

Trainz Classics

Content Creator’s Guide
Version 3 June 2007

Copyright© Auran Pty Ltd 2007

This Content Creator’s Guide is for the Trainz Classics (TC) release. There have been a number of
changes to Trainz in the Trainz Classics version. A number of sound issues have been corrected,
and new tags and functions added.

This document is based on the TRS2006 release, and to provide a concise list and description
of the amendments for content creation, all changes to the TRS2006 document are included in
Appendix D. For the first release of the Trainz Classics series, this issue of the Content Creator’s
Guide will be known as Version 3.

Further updates may be available from time to time on our website. http://www.trainzclassics.com

http://www.trainzclassics.com

Version 3.0   iii   Trainz Railroad Simulator - The Content Creator’s Guide    iii  

CHAPTER 1
The Basics

INTRODUCTION� 1

OVERVIEW� 2

New in TC� 2

The Basics of Content Creation� 2

KUID NUMBERING� 4
KUID2 Format� 4

User ID Number� 4

Content ID Number� 4

Version ID Number� 5

TRAINZ Build� 5

CHAPTER 2
Introduction to Kinds, Containers, Tags, and Config.txt files

KINDS� 7

Config.txt Files� 9

Containers� 9

Tags� 9

Directory Structure� 9

Kinds and Container Relationship� 9

CONFIG.TXT FILES� 10

EFFECTS (optional mesh-table variables)� 12

EFFECT: KIND NAME� 12

EFFECT: KIND CORONA� 12

EFFECT: KIND TEXTURE-REPLACEMENT� 13

EFFECT: KIND ATTACHMENT� 14

EFFECT: KIND ANIMATION� 15

Trainz Classics

CONTENTS

Version 3.0   iv   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: HTML-ASSET� 15

KIND: PRODUCT� 16

KIND: PRODUCT-CATEGORY� 16
OVERVIEW� 16

IN-GAME VISUALISATION OF PRODUCTS.� 16

AVIATION FUEL PRODUCT� 17

COAL PRODUCT� 17

GENERAL GOODS PRODUCT� 18

General Goods Mesh Dimensions� 18

CRUDE OIL PRODUCT� 19

DIESEL FUEL PRODUCT� 19

20 FT CONTAINER PRODUCT� 20

20 ft CONTAINER Mesh Dimensions� 20

40 FT CONTAINER PRODUCT� 21

40 ft CONTAINER Mesh Dimensions� 21

LUMBER PRODUCT� 22

Log Mesh Dimensions� 22

PETROL FUEL PRODUCT� 22

Lumber Mesh Dimensions� 22

WATER PRODUCT� 23

WOODCHIPS PRODUCT� 23

PASSENGER PRODUCT� 24

KIND: ENGINE� 25
DIESEL ENGINE FILE BREAKDOWN� 29

STEAM ENGINE FILE BREAKDOWN� 31

COMMENTS AND NEW TAGS� 31

KIND: BOGEY� 33
BREAKDOWN OF CONFIG.TXT� 33

KIND: TRAINCAR� 34
TRAINCAR CONFIG.TXT BREAKDOWN� 35

TRAINCAR EXAMPLES� 36

KIND: ENGINESOUND� 37
ENGINESOUND - DIESEL AND ELECTRIC� 37

ENGINESOUND - STEAM� 38

KIND: HORNSOUND� 39

KIND: DRIVERCHARACTER� 39

Version 3.0  �   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: INTERIOR� 40
INTERIOR CONFIG.TXT BREAKDOWN� 47

STEAM CAB INTERIORS� 49

KIND: PANTOGRAPH � 60

KIND: ENVIRONMENT� 60

KIND: WATER2� 61
Calm Water� 61

Choppy Water� 62

Glassy Water� 63

Rough Water� 63

KIND: MAP� 64

KIND: PROFILE� 64

KIND: GROUNDTEXTURE� 64
GROUNDTEXTURE CLUTTER MESH� 64

KIND: SCENERY� 65

KIND: INDUSTRY� 67
PORTAL� 68

MULTI INDUSTRY NEW� 70

PASSENGER STATION ASSET� 72

PASSENGER VEHICLE ASSET� 74

KIND: FIXEDTRACK� 75

KIND: TRACK – RAILS� 76

KIND: TRACK – ROAD� 77

KIND: BRIDGE – SINGLE TRACK� 78

KIND: BRIDGE – TUNNEL� 79

KIND: BRIDGE – DOUBLE TRACK� 80

KIND: MOSPEEDBOARD� 80

KIND: MOSIGNAL � 81

KIND: MOJUNCTION � 83

KIND: MESH� 83

KIND: TURNTABLE � 84

KIND: MOCROSSING� 85

KIND: ACTIVITY� 86

KIND: TEXTURE� 86

Version 3.0   vi   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: buildable� 87

MISCELLANEOUS CONFIG.TXT TAGS� 87

CHAPTER 3
Understanding and using Content
Creator Plus

Getting Started� 89

Using Content Creator Plus� 91

Inheritance Template� 93

CHAPTER 4
Using Content Creator Plus to create a New Asset

Creating a New Asset� 95

A Workflow Process� 95

Example Asset� 95

Example Asset PB15 Directory Layout� 96

Example Asset Main CCP Screen� 98

Example Asset Dropdown Selection Box for the Coalman Mesh� 99

Example Asset Smoke Container� 99

Example Asset Smoke Attachment Dropdown Box� 100

Example Asset Kuid Table Container� 100

Example Asset Bogey Container� 100

Example Obsolete Table and Mesh Table Browser� 101

CHAPTER 5
Common Containers and Tags

Chapter 5 Contents� 103

Common Containers� 105

Other Regularly Used Containers� 107

Other Regularly Used Tags� 111

CHAPTER 6
All Other Containers and Tags

INTRODUCTION� 115

KIND: ACTIVITY� 116

KIND: BEHAVIOR� 117

Version 3.0   vii   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: BOGEY� 118

KIND: BRIDGE� 119

KIND: BUILDABLE� 121

KIND: CHUNKY-TRACK� 123

KIND: DRIVERCHARACTER� 125

KIND: DRIVERCOMMAND� 126

KIND: DOUBLE-TRACK� 127

KIND: ENGINE� 129

KIND: ENGINESOUND� 135

KIND: ENVIRONMENT� 136

KIND: FIXEDTRACK� 137

KIND: GROUNDTEXTURE� 140

KIND: HORNSOUND� 141

KIND: HTML-ASSET� 142

KIND: INDUSTRY� 143

KIND: INTERIOR� 147

KIND: LIBRARY� 152

KIND: MESH� 153

KIND: MESH-REDUCING-TRACK� 154

KIND: MOCROSSING� 156

KIND: MOJUNCTION� 157

KIND: MOSIGNAL� 159

KIND: MOSPEEDBOARD� 161

KIND: PAINTSHED-SKIN� 162

KIND: PAINTSHED-TEMPLATE� 164

KIND: PANTOGRAPH� 165

KIND: PRODUCT� 166

KIND: PRODUCT-CATEGORY� 168

KIND: PROFILE� 169

KIND: REGION� 170

KIND: SCENERY� 171

KIND: SCENERY-TRACKSIDE� 172

KIND: STEAM-ENGINE� 174

Version 3.0   viii   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TEXTURE� 179

KIND: TEXTURE-GROUP� 180

KIND: TRACK� 181

KIND: TRACKSOUND� 183

KIND: TRAINCAR� 185

KIND: TUNNEL� 188

KIND: TURNTABLE� 190

KIND: WATER2� 192

CHAPTER 7
Kind Examples

Activity� 196

Behavior� 197

Bogey� 198

Bogey (Animated Bogey)� 200

Bogey (Steam Bogey)� 201

Bridge� 202

Buildable� 203

Chunky-Track� 204

Double-Track� 205

DriverCharacter� 206

Driver-Command� 207

Engine (Diesel)� 212

Engine (Electric)� 216

Enginesound (Diesel\Electric)� 220

Enginesound (Steam)� 221

Environment� 222

Fixed Track (Simple)� 223

Fixed Track (Junction)� 225

Groundtexture (Normal)� 227

Groundtexture (Clutter Mesh)� 228

Hornsound (1 Part)� 229

Hornsound (2 Part)� 230

Hornsound (3 Part)� 231

Version 3.0   ix   Trainz Railroad Simulator - The Content Creator’s Guide

HTML-Asset� 232

Industry (Multiple Industry)� 233

Industry (Coal Mine)� 251

Interior (Diesel)� 262

Interior (Electric)� 269

Interior (Steam)� 277

Library� 285

Map� 286

Mesh� 287

Mesh-Reducing-Track� 288

MOCrossing� 289

MOJunction� 291

MOSignal� 292

MOSpeedboard� 294

Pantograph� 295

Paintshed-Template� 296

Paintshed-Skin� 297

Product (Coal Product)� 299

Product (General Goods Product)� 300

Product (Diesel Fuel Product)� 302

Product (40ft Container Product)� 303

Product (Lumber Product)� 304

Product (Passenger Product)� 305

Product-Category� 307

Profile� 308

Scenery� 309

Scenery-Trackside� 310

Steam-Engine� 311

Texture� 313

Texture-Group� 314

Track� 315

Tracksound� 316

Traincar (Coal Hopper)� 317

Version 3.0  �   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Diesel Engine)� 321

