γ1. By Theorem 24, there are pseudo-
meet operations for both a and b, so by Lemma 22, all β\α edges have a and b as
either source ot sink. Therefore, β\α ⊆ {(a, b), (b, a)}, and by α 6≺ β there must be
equality. Furthermore, either α ∪ {(a, b)} or α ∪ {(b, a)} must be a quasiorder.

We need yet to show that if either is a quasiorder, then both are. So suppose
that δ1 := α ∪ {(a, b)} is a quasiorder, and δ2 := α ∪ {(b, a)} is not. Notice that δ2
is a preorder, as it is in the quasiorder β, and its transitive closure does not contain
(a, b), because there is no path from a to b containing only α-edges the edge (b, a).
This means that there is a unary polynomial p such that p(δ2) 6∈ δ1. Any unary
polynomial maps all α edges into δ1 edges, and (b, a) into a β edge, which means
that p maps the edge (b, a) into (a, b), but then it also maps (a, b) into (b, a), a
contradiction.

So in this case, the interval [α, β] is isomorphic to the lattice 22. By Theorem
24 and only contains types 4, because the quasiorders of any prime quotient in it
differ only in a single edge ((a.b) or (b, a)), and there is a pseudo-meet–pseudo-join
pair for that edge.

Now suppose that (γ1, γ2) is a type 5 quasiorder prime quotient in the interval
[α, β], and (a, b) ∈ γ2\γ1. We can assume by Theorem 24 that there is a pseudo-
meet operation for a, in which case by Lemma 22, all β\α edges have a as either
source or sink. So there are elements of A x1, . . . , xk, y1, . . . , yl such that

β\α = {(x1, a), . . . , (xk, a), (a, y1), . . . , (a, yl)},
with k or l possibly being zero.

Suppose there is an i so that there is a pseudo-meet operation for xi (or yi).
This means that, by Lemma 22, all β\α edges have xi as either source or sink, so
k = 1, and either l = 0 or l = 1 and y1 = x1. The first case is impossible by α 6≺ β,
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in the second, the quasiorders in any prime quotient in the interval [α, β] differ only
in one edge, and there is a pseudo-meet–pseudo-join pair for it, which by Theorem
24 contradicts the assumption that this interval contains a type 5.

Therefore, there is no pseudo-meet operation for any of the xi or the yi. By
Theorem 24, this means that the interval [α, β] contains only types 5. To prove
that this interval is a distributive lattice, it is enough to note that for quasiorders
α ≤ δ1, δ2 ≤ β, δ1 ∨ δ2 = δ1 ∪ δ2, because for any 1 ≤ i ≤ k and 1 ≤ j ≤ l, the edge
(xi, yj) is in α (as it is in β and a is neither its sink or source). �

About the third case, we can say a little more, if the interval omits type 1, namely,
that in that case the interval is a modular lattice. This is true for congruences
without assuming minimality:

Theorem 30. [H-M 6.8] Suppose that α < β in Con A, and all the congruence
types in the interval N := [α, β] are 2. Then N is a modular lattice.

Theorem 31. Suppose that α < β in Quo A, A is (α, β)-minimal, and all the
quasiorder types in the interval N := [α, β] are 2. Then N is a modular lattice.

Proof. Consider the mapping δ 7→ δ∗ fromN into Con A. This is a ∧-homomorphism,
and preserves the ≺ relation by Proposition 9. This means that it is also injective.

Claim 1. It is also a ∨-homomorphism.

Suppose δ1, δ2 ∈ N . Then

δ∗1 ∨ δ∗2 ∨ (δ1 ∧ δ2) = δ1 ∧ δ2.

To see this, notice that the left side is in N , and

(δ∗1 ∨ δ∗2 ∨ (δ1 ∧ δ2))∗ ≥ δ∗1 ,

thus, δ 7→ δ∗ being a ∧-homomorphism and so order-preserving,

δ∗1 ∨ δ∗2 ∨ (δ1 ∧ δ2) ≥ δ1.

The same is true for δ2 instead of δ1, which concludes the non-trivial direction of
the equality.

Now suppose that δ∗1 ∨ δ∗2 ≤ µ ≺ (δ1 ∨ δ2)∗, and repeat the proof of Proposition
9 for (δ1 ∧ δ2)-crossedges. The claim is proved.