Traincar (Electric Engine)� 323

Traincar (Rollingstock)� 325

Traincar (Passenger Car)� 326

Traincar (Steam Locomotive)� 328

Tunnel� 332

Turntable (Animated)� 333

Turntable (Not animated)� 337

Water2� 339

Displacements� 340

CHAPTER 8
Modeling Guidelines

3DSMax/gmax Interface with Trainz� 342
3DSMax/gmax Initial Setup� 342

Merging and Exporting� 342

Animation Requirements� 343

Attachments� 344

General Modeling Notes� 344

Config.txt File� 345

Problems with Model Exports� 346

POLYCOUNT� 347

TRAINS 3D STUDIO MAX AND GMAXMODEL GUIDELINES� 349
ATTACHMENT POINTS� 349

TEXTURES and FILE SIZES� 350

LOCOMOTIVE NUMBERING� 350

BUMP MAPPING INFORMATION� 351

TEXTURES AND OPACITY EFFECTS� 355
Placement in 3DSMax/gmax� 355

Opacity Fade Out� 355

Alpha Channel Use� 355

Example� 355

Applying Opacity to Models� 355

Opacity Settings in 3DSMax/gmax� 356

Opacity Interference� 356

Special Use of Opacity - Reflection Materials� 356

Version 3.0   xi   Trainz Railroad Simulator - The Content Creator’s Guide

Opacity on Roads, Track and Bridges� 357

Opacity Texture Bleeding� 357

Texture Clarity� 357

Textures for Tiling� 357

CREATING AN INTERIOR FOR TRS� 358

STEAM CAB INTERIORS� 362
Animated Levers� 363

Steam Cab Fire and Coal Glow Effects� 364

RESEARCHING DATA AND TESTING OF A STEAM LOCOMOTIVE� 365
Narrow Gauge Geared Locomotives� 365

Tenders� 366

ANIMATION EVENTS� 369

LEVEL OF DETAIL MESH REDUCTION� 370

LOAD TEXTURE REPLACEMENT� 372
TRAINCAR DIRECTORY STRUCTURE� 375

ALIASING TRAINS� 376

BOGEYS� 377

PANTOGRAPHS� 380

TURNTABLE (TRANSFER TABLE)� 381

FIXEDTRACK� 383

FIXEDTRACK - Junctions� 383

CHUNKY MESH TRACK� 384

TRAINZCLASSICOPTIONS FILE� 386

VIEWPOINTS IN SURVEYOR� 386

CHAPTER 9
Uploading to the Download Station

The Trainz Download Station� 389

Steps to Upload� 389

Verify Content is Error Free� 389

Download Station Checks� 390

Packaging Files (CDP’s)� 390

CHAPTER 10
Particle Effects and Soundscripts

Version 3.0   xii   Trainz Railroad Simulator - The Content Creator’s Guide

INTRODUCTION� 391
ADDING SMOKE TAGS� 392

MAIN PROPERTIES:� 392

PFX FROM CONFIG.TXT� 392
SEQUENCE PROPERTIES:� 393

EXAMPLE 1 - SMOKE FROM A FACTORY’S CHIMNEY� 393

EXAMPLE 2 - STEAM TRAIN� 394

TWINKLES PFX� 394

SOUND SCRIPTS� 395

HORN SOUNDS� 396

CHAPTER 11
Appendix A - Classes and Codes

CATEGORY CLASS� 397

REGION CODES� 400

ERA CODES� 402
Appendix B - Kinds and Containers
Appendix C - Tags and Containers
Appendix D - New Functions in Trainz Classics

Freeways - one way and multi-lane roads� 429

Flashing ditch lights� 430

Headlights - low and high beam� 430

Operating lights on roadway traffic� 430

Sound functions for electric locomotives� 431

Traincar interiors� 431

Fonts� 434

Routes or maps� 434

Other useful information� 435

Scripting� 435

CMP functions� 436

CCP updates� 437

ACKNOWLEDGEMENTS� 438

Version 3.0   xiii   Trainz Railroad Simulator - The Content Creator’s Guide

ADDITIONAL REFERENCE INFORMATION

Please read the Trainz Railroad Simulator User Manual which forms part of the TC installation, in C:\Program Files\
Auran\TC\Docs\manuals_cd directory for a default installation. Additional up to date information and files are available
for download, some were developed for TRS2004, but are still useful:

General Assets, Plugins, Manuals and Utilities
•  Sample TRS2004 in-game files including config files:
	 http://www.auran.com/trainz/creation/Trainz_custom.zip

•  Sample 3D Studio Max and gmax files including textures:
	 http://www.auran.com/trainz/creation/source_files.zip

•  TRS asset PRR 40’Boxcar in-game files, source files and asset description:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Box_Car.zip

•  TRS asset GATX-Oilco Tank Car in-game files, source files and asset description:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Tank_Car.zip

•  TRS asset Coal Hopper in-game files, source files and asset description:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Coal_Hopper.zip

•  TRS asset Container Flat in-game files, source files and asset description:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Container_Flat.zip

•  DD40x cabin interior in-game files, source files:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_dd40_interior.zip

•  PB15 Steam interior in-game files, source files:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_PB15_interior.zip

•  Steam Sound:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Steam_Sound.zip

•  Twinkles
	 http://www.auran.com/TRS2004/downloads/contentcreation/Twinkles.zip

•  3dsmax 4 & 5 Plugin for Bump mapping support and Bump mapping description:
	 http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip

•  Asset Creation Studio (for gmax export):
	 http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip

•  Passenger Asset Tutorial:
	 http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip

•  Variable Rules Tutorial:
	 http://files.auran.com/TRS2004/downloads/contentcreation/SP2_VariableRulesTutorial.zip

•  API Programmer’s Reference Manual - covers most of the script classes and methods:
	 http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10

•  TRS2006 Sessions & Rules Guide (original installed in C:\Program Files\Auran\TRS2006\Docs\manuals_cd\extras):
	 http://files.auran.com/TRS2006/manuals/TRS2006_Sessions_&_Rules_Guide(31-Oct-2005).zip

•  AKI Utility - to automatically add keywords to assets based on the content creator ID:
	 http://www.auran.com/TRS2006/public.page.php?location=downloads_aki_utility

•  Content Creator Plus Manual (original full manual installed in C:\Program Files\Auran\TRS2006\Docs\manuals_cd\manuals):
	 http://files.auran.com/TRS2006/manuals/CCP_Manual_1.pdf

•  Content Manager Plus Manual (original full manual installed in C:\Program Files\Auran\TRS2006\Docs\manuals_cd\manuals):
	 http://files.auran.com/TRS2006/manuals/CMP_Manual_1.pdf

•  Driver Character Files:
	 http://www.auran.com/TRS2004/downloads/contentcreation/DriverCharacter.zip

•  Asset examples included in this document (38mb):
	 http://files.auran.com/TRS2006/Downloads/Example_Download.zip

http://www.auran.com/trainz/creation/Trainz_custom.zip
http://www.auran.com/trainz/creation/source_files.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Box_Car.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Tank_Car.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Coal_Hopper.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Container_Flat.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_dd40_interior.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_PB15_interior.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Steam_Sound.zip
http://www.auran.com/TRS2004/downloads/contentcreation/Twinkles.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip
http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip
http://files.auran.com/TRS2004/downloads/contentcreation/SP2_VariableRulesTutorial.zip
http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10
http://files.auran.com/TRS2006/manuals/TRS2006_Sessions_&_Rules_Guide(31-Oct-2005).zip
http://www.auran.com/TRS2006/public.page.php?location=downloads_aki_utility
http://files.auran.com/TRS2006/manuals/CCP_Manual_1.pdf
http://files.auran.com/TRS2006/manuals/CMP_Manual_1.pdf
http://www.auran.com/TRS2004/downloads/contentcreation/DriverCharacter.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   �   Trainz Railroad Simulator - The Content Creator’s Guide     

INTRODUCTION

Welcome to the Content Creator’s Guide for Trainz Classics.

This document is designed to assist 3rd party content creators design and create functional content for the Trainz
Railroad Simulator. The purpose of this document is to detail the way in which 3rd party content should be designed
and built to be compatible with TC and to describe the use of the new functions in TC, the Content Manager Plus and
the Content Creator Plus.

The Content Manager Plus module manages content on your computer, communicates with the Download Station and
uploads or downloads content more easily than in previous versions of Trainz.

The Content Creator Plus module assists in creating model assets that are compatible with the Download Station
requirements, and incorporates error checking that should assist in the creation of successful models. The module
creates the config.txt file for the model asset, the entry of data is by means of templates for each model asset Kind,
and dialogue boxes that filter and check the data.

This document provides the standards and procedures for a content creator to enter data for the model asset, using
Content Creator Plus. It also provides advice on the creation of the model mesh using 3dsmax or gmax, and the
creation of correct texture files for the model.

Scripting is an integral part of model creation, however details on script code and usage are included in a
separate document. Only brief references to Scripting are made in this document, as far as they effect the creation
requirements.

New content creation features added to TC include:

ability to vary track sounds on track for tunnels and bridges and for bogeys (tracksounds)
basic animated turnouts
ability to create backdrop objects
control of invisible track display (visible in minimap)
third-party configuration tags, in an extensions container
use of asset thumbnails, replacing art files and other picture files
new coupler performance tags and wheelslip functions
a new kind steam engine and kind texture group.

These functions are described in Appendix D.

Please also check the Trainz Railroad Simulator website http://www.trainzclassics.com for any additional information
and updates.

Trainz Railroad Simulator 2006

CHAPTER 1
The Basics

http://www.trainzclassics.com

Version 3.0  �   Trainz Railroad Simulator - The Content Creator’s Guide

OVERVIEW

New in TC

TC introduces a number of new functions specifically
designed to enhance the performance of Trainz. The aim
in this build is to make the train driving experience more
realistic. Some of the new features in TC are.

In the Simulator:

• Flexible Cab Signalling system

• Headlight dimmer system

• Flashing ditch-lights

• Train controlled sounds, lights and boom gates at build-
in road crossings

• Automatic Train Protection options

• New sound functions for better representation of electric
traction

• New Freeways feature supporting and including one
way and multi-lane roads

• Remodelled roadway traffic featuring working head
lights

• Computerised in-cab displays

• Improved Heads-Up-Display options

• Improved session-design options

New Routes:

• a route based on the Harlem Line in New York,
developed by Auran staff

• also included is Metropolis - Modula City developed by
third party creators.

For Managing Content:

The Content Manager Plus module makes the
management of assets very easy. It is integrated with
the Download Station, listing the assets available on the
Download Station, enabling updating of the list when
connected to the Download Station via the Internet, and
making the upload or download an efficient and simple
process.

Content Manager Plus relies on a database of content in
your installation on your computer. This database makes
the loading of data into Trainz on start up very efficient,
and minimises load time.

For Content Creation:

The Content Creator Plus module is integrated with the
Content Manager Plus module. It is essential for creating
content in TC.This document will cover detail on how to
use Content Creator Plus to create config.txt files and
manage the asset files.

New functions in TC for creators are covered in Appendix
D.

The Basics of Content Creation
Creating new content for Trainz is generally a seven-step
process.

1. Research
The research step involves finding out all the relevant
information that you can about the item you wish to
create. Research usually covers the accumulation of
data about the content in question. The information
needed may cover technical drawings of front, side and
top, performance specifications (for loco engines), and
photo’s for texture reference.

You will generally find that much of this information can
be obtained by searching on the Internet. You should
also be aware of, and comply with, any copyright issues
on information obtained, including pictures, textures and
information.

2. Create a Mesh (.im file)
An .im file is an Indexed Mesh. These files are created by
exporting from ‘3D Studio Max’ (3dsmax) or ‘gmax’ using
an Auran Jet Trainz plugin. 3dsmax requires a plugin to
be separately installed, available for versions 4 and 5
from the Auran website:
http://www.auran.com/TRS2004/downloads/contentcreation/
TRS_Max4_Plugin_Bump.zip

Gmax is a program created by Discreet as a game-
specific version of their ‘3D Studio Max’ program. Gmax
is available for free download from:
http://www.turbosquid.com/gmax.

In order to use gmax with Trainz you will also need to
download the Trainz ‘Content Creation Pack’ from the
Auran website:
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_
Studio.zip

After installing and registering gmax, this pack installs
into gmax and will enable you to export content directly
into the .im file format that Trainz uses.

Note: Previous versions of Trainz used a ‘Progressive
Mesh’ file (.pm). Due to the new mesh reduction in TRS
(‘Level of Detail’ mesh reduction) only .im files are used,
progressive mesh files are obsolete. These files will still
function in TC, but for new models, the .im format should
be used.

So what is 3dsmax or gmax? These are 3D modeling
programs that enable you to make things such as

http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip
http://www.turbosquid.com/gmax.
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip

Version 3.0  �   Trainz Railroad Simulator - The Content Creator’s Guide

locomotives, items of rolling stock or scenery and
trackside accessories. They are quite complex programs,
and you can expect a steep learning curve should you
decide to dive in and learn asset creation. However, on
the plus side, the benefits are well worth it, and if you
take the time to learn it well, you will certainly be able to
create some masterpieces.

The free gmax program lacks a few features of 3dsmax,
notably a rendering option that allows you to see a
rendered picture of the mesh asset in the program,
while being developed, and the ability to export specular
lighting and bump mapped textures. These exports
enhance the visual effects of a locomotive boiler for
instance, but nevertherless, gmax is able to do most
things that a creator wishes, for models in Trainz.

3. Create textures
Creating textures for your assets is a very important part
of the content creation process. Making good textures
is one of the hardest things to do, but they can be the
difference between a good-looking model and a great
looking model.

Textures are created for Trainz using any 3rd party
program that supports the creation of 2D art, like Adobe
Photoshop or Paint Shop Pro.

There are a number of free programs that may be
available, but they may lack the functionality of the
commercial programs.

There are special requirements for texture types and
sizes for models, details are given in this document.

4. Create a ‘Config.txt’ file (config.txt file).
Each and every item of content for Trainz has it’s
own config.txt file. This file is a human-readable text
file included with its corresponding item of content.
Depending on what the item of content is will determine
the necessary contents of the text file, but it will always
contain a unique KUID, (a KUID is an identification serial
code defined a little later in this document), a description
and other information to make the model recognised by,
and function in, Trainz.

Items of content created for Trainz are always assigned
to a group of content called a KIND. A KIND is a type
of content that has particular properties that Trainz
recognizes. For example, one type of KIND is a TRACK.
Trainz understands that items of content that belong to a
group of this KIND define where locomotives and rolling
stock travel, the “steel rails” for trains (of course some
modern trains do not have “steel rails”, the Maglev for
instance). Other KINDs are listed later in this document.

The config.txt file also includes a number of statements
for content categories, time eras, Trainz Build, a list
of items that the model may depend on (a KUID list
of dependencies) and other instructions defining how
the asset will behave in Trainz, or assist the Download
Station to manage the content.

These instructions are called “tags” and a number of
“tags” may be grouped functionally into “containers”
within the config.txt file. Refer to examples later in this
document.

Previous versions of Trainz required the config.txt file
to be generated by a text editor such as Notepad, and
saved as UTF-8 code, not ANSI. This encoding option
is available from the save dialogue box. Programs such
as MS Word that can introduce unwanted formatting,
including non standard quotation marks, are not to be
used.

While it is possible to generate a config.txt file in this
manner for TC, the Content Creator Plus module will do
this work for you when you enter the appropriate data.

This document gives details on how to create mesh and
texture files, the config.txt file using the Content Creator
Plus module, and how to incorporate them into the Trainz
program.

5. Incorporate your asset into TC
Previous versions of Trainz relied on a special directory
(Downloads) where downloaded assets were stored.
When Trainz initially started it added these files to a
“cache”. Subsequently, starting Trainz loaded this cache,
which shortened the loading time considerably. Each time
a new asset was installed, the cache was recalculated.
If the Download Station Helper were used, the cach was
automatically recalculated after every asset install.

Previous versions of Trainz also used a separate Custom
model directory, to hold your newly created model files.
This directory was not included in the cache, and each
time Trainz started, files in this directory needed to be
added to the cache of downloaded and installed models.
If you had many models placed in this Custom directory,
Trainz could be very slow in loading.

TC does not use the installed Downloads directory nor
the Custom directory for models (except for Displacement
Kinds). All model assets are encrypted and incorporated
in Trainz as a total asset database. This makes for very
fast load times, but can restrict easy access to your files.

Briefly, when a new asset is created, Content Creator
Plus (CCP) creates a directory for the new asset under
the “editing” directory in your installed Trainz, and saves
a config.txt file in Explorer. This newly created directory
can then be located, and files may be placed or exported
for the asset mesh and textures. Even if the model is
only partly constructed, it can be viewed in Trainz, by
“committing” the asset into the database. The directory is
then removed automatically, and Trainz can be launched
to see the model.

On exiting Trainz, CCP can re-open the directory for
work to continue on the model and files if you wish. This
process will be fully explained in the following pages.

Version 3.0   �   Trainz Railroad Simulator - The Content Creator’s Guide

6. Upload your new content to the Auran
Download Station.
You should create all models for TC using the CCP
and CMP modules if you wish to upload to the Auran
Download Station. Content Manager Plus has an
integrated function to package your model for the
Download Station and upload it.