Thus δ 7→ δ∗ must map any sublattice of N isomorphic to N5 to a sublattice
of Con A isomorphic to N5, and containing only types 2. This is impossible by
Theorem 30. �

Note: It is not generally true for (finite) lattices that a≺-preserving ∧-homomorphism
is also a lattice homomorphism: consider the distributive lattice 23. Omitting the
element (1, 1, 0), we get a poset that is ordered as a lattice (and isomorphic to the
lattice D1). The inclusion map from this latter lattice to 2 is a ∧-homomrphism,
preserves ≺, but it is not a ∨-homomorphism, as (1, 0, 0)∨ (0, 1, 0) is (1, 1, 0) in the
distributive lattice, and (1, 1, 1) in the other.

Problem 32. Is Theorem 30 true for quasiorders? If not, is it true if the algebra
generates a variety omitting 1?
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6. Varieties omitting certain types

Lemma 33. For any i ∈ {1, 2, 3, 4, 5} and any variety V, V omits i for congruences
iff it omits i for quasiorders.

Proof. Suppose that A is a finite algebra in V, (α, β) is a prime quasiorder quotient
of A with type i. If (α, β) is a *-quotient, then typ(α∗, β∗) = i, so V does not omit
i for congruences.

Now assume that (α, β) is a +-quotient. By definition, its type is determined by
types of congruence quotients in the enlargement M+ of an (α, β)-minimal set M
(for the sake of simplicity, we introduce M = A|M ).

There is an idempotent unary polynomial e mapping A onto M such that e(β) 6⊆
α. If e(x) = t(x, a1, . . . , ak), where t is a term of A and a1, . . . , ak ∈ A, we define
e′(x) := t(x, (a1, a1, a1), . . . , (ak, ak, ak)), which is an idempotent unary polynomial
mapping A+ onto M+. (Both A+ and M+ are meant as enlargements by β.)

Consider the restriction mapping from Con A+ to Con M+. As M+ = e′(A+),
this mapping is onto by [HM 2.3.] (MAYBE THERE IS A BETTER THEOREM
HERE SO THE NEXT IS USELESS.), more precisely, for any congruence µ ∈
Con M+, the restriction of the congruence µ0 ∈ Con A+ generated by µ to M+

is µ. Therefore, for any prime quotient (µ, ν) of Con M+, there are congruences
µ0 ≤ µ1 ≺ ν1 ≤ ν0 of Con A+ such that the restriction of µ1 and ν1 to M+ is µ and
ν, respectively. But then, a minimal (µ1, ν1)-set of A+ contained in M+ (there is
such a minimal set, for M+ is a polynomial image of A+) is also a minimal (µ, ν)-set
of M+. Thus typ(µ1, ν1) = typ(µ, ν), so each type in the congruence lattice of M+

(including typ(α, β)) is present at the congruence lattice of A+. As A+ ∈ V, i is
not omitted by V for congruences in this case, either. �

Theorem 34. Suppose A generates a variety that omits 1 (omits 1 and 2) for
quasiorders. If M is a simple sublattice of Quo A, then it is modular lattice (a
two-element lattice).

Proof. We can assume that A is (0M , 1M )-minimal, because if 0M ≤ γ1 ≺ γ2 ≤ 1M
in Quo A, and U is a (γ1, γ2)-minimal set, then A|U generates a variety omitting
1, and its quasioder lattice contains a sublattice isomorphic to a nontrivial homo-
morphic image of M. (Because δ 7→ δ|U is a lattice homomorphism from Quo A to
Quo A|U which does not collapse γ1 and γ2, and M is simple.)

By Theorem 29, the interval [0M , 1M ] is either a distributive lattice, or it only
contains types 2. In the latter case, the interval is modular by Theorem 31, thus
M is also modular as its sublattice. If the variety omits 2 as well as 1, then M is
a simple distributive lattice, hence it is a two-element lattice. �

THE ANSWER TO THE FOLLOWING IS NO (5- OR 6-GENERATED FREE
SEMILATTICE).

Problem 35. Is it true that in a variety omitting 1, all the quasiorder lattices are
∧-semidistributive over modular, i.e they have a congruence such that the lattice is
∧-semidistributive factorised by this congruence, and the congruence classes are all
modular lattices. This possible generalization of [9.6] is stronger, than the preceding
theorem. On the other hand, it is most likely not true (possible counterexample: a
sufficiently ugly semilattice).
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The aim of the remainder of this section is to generalize ?????’s result [CITA-
TION] stating that in a variety omitting 1, 2, and 5, the congruence latties of the
finite algebras are not only ∨-semidistributive ([CITATION]), but lower bounded.
By the previous theorem, there is no confusion about whether we talk about omit-
ting congruence types ot omitting quasiorder types.

Before we can prove lower boundedness, we first need to prove ∨-semidistributivity.

Lemma 36. Suppose that C is a finite set, L ≤ PreC is a lattice of preorders on
C, and β ∈ C. Then the mapping δ 7→ δ ∧ β−1 is a lattice homomorphism from the
ideal (β] of L to the ideal (β∗].

Proof. It is obvious that this mapping preserves meets. We need to show that for
any δ1, δ2 ≤ β:

(δ1 ∨ δ2) ∧ β−1 ⊆ (δ1 ∧ β−1) ∨ (δ2 ∧ β−1).

Consider an edge (a, b) from the left hand side. There must be elements of C
a = c0, c1, . . . , ck = b so that for each 0 ≤ i < k, (c1, ci+1) is in either δ1 or δ2. As

a = c0βc1β . . . βck = bβa,

all the ci are in the same β∗-block, so each (ci, ci+1) is in either δ1 ∧ β−1 or δ2 ∧
β−1. �

OMIT THE ABOVE PROOF IF IT IS IN THE QLAT ARTICLE.

Theorem 37. Suppose that A is a finite algebra in a variety omitting 1, 2, and 5.
Then Quo A is ∨-semidistributive.

Proof. Suppose that α, γ1, γ2 ∈ Quo A are such that α∨γ1 = α∨γ2 > α∨(γ1∧γ2).
We may assume that α = α ∨ (γ1 ∧ γ2), and that β := α ∨ γ1 � α. Suppose that
A is such that |A| is minimal among counterexamples to the theorem, and the
quasiorders are such that β is minimal.

As a variety omitting 1, 2, and 5 is a property characterised by idempotent
identities [CITATION], we can deduce from the minimal cardinality of A that A is
(α, β)-minimal. We will consider two cases depending on whether it is a *-quotient
or a +-quotient.

If α∗ 6= β∗, β must be a congruence, otherwise intersecting α, γ1, γ2 with β−1

would yield a counterexample contradicting the minimality of β (see Lemma 36).
As A is (α, β)-minimal, it also is (α∗, β)-minimal. By Proposition 5, (α∗, β) is a
prime congruence quotient. As typ(α∗, β) ∈ {3, 4}, there is a unique two-element
(α∗, β)-body (say, {u, v}). Either (u, v) or (v, u) is not in α. That edge must be in
γ1, as it is in β = α∨ γ1, and {u, v} is a β-block. Similarly, it must be in γ2, which
contradicts γ1 ∧ γ2 ≤ α.

Now assume α∗ = β∗. In this case, by Theorem 24, β\α must be a single edge.
This is impossible: by α∨ γ1 = α∨ γ2 = β, both γ1 and γ2 must contain this edge,
but then γ1 ∧ γ2 6≤ α. �

Lemma 38. Suppose L is a lattice, and θ is a congruence on L such that all θ-
blocks have at most two element. Then if L is join semidistributive, then so is
L/θ.
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Proof. Suppose there are elements a, b, c ∈ L so that

(a ∨ b)/θ = (a ∨ c)/θ > (a ∨ (b ∧ c))/θ.
By the join semidistributivity of L, a∨ b = a∨ c is impossible, but a∨ b and a∨ c

are in the same (necessarily two-element) θ-block. We may assume that a∨c ≺ a∨b.
We claim that

a ∨ ((a ∨ c) ∧ b) = a ∨ c.
It is obvious that ≤ is satisfied in the above equality, but also, the two sides are in
the same θ-block by

a ∨ ((a ∨ c) ∧ b)θa ∨ ((a ∨ b) ∧ b) = a ∨ bθa ∨ c,
and a ∨ c is the smallest element of that θ-block.

By using the join semidistributivity of L, we gain

a ∨ c = a ∨ (c ∧ (a ∨ c) ∧ b) = a ∨ (b ∧ c),
which contradicts (a ∨ c)/θ > (a ∨ (b ∧ c))/θ. �

Lemma 39. Suppose L is a finite lattice, and θ is a congruence on L such that all
θ-blocks have at most two elements. If L is join semidistributive and L/θ is lower
bounded, then L is also lower bounded.