Content Manager Plus is a very useful application in that
it automatically performs error checking and simplifies
the preparation of your content for upload. The Content
Manager Plus module embeds information into the
upload package that is required by the Auran Download
Station.

Don’t include files such as .exe, .com or .bat in the model
files. Because these files are a potential source of virus
files they will not be packaged by CMP. Only in-game and
text files are packaged.

For information on how to upload files and the Download
Station requirements refer to Chapter 9.

7. Backup your new content
Backing up newly created content is important, in case
Trainz needs to be re-installed, or so that the content may
be modified at a later date. Once content is committed
into the database, the asset files are no longer available
for copying or viewing, unless they are re-opened for
editing. Re-opening files allows modifications to be made.

1. Assets on the Download Station may be installed by
re-downloading again. The Content Manager Plus (CMP)
module makes this a seamless task.

2. To disribute model assets to other users, outside of
the Download Station option, make a cdp file from within
CMP.

3. Assets may be archieved from within CMP. An archieve
name and location may be specified, and more than one
asset may be incorporated in the archieve. Trainz keeps
track of any archieve created, making an archieve does
not remove the assets from Trainz, it backs up the assets.

4. Of course the previous methods do not let you actually
see the individual asset files nor allow them to be altered.
To have access to the files, the asset is opened for
editing in Explorer. An asset directory containing the files
is created. This is found under the “editing” directory
in the Trainz installation. If the asset has been given a
username, the directory name will be that username. If a
username has not been allocated, a temporary directory
name using alphabetic and numeric characters will be
created.

The created directory can then be copied to another
location on the computer for backup or other purpose.
While creating an asset, this procedure may be useful
each time before committing the asset, to ensure that no
files are lost should a computer or program failure occur.
Remember that texture files and exported mesh files are

not easily accessible once the asset is committed.

5. A temporary directory could be created outside of
the Trainz installation and the texture files and mesh
files placed there. This directory can then be imported
into CMP, the drag and drop feature makes this quite
easy (drag the file directory into the main data window
of CMP). Of course a valid config.txt file needs to be
included for CMP to recognise the directory as a valid
asset. Opening the asset in CCP, correcting any errors, or
adding other tags and containers to finish the model, and
then saving the config.txt file will then create a build 2.5
asset.

KUID NUMBERING
A KUID is a unique number allocated to all content
created for Trainz and can be thought of as a bar code.

KUID2 Format
The KUID format in TC follows the standard adopted
in TRS2004, and takes the form of three Identification
Numbers (ID) each separated by a colon.

The breakdown of the KUID system is as follows:

<KUID2:User_ID:Content_ID:Version_ID>

An example of a Kuid number with actual figures:

<KUID2:171456:38001:1>

User ID Number
The number 171456 after the KUID2 is the USER_ID of
the content creator.

When you registered Trainz with the Planet Auran
website, you would have been issued with your USER_
ID. This is the number you should have entered into
Trainz as your USER_ID.

Planet Auran may be found by clicking with the left mouse
button on the Profil button in the top task bar of the
Forum page, or visiting the website:

https://www.auran.com/planetauran/login_f.php

Every member of the Trainz community who is a member
of Planet Auran has a USER_ID. Now, you may be
wondering why you need a USER_ID if you don’t intend
to make any content for Trainz. If you intend to make a
layout (route or map) at some point in time and you’d like
to share that layout with your friends or other community
members, then you are in fact a content creator.

Content ID Number
The middle number is the CONTENT_ID.

This is a number that the content creator assigns to each
creation to uniquely identify it, in previous Trainz builds.
In TC, the Content Creator Plus module will automatically
assign a CONTENT_ID when you create a new asset. It
will not repeat a number, and keeps track of all content

https://www.auran.com/planetauran/login_f.php

Version 3.0   �   Trainz Railroad Simulator - The Content Creator’s Guide

numbers installed, so you do not have to keep a separate
list or spreadsheet of CONTENT_ID numbers for your
model assets.

A CONTENT_ID number is also assigned automatically
when you save a layout (map).

The combination of a creator’s USER_ID and the
CONTENT_ID is unique, and will not conflict with assets
created by others.

Note:
Previous versions of Trainz used Content ID Ranges for
KUID creation. The automatic assignment of CONTENT_
ID numbers in TC has obsoleted the need for, or the
usefullness of, a specific range of numbers for different
kinds of assets.

Version ID Number
The third number is the asset Version_ID number. The
default for all assets is 0 e.g. <KUID2:xxx:yyyyy:0>

Should this asset require revisions after release to
the Trainz Download Station, the Version ID for each
subsequent revision may be updated as follows:
	 First revision		 <KUID2:xxx:yyyyy:1>
	 Second revision	 <KUID2:xxx:yyyyy:2>
	 Third revision		 <KUID2:xxx:yyyyy:3> Etc.
	
The maximum version number is 127. After the maximum
version number is used (rare) a new Content ID needs to
be allocated for this asset, and the previous one needs to
be added to the obsolete-table.

To make a new version asset, in CMP right click on the
asset and select “Create New Version”. The version
number will be incremented in the new model. Trainz
will use the highest version number found for the asset.
Obsoleting a KUID2 asset of the same content ID number
does not require the use of the obsolete table.

Obsoleting is a process of replacing a previous item with
a more recent one, for updating, improving, or replacing a
faulty model.

Example 1:
A model <KUID2:171456:38001:3> is to be replaced by a
newer version. The new number <KUID2:171456:38001:4>
is used in the new config.txt file. The previous model will
be replaced (obsoleted).

Example 2:
A model <KUID:171456:27001> (UTC version) is to be
replaced, using the new KUID2 format, and with a new
number, <KUID2:171456:27002:1>. Note the new content
ID number is different from the original asset.

In this case, the obsolete table container is used to show
the old model KUID to be obsoleted. In this way, the new
KUID is linked to that of the older asset.

Important Notes:

1. <KUID2:xxx:yyyyy:0> is exactly equal to <KUID:xxx:
yyyyy> in the old KUID format. These will be read as
duplicates should they be used simultaneously.

2. Similarly, <KUID2:xxx:yyyyy:1> acts as a KUID2 format
obsoletion of <KUID:xxx:yyyyy> .

3. Using the zero, “0” as the first version is acceptable,
however the display on the Download Station, and the
installed file will be in the UTC KUID format, without the
KUID2 format display. It is recommended that you start
the numbering at one, “1” if this is a problem to you.

4. The Download Station displays a History of obsoleted
models. If an obsoleted model has never been placed on
the Download Station, do not include it in your obsolete
table, it will result in a History error notification when you
try to upload the asset.

5. While you may use leading zeros in the KUID system,
a version “02” will be the same as “002” or “2”, and the
zeros will be truncated. It is recommended not to use any
leading zeros.

An asset placed in your map will display (show as) the
latest installed version. When retrieving an asset from the
Download Station, the newest version will be automatically
provided, and the Download Station will display a History
tag for the model versions. For further examples of the use
of the obsolete-table, refer to Chapter 2.

TRAINZ Build
Trainz build is the numbering system allocated to each
released version of Trainz. Content may be created for
different versions, making use of the newer functions in a
more recent release. Consequently, some models will not
function in earlier versions of the simulator.

It is important for models to list the version of Trainz
for which they are compatible. For older Trainz builds,
this is done by entering a Trainz-Build number in the
model config.txt file. The Content Creator Plus module
will automatically add the correct trainz-build 2.5 to the
config.txt file.

A model constructed for an older version may function
in a newer version, but this is not guaranteed, as there
have been amendments made to subsequent versions.
Likewise, a model using the latest functions will not work
in an earlier version.

The Download Station identifies which version of Trainz
you have installed and when you use the Download
Helper option, it will not allow the download of a more
recent model that is incompatible with your version.

The approved Trainz-Build version numbers are;
trainz-build 1.3 for Trainz
trainz-build 1.5 for Ultimate Trainz Collection
trainz-build 2.4 for Trainz Railroad Simulator 2004
trainz-build 2.5 for Trainz Railroad Simulator 2006
trainz-build 2.6 for Trainz Railroad Simulator 2006, SP1
trainz-build 2.7 for Trainz Classics

Version 3.0   �   Trainz Railroad Simulator - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 2
Introduction to Kinds, Containers,
Tags, and Config.txt files

This chapter introduces and discusses some of the Kinds, Containers and Tags used for common assets.
It is designed to give an introduction to, and understanding of, the way Trainz uses config.txt file to specify
how an asset is to be used and interpreted. Please refer to other Chapters for a full discussion on Kinds,
Containers, Tags, and asset examples.

Many of the examples in this chapter have been taken from earlier versions of Trainz. Nevertherless, they
are useful to give an outline of how assets and config.txt files are used. Please refer to later chapters for the
new look config.txt files constructed using CCP.

Version 3.0  �   Trainz Railroad Simulator - The Content Creator’s Guide

KINDS

Trainz recognises a number of Kinds of assets. Each
Kind has different attributes, allowing different asset
functions and behaviour to be used in the simulator.