Proof. Let L′ := L/θ, and denote with K the set of elements of L′ corresponding
to two-element θ-classes. For any k ∈ K, there are elements kb ≺ kt of  L such that
kb/θ = kt/θ = k. We introduce the binary relation  on K with

k(1)  k(2) ⇔ (k
(1)
t ∨ k

(2)
b = k

(2)
t ) ∧ (k

(1)
t ∧ k

(2)
b = k

(1)
b ),

which is a partial order on K. We denote with ∼ the equivalance relation generated
by it.

Claim 1. ∼= ◦ −1.

As  is a partial order, it is enough to show  −1 ◦  ⊆ ◦  −1. Suppose
that k(1)  k(2)  −1 k(3). By the join semidistributivity of L and

k
(2)
b ∨ k

(1)
t = k

(2)
b ∨ k

(3)
t = k

(2)
t ,

we deduce that k
(1)
t ∧ k

(3)
t 6≤ k(2)b , thus

k
(1)
t ∧ k

(3)
t 6= k

(1)
b ∧ k

(3)
b .

This means that k(1)∧k(3) ∈ K, and it is easy to check that k(1)  −1 k(1)∧k(3)  
k(3). The claim is proved.

Claim 2. For k(1), k(2) ∈ K, k(1) ∼ k(2) is equivalent to k(1)  −1 k(1)∧k(2)  k(2).

By the previous claim, we only have to prove that if k(1)  −1 k(3)  k(2),

then we can exchange k(3) into k(1) ∧ k(2). By k
(3)
b ≤ k

(1)
b , k

(2)
b , we get that k(3) ≤

k(1) ∧ k(2). But k
(3)
t 6≤ k

(1)
b , k

(2)
b , which is only possible if k

(1)
b ∧ k

(2)
b is the bottom

element of a two-element θ-class, whose top element is not lower than either k
(1)
b

or k
(2)
b . This means precisely that k(1)  −1 k(1) ∧ k(2)  k(2).

Claim 3. The ∼-classes are lower pseudointervals in L′.
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The previous claim shows that they are closed to intersection, all we need to prove
that they are convex. Suppose that k(1) ≤ l′ ≤ k(2), where l′ ∈ L′, and k(1) ∼ k(2).
Again by the previous claim, we get that k(1)  k(2). Hence, l′ ∈ K, because

otherwise k
(1)
t would be smaller then the (unique) element of L corresponding to

l′, which would be smaller then k
(2)
b . Now if k(1) 6 l′, then k

(1)
t ≤ l′b, but then also

k
(1)
t ≤ k(2)b , a contradiction. Therefore, l′ is in the ∼-class of k(1), and the claim is

proved.
As the ∼-classes are obviously disjoint, we only have to prove that if we double

the ∼-classes in L′, we get a lattice isomorphic to L. To do that, check that for
k(1) ∼ k(2),

k
(1)
b ≤ k(2)b ⇔ k(1) ≤ k(2) ⇔ k

(1)
t ≤ k(2)t ⇔ k

(1)
b ≤ k(2)t ,

and k
(1)
t ≤ k(2)b is impossible (by Claim 2), and if for l1, l2 ∈ L, l1/θ 6∼ l2/θ, then

l1 ≤ l2 ⇔ l1/θ ≤ l2/θ.
�

Lemma 40. Suppose L is a finite join semidistributive lattice, and θ is a congru-
ence on L such that all θ-blocks having at least three elements are isomorphic to the
direct square of the two-element lattice. If θ is an atom in Con L, then no block of
it contains more than two elements.

Proof.

Claim 1. Suppose that a ≺ b with a and b being in the same θ-block. Then for
a ∨ c � b ∨ c and a ∧ c � b ∧ c for any c ∈ L.

Assume first that a ∨ c < x, y < b ∨ c (the case when a ∨ c and b ∨ c is not in a
one- or two-element θ-block). As neither x nor y can be larger than (or equal to) b,

x ∨ y = x ∨ b = b ∨ c > x = x ∨ a = x ∨ (y ∧ b),
contradicting join semidistributivity. Likewise, if a ∧ c < x, y < b ∧ c, then neither
x nor y can be smaller than (or equal to) a, and

a ∨ x = a ∨ y = b > a = a ∨ (a ∧ c) = a ∨ (x ∧ y)

contradicts join semidistributivity. The claim is proved.
Introduce the relation  on the prime quotients of L with

(x1, x2) (y1, y2)⇔ (x2 ∨ y1 = y2) ∧ (x2 ∧ y1 = x1),

this is a preorder.