In creating a new asset, a suitable Kind must be chosen.
The following is a list of all the Kinds that may be created
in TC, with a brief description.

Activity: An activity is a scripted scenario, that details
the locomotives and rollingstock used in a map, the
driver settings, commands and scripts. A train driver can
undertake a sequence of planned moves – a scenario.

Behavior: A configurable behavior module that forms part
of a session.

Bogey: Bogeys are locomotive or rolling stock wheel
mechanisms, sometimes known as ‘Trucks’. This asset
is for attachment to a traincar (locomotive or rollingstock)
and can include animation and a shadow model.

Bridge: Road or rail bridges and similar assets, as
variable length splines. The bridge kind may include
initiator and terminator segments, and shadows. The
height and gradient of the bridge spline may be varied in
Surveyor.

Buildable: A variant of Kind Scenery, with similar
attributes, but allowing attached track to be used as part
of the model. It does not support processes, as used in a
Kind Industry

Chunky-Track: Track and rails for Trains (the common
flexi-track), by defining the cross section shape and
properties of the track. It uses a texture file but does not
require a 3dsmax or gmax mesh model.

Double-Track: Track splines that may place two or more
tracks as one model, by specifying the track spacings to
be used.

DriverCharacter: The locomotive driver character. This
specifies the picture icon that appears in Driver for the
engine driver.

DriverCommand: A command for the train driver to
accomplish a specific task.

Engine: An engine specification for locomotives and
rollingstock, which defines the detailed performance
requirements; including throttle requirements, engine and
braking performance

EngineSound: An engine sound specification, detailing
the locomotive engine sound files, referenced by the
enginesound tag in a traincar kind.

Environment: Additional sky textures, specifying the
normal, night and stormy sky images to be used in Trainz

FixedTrack: A fixedtrack asset can be likened to a model
trains sectional track system. The models may be straight
or curved and snap into position when moved onto
another track in Surveyor.

GroundTexture: A ground texture is tiled in Surveyor to
color and cover the base grid. It can optionally reference
a low polygon mesh and insert the mesh automatically as
the ground is painted.

HornSound: A traincar horn sound, referenced by the
hornsound tag in a traincar config.txt file. It references the
various sound file to be used.

Html-Asset: An html-asset example is the ingame
tutorial. The config.txt file references one or more .html
pages. The html-asset can be referenced from scripts
and from some of the Surveyor rules

Industry: A scenery asset with product processing
functionality. Industry assets interact with compatible
rolling stock assets through their script file and asset
triggers. An Industry asset supports product queues and
attached track

Interior: A traincar interior asset. It allows the interior
mesh model to be defined, and may have attached levers
and controls to operate a locomotive in cab mode. It also
creates an interior for rolling stock.

Library: Coded modules that interact with other coded
modules.

Mesh: A mesh that is never referenced through Surveyor
panels, but referenced from another asset. It could be
referenced through the preview-mesh-kuid tag or as a
kind attachment effect, like the red arrows used on fixed-
track assets.

Mesh-Reducing-Track: Mesh-Reducing-Track is used
to create poly efficient splines. The asset consists of a
short high detailed mesh and a longer less detailed mesh,
based on the same object. The short mesh is displayed
when the camera is close to the asset whilst the long
mesh is shown when less detail is required, when the
viewpoint is further away.

MOCrossing: Combined rail and road crossings, that
reacts to trains or script control. This allows animation,
special lighting effects and attachment points for rail track
and roads.

MOJunction: Junction control levers, which are attached
to track junctions, include sound, and may be offset a
specified distance from the track. They can be used to
replace the default junction lever.

MOSignal: A train signal with lights (coronas). It specifies
the aspects the signal is capable of displaying, the light
points activated when each state is displayed, and the
corona details. The signal may be offset a specified
distance from the track.

Version 3.0   �   Trainz Railroad Simulator - The Content Creator’s Guide

MOSpeedBoard: A Speed limit sign for Trains. It displays
the maximum limit (sign texture made by the creator) and
the sign may be offset a specified distance from the track.
The limit to control train speed is specified in the asset in
metres per second.

Paintshed-Skin: A reskin texture for a locomotive or
rolling stock asset.

Paintshed-Template: A template for particular
locomotives and rolling stock that may be used in the
integrated Paintshed utility. The template may be painted
in different colour schemes

Pantograph: The animated mechanisms on the roof
of electric locomotives that conduct electricity from
the catenary (wires) above. It is referenced by the
pantograph tag in a traincar config.txt file.

Product: An individual product (commodity) that Trainz
compatible rolling stock and industry assets are able to
process. It specifies the type, unit of measurement and
the picture icon that displays the product in the simulator.
Produce and materials are product examples.

Product-Category: A category class of products
(commodities) that Trainz compatible rolling-stock and
industry assets are able to process. It specifies the
type, unit of measurement and the picture icon that
displays the category on Surveyor or Driver. Bulk,
liquid, passengers and containers are product category
examples.

Profile: A Profile is known as a Session in Trainz. This
kind creates a session defining a single route with
different consists, starting points, and industry outputs.
Different sets of trains may be used in each different
session.

Region: A region is chosen in Surveyor to create a new
map or route. This Kind creates a new region in addition
to the in-built regions, such as Australia or USA for
example. The region can define geographical location,
road traffic and weather conditions.

Scenery: A basic scenery asset, that supports night
lighting, smoke (particle) effects, sound and animation. It
is height adjustable and forms the majority of map objects
used.

Scenery-Trackside: A special scenery asset, attached to
rail track, with the offset distance from the track specified
in the asset. Examples could include a signal box, or
dummy track sign or track object.

Steam-Engine: The special engine specification
for steam locomotives, which defines the detailed
performance requirements, including throttle settings,
engine and braking performance, and boiler capacity and
steam attributes.

Texture: A simple texture as an asset that can be
referenced from another asset for example, a custom

corona, by reference to its kuid.

Texture-Group: Defines a group of textures as an
asset that can be referenced from another asset or via
scripting.

Track: Variable length spline based track, roads, and
other scenery items. Tracks may include initiator and
terminator segments, and are height adjustable. Other
examples include fences, power lines and hedges.

TrackSound: A sound asset that is referenced by track
or bogeys to play a different sound from the default
track/train sound (for example, when a train travels over a
bridge or through a tunnel).

Traincar: A locomotive or rolling stock item. A traincar
specifies the dependant assets (bogey, engine sound,
engine specification, pantograph and interior), to make a
complete traincar asset.

Tunnel: Road and rail tunnel variable length splines.
These allow the spline to be placed below ground and
usually require an integrated initiator and termination
mesh as a tunnel entrance.

TurnTable: A turntable asset for moving or rotating
traincars, specifying the static and moving part of the
turntable. Animated rotation (turntable) and lateral
translation (transfer table) assets are supported.

Water2: Animated water texture assets.

There is two additional Kinds that are used by Trainz,
but may not be created from within Content Creator Plus
(CCP):

Map Kind:

A map kind needs a number of files to be created when
saving from Surveyor. This is not possible from within
CCP. However, a Map Kind created in Surveyor may be
edited in CCP, for instance, to add specific car Kuids
to the Map file. These cars will then be mixed with the
default in-built cars on roads in the map.

Displacements:

This is a special Kind that is not created in CCP as it
does not require a config.txt file. Displacement maps are
used to create the differing height/depth and shape of an
area of terrain, based on shades of grey in a .bmp file.

The graphic file is placed in the Displacements directory
under the installed Custom directory in Trainz. This is the
only instance where the Custom directory is used in TC.

Refer to the discussion on Page 340.

Version 3.0   �   Trainz Railroad Simulator - The Content Creator’s Guide

Config.txt Files

Ea��� ch model asset that is created requires a config.txt file.
This file is a simple text file that is used to describe the
item of content to Trainz.

In previous Trainz Builds, the config.txt file was created
in a text editor. TC now uses the Content Creator Plus
module to create the required file, using a series of input
boxes in a graphical user interface. This simplifies the
creation of the file and allows the file to be checked for
errors.

Because each different ‘KIND’ has a different config.
txt requirement, please refer to the appropriate KIND
descriptions and information on the following pages.

Containers

A data container is a portion of the config.txt file that
covers a particular function for the model, for example the
model mesh files to be used, or the effects to be applied.

The model asset has a top level container for data that is
required for, or is common to, most model assets. Nested
in this container may be other subcontainers, each
describing a particular function of the asset.

Tags
Within a container the commands that Trainz recognizes
are called Tags. Each tag indicates data values to be
used or a function to be implemented.

Dialogue boxes and drop down menus are provided for
the data entry in CCP and in-built error checking will
indicate faulty data or entries. An error message display
will assist in creating a correctly configured model.

Directory Structure
A new asset requires that the config.txt file, mesh files,
texture files and other files be placed in a directory. This
directory is created whenever a new asset is commenced
in CCP.

The arrangement of files within the main directory or a
subdirectory is, in most cases, the choice of the creator. It
may be convienient to group some files in a subdirectory,
for example, the night directory mesh and texture files.
This can make it easy to distinguish the files associated
with a particular part or function of an asset. The mesh
table layout adopted since TRS2004, makes it easy to
point the config.txt file data to the required subdirectories.

For some Kinds, certain files may be required to be
placed in particular directories, and the creator has no
choice in the layout of the directories. The creator will
make the required sudirectories, and place the files.

In these instances, requirements will be shown in the
examples in the following Chapters and pages.

In other instances it may be more convienient to use
only one main directory for all meshes and texture files
for the asset. This can result in a smaller cdp file than
if subdirectories were used. For example, sometimes a
night mesh model may use the same texture files as the
day mesh model. If these same textures are placed in the
main directory and also in a night subdirectory, the files
are actually loaded twice in the cdp package.

The same file in different locations, or a different texture
file using the same file name in a separate subdirectory,
are converted to binary form in the packaging process,
and are given a unique binary identifier. This means that
they have to be loaded individually into Trainz memory
and can effect the frame rate and loading of Trainz.

Kinds and Container Relationship
Each Kind has unique attributes, but also shares some
attributes with other Kinds. The tables in Chapter 11 show
the types of containers that are available in each Kind.
These will indicate which asset Kind may be the most
suitable for a particular model to be created, and also
show the relationship of Kinds and containers.

Refer to the following chapters for a discussion and use
of Kinds and Containers.

Version 3.0  1 0   Trainz Railroad Simulator - The Content Creator’s Guide

Ea��� ch item of content that you create is required to have
a config.txt file. This file is a simple text file that is used to
describe the item of content to Trainz. TRS assets have
become far more flexible through the use of the new
mesh-table fields.

Because each different ‘KIND’ has a different config.
txt requirement, please refer to the appropriate KIND
descriptions on the following pages.

Example Config.txt File, General breakdown:

General
While there is great flexibility in the order of placement of
information in the config.txt file. It is important to ensure:
the correct number and orientation of brackets;
correct spaces within the statements are used; and
the correct lower case or capitalisation is used for names.
While the tabbing of information across the page is not
mandatory, it assists in the readability and debugging of
the file.

Note: CCP will format your config.txt file in this
manner, and enter the correct brackets, quotation
marks and spacings. Do not remove any apparent
blank line at the top of such a file if you edit it in
Explorer, as it contains hidden information used by
Trainz.

kuid
Unique ID of this asset. The KUID contains basic creator
information.

The New KUID2 format in TRS gives greater version
control and flexibility over asset updates. It eliminates the
need to give a new Content ID every time you the creator
releases a new version of the same asset. Refer to the
KUID2 information on Page 4.

mesh-table
This is the new and preferred method of asset mesh
placement for most mesh asset types. It gives flexibility
and control for mesh placement and animations.

There are some asset types that cannot use a mesh-
table. These include all Bridges, Tunnels, Rails,
Pantographs and Other Spline Objects (eg. Fences or
Catenaries).

Important Note:
Any asset that uses a mesh-table will not be compatible
with pre-TRS versions of Trainz (i.e. Ultimate Trainz
Collection or UTC). TRS will of course still read UTC
assets.

As with most major software releases, backwards
compatibility is usually achievable, while forwards
compatibility is often impossible.

default
Default is the ‘main’ mesh of the asset.

Blue text: Required tags Green text: Optional tags.

kuid <KUID2:1234:5678:1>
mesh-table
{
 default
 {
 mesh industry.lm
 anim anim.kin
 animation-loop-speed 1.0
 auto-create 1
 effects
 {
 0
 {
 kind name
 fontsize 0.15
 fontcolor 30,30,30
 att a.name0
 name name
 }
 1
 {
 kind corona
 att a.coronawhite
 frequency 1
 directional 0
 texture-kuid <KUID:-3:10111>
 }
 }
 }
 default-night
 {
 mesh nightwindows/nightwindows.im
 night-mesh-base default
 }
 attachedanimation
 {
 mesh subdirectoryname/meshname.im
 anim subdirectoryname/animname.kin
 auto-create 1
 att a.pointname
 att-parent default
 animation-loop-speed 1.0
 }
}
kuid-table
{
 0 <KUID2:1234:6000:1>
 1 <KUID2:1234:6001:3>
}
obsolete-table
{
 0 <KUID:1234:5677>
}
preview-mesh-kuid <KUID:##:####>
username My Locomotive
description "You can have multiple lines
but no double quote characters in here.
Trainz automatically wraps this text. This
information is displayed with the model
on the Download Station. Please make the
description useful and informative."
region Australia
trainz-build 2.5
kind traincar
category-class AD
category-region AUS:US
category-era 1960s;1970s;1980s
author Spock2204
organisation Auran Trainz
contact-website http://www.auran.com/

Note: This example
refers to a .lm file
(LOD file). The mesh
tag could also refer
to the mesh itself i.e..
industry.im. If this
were the case the
asset would not have
LOD mesh reduction.

See Page 370 for
Level of Detail (LOD)
information.

CONFIG.TXT FILES

Version 3.0  11   Trainz Railroad Simulator - The Content Creator’s Guide

mesh
The ‘main’ mesh name. This may include a sub-path.
ie: mesh nightwindows/nightwindows.im, where the file
nightwindows.im has been placed in the subdirectory
nightwindows.

Use .im files exported from 3dsmax or gmax (as opposed
to .pm.) or reference an .lm file if you wish your asset
to have ‘Level of Detail’ mesh reduction. A pantograph
model still requires a .pm file.

Level of detail is a process of using different model
meshes, depending on how far the viewer is from the
model. A finer mesh is used for close up viewing in
Trainz. For further information please refer to Page 370.

anim

The animation file (.kin) exported from 3dsmax or gmax.
This may include a sub-path.

animation-loop-speed 1.0
This tag must be here if the asset is to animate when
placed. If this tag is not here when placed the animation
will not play by default, but may play if controlled by
script. A different value (e.g. 0.5, 2.0) may be used in the
tag to play the animation at a different speed from that
created in 3dsmax or gmax.

auto-create 1
The model is generated automatically when placed, or
when you load a map which includes the model. In some
instances you don’t want the mesh visible (as this may be
controlled through script). If auto-create is 0 the mesh will
not be visible when placed.

default-night
‘Main’ night window mesh on scenery and industry and
traincar assets. Modeled to the same 3d space as the
default mesh and is inserted at the default mesh origin.
Note that this example on the previous page has placed
the mesh in a subdirectory, “nightwindows”.

night-mesh-base default
This night mesh is linked to the default mesh and is
visible only at night. It is invisible if the ‘default’ mesh
is invisible, (if the auto-create 0 line were used so the
default mesh can be controlled by script).

att
The mesh (and animation if present) is inserted at a mesh
attachment point rather than the origin (without this line
the mesh is placed relative to the origin of the parent
model).

att-parent name
The tag tells Trainz in which mesh the attachment point is
located. The insertion attachment point is located within
the mesh ‘name’ , as listed in the config.txt.

kuid-table
A list of KUIDs required for this asset to function correctly.

A kuid-table must be included where the config.

txt references additional KUIDs, such as a bogey, or
a pantograph, including Auran built-in KUIDs. The
Download Station performs a search, and those found
are added to the download pack.

obsolete-table
The obsolete-table describes the asset’s revision history.

This field was used extensively for pre-TRS assets, as
each version required a unique Content ID. However
in order to make the content creator’s life a little easier,
Trainz now uses the KUID2 format which adds another
number as a version number. For KUID2 information see
Page 4.

TRS and the Trainz Download Station automatically
detects the most recent version of an asset whether it be
through the KUID2 Version ID or through the obsolete-
table.

If there are no obsoletes, leave the obsolete tags out.

preview-mesh-kuid
Only add this to reference a different mesh for the
Surveyor preview window. This is useful when an asset
has a large bounding box. i.e. the Airport with it’s jet
animation. By using a different (smaller) mesh it will
fit better in the preview window. It can also reduce the
polycount on screen. It is also used for an asset that does
not have a mesh (fixed track fro example).

username
The human-readable English name of this asset.
Language versions are available.

description
The human-readable multi-line English description of
this asset. It displays on the Download Station with your
model, so please make it useful and informative so others
may understand your model, for instance, entering what
the model is called and under which name and category
it may be found in Surveyor. It is very useful in finding an
installed model. Language versions are available.

region
The country region to which this asset belongs, not used
for TC - category region is used instead - see below.

trainz-build
The Trainz build is the version number for which
this asset was created. Refer to Page 5 for further
information.

kind
The asset kind. Must be one of the Auran-supplied asset
kinds. i.e. kind industry

category-class
The class code for this asset. Refer to Appendices.

category-region
A list of REGION codes or REGION GROUP codes,
formatted by CCP into one tag line in the config.txt file.
Refer to Appendices.

category-era

Version 3.0  1 2   Trainz Railroad Simulator - The Content Creator’s Guide

A list of ERA codes, formatted by CCP into one tag line in
the config.txt file. Refer to Appendices.

other entries
You may enter data for additional information in the
config.txt file, such as:

author, contact-email and contact-website are useful
information, particularly if a user has a question on your
models or would like to offer help or suggestions.

organisation name will show in Trainz in Railyard as the
organisation for the model, for instance if you use Joe’s
Trainz or Cripple Creek Logging Company.

license will show information on how you wish your
models to be used by others, and any limitations.

Note: In Content Creator Plus, go to the Preferences
... General option and enter the details for the above
tags. When one of the tags is selected, CCP will
populate the tags dialogue box in your new asset
with the data.

EFFECTS (optional mesh-table variables)

EFFECT: KIND NAME
Some assets may have editable signs. When you set an
asset’s name in surveyor through the Edit Properties icon
(‘?’ icon) the signage can be set-up to automatically
update. The variables can be set for each sign.

Typical Kind Name mesh table set-up
You do not have to use the 0,1,2... block naming
convention.

For the name effects described in the example, 0 could
easily be mainsign or something more relevant to your

model.

Setting unique names may be useful for script purposes,
so you can easily recognise a script reference for
instance.

Breakdown of KIND NAME:

kind name
The effect kind

fontsize
The size of the sign text

fontcolor
The colour of the sign text in r.g.b.

att
The sign text insertion point (part of the mesh). The
attachment point must be orientated correctly in 3dsmax
or gmax.

The diagram shows the correct orientation of the axis.

Points are placed in top view in 3dsmax/gmax. When
aligning the point in 3dsmax of gmax, click on the
Hierarchy - Affect Pivot Only option to examine the axis
direction, turn off the Affect Pivot Only selection, and
rotate the point itself to the correct orientation. Click
on the Affect Pivot Only option again to check the new
alignment. Make sure you rotate the point, not the axis.

name
The default text when placed

When name name is specified, it uses the asset’s
changeable name option, changed through the Edit
Properties icon (the ‘?’ icon) in Surveyor.

If name Graceland (for example) were used, the sign
would never be able to be changed, even though the user
may have changed the asset’s name in Surveyor.

When you use the name tag, this name will appear in the
minimap. In some instances the names will be hard to
distinguish in a crowded map. For this reason, it may be
advisable to limit the use of the name tag to objects that
have a use for the attribute.

EFFECT: KIND CORONA

A corona is a ‘glow’ light effect. It is a simple texture
that is inserted at an attachment point within the mesh.
Coronas can be added to any asset that uses a mesh-
table.
Examples of coronas used in-game can be seen on the

mesh-table
{
 default
 {
 mesh industry.lm
 auto-create 1
 effects
 {
 0
 {
 kind name
 fontsize 0.15
 fontcolor 30,30,30
 att a.name0
 name name
 }
 1
 {
 kind name
 fontsize 0.3
 fontcolor 30,30,30
 att a.name1
 name name
 }
 }
 }
}

Version 3.0  1 3   Trainz Railroad Simulator - The Content Creator’s Guide

Airport and Airport basic assets. The Jumbo Jet, the
Cessna and the Airport tower all use flashing coronas.

Breakdown of KIND CORONA:

kind corona (required)
The effect kind

att (required)
The corona insertion point in the main mesh.

Typical Kind Corona mesh-table set-up

texture-kuid (optional)
Add this tag only when you want to specify your own
texture for the corona. It specifies the KUID of a kind
texture asset. See KIND TEXTURE.

defaults to 0.15 (i.e. 0.15m)

TRS released corona textures:
  •  Yellow/orange corona	 Default (if no texture-kuid)
  •  Green corona		 <KUID:-3:10110>
  •  Red corona		 <KUID:-3:10112>
  •  White corona		 <KUID:-3:10111>

EFFECT: KIND TEXTURE-REPLACEMENT
This effect was created for rolling stock items to swap the
visible texture of bulk loads (such as coal or woodchips).

If a coal car is set up to take any bulk load (which
includes woodchips) the ‘coal’ texture on the load
mesh will update to a ‘woodchips’ texture when it loads
woodchips.

For detailed information on the setup of rolling stock load,
see Page 372.mesh-table

{
 default
 {
 mesh asset.lm
 auto-create 1
 effects
 {
 0
 {
 kind corona
 att a.corona0
 texture-kuid <KUID:-3:10110>
 frequency 2
 directional 0
 object-size 0.20
 }
 1
 {
 kind corona
 att a.corona1
 }
 }
 }
}

If the texture-kuid tag is not present the corona will use
the default yellow/orange texture in TRS.

frequency 2 (optional)
This variable specifies the frequency in Hz (or ‘flashes’
per second). e.g. 1 for once per second, 0.5 for once
every 2 seconds, 2 for twice per second.

directional 0 (optional)
The default for coronas is to be aligned to the attachment
point to face the NEGATIVE Z direction. This is especially
useful for Traincars.

Adding this tag over-rides this behavior, to make the
corona always face the screen – useful for scenery
objects.

object-size 0.15 (optional)
Size of the corona on the object when viewed up close,

Version 3.0  14   Trainz Railroad Simulator - The Content Creator’s Guide

EFFECT: KIND ATTACHMENT

In TRS we have the ability to attach a mesh into another
mesh by referencing it’s KUID through a mesh-table.
An example is the red display arrows for the fixed-track
assets.

Rather than having an arrow in each fixed-track asset
directory, we saved a lot of memory space by making the
config.txt file reference a KUID of that mesh. Therefore,
it only needed to be cached once. The mesh to be used
should only be of kind scenery or kind mesh.

Kind Attachment example (fixed-track)
username FT 10 Deg 700m Rad
kind fixedtrack
kuid <KUID2:####:#######:1>
region Fixed track
preview-mesh-kuid <KUID:-3:10099>

mesh-table
{
 default
 {
 mesh 10-700.im
 auto-create 1
 effects
 {
 arrow0
 {
 kind attachment
 att a.track0a
 default-mesh <KUID:-3:10092>
 surveyor-only 1
 }
 arrow1
 {
 kind attachment
 att a.track0e
 default-mesh <KUID:-3:10092>
 surveyor-only 1
 }
 }
 }
}

attached-track
{
 track0
 {
 track <KUID:-1:15>
 vertices
 {
 0 a.track0a
 1 a.track0c
 2 a.track0e
 }
 }
}

WARNING: Never cross-reference a kind attachment
KUID with the assets own KUID, unless of course you
want to see an instant fatal error!

Fixed Track configuration used in the example

Arrow mesh config.txt (for reference)
kuid <KUID:-3:10092>
kind mesh
mesh-table
{
 default
 {
 mesh arrow.im
 auto-create 1
 }
}

Breakdown of KIND ATTACHMENT:

Note that the example covers the information relating to
the attachment. Additional entries for category region,
era, trainz-build, etc. are necessary to make a complete
config.txt file.

kind attachment (required)
The effect kind

att (required)
The insertion point of the attached mesh. In the example
left, it is the origin of the ‘default’ mesh.

default-mesh <KUID2:####:#######:1> (required)
The KUID of the attached mesh.

surveyor-only 1 (optional)
Adding this means the attached mesh will only be visible
in Surveyor and not Driver.

For tracks, this is especially handy so you know when
it starts and ends, but it won’t be there when driving
around.

attached-track
Information on the track to be attached to the model by
Trainz. This includes a name for the track (track0), the
track KUID to be used, and attachment points placed
in the 3dsmax/gmax model to define the curve for the
attached track to follow.

The points use the a.name naming convention, any
names may be used, but using the “track” name
(a.track0a) for rails, and the “road” name (a.road0a)
is convienient. A specified road spline connection will
generate road traffic.

See Page 75 for more details on using the attachment
points and the special orientation of the axis at the ends
of the track.

Version 3.0  15   Trainz Railroad Simulator - The Content Creator’s Guide

This effect is used when a mesh has a variety of
animations. Usually the animations will be controlled by a
script related to the asset.

An example of the kind animation effect is the PB15
interior coalman. The script for this ties in the animations
with the coal requirements of the steam locomotive.

coalman
 {
 mesh coalman/coalman.im
 auto-create 1
 att-parent default
 att a.coalman
 effects
 {
 shovel
 {
 kind animation
 anim coalman/coalman_shovel.kin
 }
 wave
 {
 kind animation
 anim coalman/Coalman_wave.kin
 }
 Etc...

Breakdown of KIND ANIMATION:

kind animation (required)
The effect kind

anim (required)
Reference to the animation file (.kin)

looped 1 (optional)
Use only if the animation is looping (repeating).
Default 0 (i.e. not looped).

speed 1 (optional)
Speed factor of the animation.
Default 1
2 = Double speed
0.5 = Half speed

The PB15 config.txt can be viewed on: Page 50

The PB15 interior script can be viewed on: Page 54.

EFFECT: KIND ANIMATION KIND: HTML-ASSET

A html-asset can be referenced from the scripts and from
some of the Surveyor rules (i.e. you select the html-asset
by name, then type in the name of the *.html file in the
small edit box).

A typical example of KIND: html-asset in use is the in-
game tutorial.

The general setup is very simple, you bundle your
config.txt along with one or more .html pages.

Config.txt

kind html-asset
username "my html page"
kuid <KUID2:####:#####:0>

tut_1a.html

<HTML>
	 <BODY>
		
	 <BODY>
</HTML>

Version 3.0  16   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: PRODUCT
KIND: PRODUCT-CATEGORY

OVERVIEW
Products are the commodities that TRS compatible rolling
stock and industry assets process. TRS released prod-
ucts fall under one of four product-categories... Liquid
Load, Bulk load, Container or Passenger.

This document description is not only to give you the list
of products and product categories, but to also give you a
better understanding of how the products are used.

As product-categories are fundamentally different to
products, so too are they dealt with differently. A rolling
stock item may be able to pick up anything that falls
under a product-category or be limited to one or a few
products only.

For example, passenger cars can only take passengers,
where-as a gondola may be set up to take any bulk load
available.

IN-GAME VISUALISATION OF PRODUCTS.

In TRS, products can be displayed in a few ways:

An animated load representation.
This technique is used for bulk-category loads such as
coal or woodchip products both in industry and rolling
stock assets and for liquid loads through indicators
adjacent to storage tanks. The animation is non-looping.
Say we have an industry bulk load animation with the
frames running from 0 to 30. Empty will be at frame 0 and
full will be at frame 30.

TRS RELEASED
PRODUCT-CATEGORY LIST
(kind product-category)

  •  Container	 <KUID:-3:10042>

  •  Bulk Load	 <KUID:-3:10040>

  •  Liquid Load <KUID:-3:10044>

  •  Passenger	 <KUID:-3:10091>

kind product-category
kuid <KUID:-3:10042>
username Container”

Container Category Config.txt

kind product-category
kuid <KUID:-3:10091>
username �����������"����������Passenger�"

Passenger Category Config.txt

kind product-category
kuid <KUID:-3:10040>
username ����������� "���������� Bulk Load�"

Bulk Load Category Config.txt

kind product-category
kuid <KUID:-3:10044>
username ������������� "������������ Liquid Load�"

Liquid Load Category Config.txt

Product Category Container:
  •  20ft Container 	 <KUID:-3:10014>
  •  40ft Container	 <KUID:-3:10041>
  •  General Goods	 <KUID:-3:10013>
  •  Log			 <KUID:-3:10001>
  •  Lumber		 <KUID:-3:10003>

Product Category Bulk Load:
  •  Coal		 <KUID:44179:60013>	
  •  Woodchips		 <KUID:-3:10002>

Product Category Liquid Load:
  •  Aviation Fuel	<KUID:-3:10045>
  •  Crude Oil		 <KUID:-3:10010>
  •  Diesel Fuel		 <KUID:-3:10011>
  •  Petrol Fuel		 <KUID:-3:10012>
  •  Water		 <KUID:-3:10004>

Product Category Passenger:
  •  Passenger		 <KUID:-3:10060>

TRS RELEASED PRODUCT LIST (kind product)

Texture swapping is possible for some rolling stock bulk
loading assets. Details of how the texture swapping is set
up is available on Page 372.

Mesh attachment representation.
This technique is used for container-category loads such.
20ft and 40ft Containers, General Goods, Lumber and
Logs all use this technique. If a piece of rolling stock has
the potential to carry several product types (such as a
flat car), it is possible to set up the loads to be mutually
exclusive through it’s config. That is, if it has capacity of
one load, it cannot load any other product types.

‘View details’ Driver information window display.
This (of course) can be used for all rolling stock items, but
specifically, it is the means to see the load of rolling stock
that cannot otherwise visually display it’s load. i.e.. Tank
Cars and enclosed Box Cars.

Box cars can be setup to take General Goods but are
constructed without load attachments.

Note: Tank cars and tenders may use a separate
animated ‘loader’ mesh to visualise the loading of liquids.
This is set up through the industry asset’s script and the
rolling stock item’s config. For script reference please
refer to the API Programmer’s Reference Manual:
http://www.auran.com/TRS2004/trssp4dl/dfile.
php?FileID=10

Refer to KIND TRAINCAR for links to in-game examples,
descriptions and source files of the various types of
product compatible rolling stock.

http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10
http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10

Version 3.0  1 7   Trainz Railroad Simulator - The Content Creator’s Guide

PRODUCT CONFIG.TXT FILES

Legend:
kind product = New kind in TRS
product-category = KUID of applicable category for this product
instance-type resource = Used when there is no mesh (or only one mesh) is referenced in the mesh table (i.e. Liquids, Bulk loads etc.).
instance-type instance = Used when more than one mesh is in the mesh table i.e: Passengers, General Goods. 200 max.‘size’ per
Asset.
icon-texture = the in-game representation of the product when specifying the load type for a compatible rolling stock item (in
Driver). The icon can alternatively be included in the thumbnail container - Trainz will look for the file and select by the 64x64 size.
mass = The physical mass of the product (or is that ‘virtual’ mass?) 
	 • For Containers and Passengers this is calculated in kilograms/unit
	 • For Liquid and Bulk loads this is calculated in kilograms/litre
product-texture = The texture to be used with load ‘texture-replacement’. i.e. When a hopper loads woodchips instead of it’s
default load of coal. Refer to Load_Texture_Replacement.pdf for details.
allows-mixing 1 = Products with this tag may be combined in a single queue along with other products of the same category.
Eg. Lumber and 20ft Container on a flatcar. By default, allows-mixing is set to 0. Therefore by default, a queue will only allow one
product-category at a time.
- To look at allows-mixing from another angle, liquid products should never have allows-mixing enabled. Otherwise you have the
potential to mix petrol with oil all within the same tanker, and I don’t think cars like 2-stroke fuel too much! 
We have placed Products and Product-Category files in the ‘scenarios’ directory. (This location is not mandatory though).

kind product
kuid <KUID:-3:10045>
username ��������������� "�������������� Aviation Fuel�"

product-category <KUID:-3:10044>
instance-type resource
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 0.800

mesh-table
{
}

Aviation Fuel Product Config.txt Aviation Fuel directory structure

AVIATION FUEL PRODUCT

kind product
kuid <KUID:44179:60013>
username ������"�����Coal�"

instance-type resource
product-category <KUID:-3:10040>
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 0.860

product-texture ��������������"�������������coal.texture�"

mesh-table
{
}

Coal Product Config.txt

Primary=Coal_icon.tga
Alpha=Coal_icon.tga
Tile=none

icon_texture.texture.txt

Coal_icon.tga
64x64 32 bit

Coal directory structure

COAL PRODUCT

Primary=AvGas.tga
Alpha=AvGas.tga
Tile=none AvGas.tga

64x64 32 bit

icon_texture.texture.txt

Version 3.0  18   Trainz Railroad Simulator - The Content Creator’s Guide

General Goods Product Config.txt

GeneralGoods.tga
64x64 32 bit

GENERAL GOODS PRODUCT

kind product
kuid <KUID:-3:10013>
username ��������������� "�������������� General Goods�"

product-category <KUID:-3:10042>
instance-type instance
icon-texture “icon_texture.texture”

mass 1400

mesh-table
{
 default
 {
 mesh general_goods.im
 }
 crate2
 {
 mesh crate2.im
 }
 crate3
 {
 mesh crate3.im
 }
 crate4
 {
 mesh crate4.im
 }
 crate5
 {
 mesh crate5.im
 }
 crate6
 {
 mesh crate6.im
 }
 crate7
 {
 }
}

allows-mixing 1

icon_texture.texture.txt

General Goods directory structure

Primary=GeneralGoods.tga
Alpha=GeneralGoods.tga
Tile=none

icon_texture.texture.txt

General Goods Mesh Dimensions

Length������������ 		 1.6 metres
Width		 1.6 metres
Height		 2.8 metres

Note: The circular icon is made using an opacity map as
the Alpha channel in the .tga file. This is a white circle
and black background to cut out the circular shape. Both
Primary and Alpha lines in the texture.txt file refer to the
same .tga file.

	 iconfile.tga	 alpha channel in file

Version 3.0  19   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:-3:10010>
username “Crude Oil”

product-category <KUID:-3:10044>
instance-type resource
icon-texture “icon_texture.texture”

mass 0.9

mesh-table
{
}

Crude Oil Product Config.txt

Primary=CrudeOil.tga
Alpha=CrudeOil.tga
Tile=none

icon_texture.texture.txt

CrudeOil.tga
64x64 32 bit

Crude Oil directory structure

kind product
kuid <KUID:-3:10011>
username ������������� "������������ Diesel Fuel�"

product-category <KUID:-3:10044>
instance-type resource
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 0.830

mesh-table
{
}

Diesel Fuel Product Config.txt

Primary=Diesel.tga
Alpha=Diesel.tga
Tile=none