Claim 2. The transitive closure of this relation is ∼:= ◦ −1.

Suppose that
(x1, x2) (y1, y2) −1 (z1, z2),

let us show that

(x1, x2) −1 (x1 ∧ z1, x2 ∧ z2) (z1, z2).

For that, it is enough to prove that x1∧z1 ≺ x2∧z2. By the join semidistributivity
of L we get that x2 ∧ z2 6≤ y1, otherwise

y1 ∨ x2 = y1 ∨ z2 = y2 > y1 = y1 ∨ (x1 ∧ z1),
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hence x1 ∧ z1 6= x2 ∧ z2. By the previous claim,

x1 ∧ z1 � x1 ∧ z2, x2 ∧ z1 � x2 ∧ z2,
so if x1 ∧ z1 and x2 ∧ z2 were the respectively the bottom and the top element of
a θ-class, the other two elements would have to be x1 ∧ z2 and x2 ∧ z1 (because
x1 ∧ z2 = x2 ∧ z1 > x1 ∧ z1 is clearly not the case). But that would mean that

(x1 ∧ z2) ∨ (x2 ∧ z1) = x2 ∧ z2,
which contradicts x2 ∧ z2 6≤ y1. The claim is proved.

Now assume that there is a θ-block with elements a < b, c < d. As θ is an atom
in Con L, it is the congruence generated by the edge (a, b). The set

ρ := {(c, d) ∈ L2 : (c = d) ∨ ((c, d) ∼ (a, b))}
is closed under the unary polynomials of L by Claim 1, therefore τ is the transitive
closure of ρ. This is only possible if (b, d) ∈ ρ (because if (a, c) ∈ ρ, then by
(a, c) (b, d) we see that (b, d) is also in ρ).

By Claim 2, there is a prime quotient (e, f) in L so that (a, b)  −1 (e, f) and
(e, f) (b, d). The first relation implies that f ≤ b, the second that f ∨ b = d, this
contradiction finishes the proof. �

Lemma 41. Suppose L is a finite lattice, and θ is a congruence on L such that
all θ-blocks having at least three elements are isomorphic to the direct square of the
two-element lattice. If L is join semidistributive and L/θ is lower bounded, then L
is also lower bounded.

Proof. Suppose that in the congruence lattice of L,

0L ≺ θ1 ≺ · · · ≺ θk = θ.

We use induction on k. If k = 1 then we are ready by Lemma 39 and Lemma
40.

If k > 1, then by Lemma 38, L/θ1 is a join semidistributive lattice. Notice
that θ/θ1 is a congruence of L/θ1 that does not have a block with more than two
elements that is not isomorphic with the direct square of the two-element lattice.
Hence by the inductive hypothesis L/θ1 is a lower bounded lattice, and then so is
L, as we have already proved the theorem for the k = 1 case. �

Theorem 42. Suppose that A is a finite algebra in a (congruence) join semidis-
tributive variety. Then Quo A is a lower bounded lattice.

Proof. We use induction on |A|. For any prime quotient α ≺ β in Quo A such
that A is not (α, β)-minimal, take an (α, beta)-minimal set M . The algebra A|M
is in a join semidistributive variety, thus by the inductive hypothesis Quo A|M is
a lower bounded lattice. By Propositions 1 and 2, the restriction to M is a lattice
homomorphism from Quo A to Quo A|M . Denote the kernel of this homomorphism
with θα,β . Note that α and β are in different θα,β-blocks, and that Quo A/θα,β is
a lower bounded lattice (as it is isomorphic to a sublattice of the lower bounded
Quo A|M ).

Introduce
θ :=

∧
Ais not (α,β)-minimal

θα,β .
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As
Quo A/θ ≤S

∏
Ais not (α,β)-minimal

Quo A/θα,β ,

we get that A/θ is a lower bounded lattice. As for each α ≺ β in Quo A such that
A is not (α, β)-minimal, (α, β) 6∈ θα,β , each θ-block is such that A is minimal to
each prime quotient in it.

Consequently, A is minimal for any quasiorders γ < δ satisfying (γ, δ) ∈ θ. By
Theorem 29, all θ-blocks have either one or two element, or are isomorphic to the
lattice 22 (as A is in a variety omitting 1, 2, and 5). By Theorem 37, Quo A is a
join semidistributive lattice. Thus by Lemma 41, Quo A is a lower bounded lattice.

�


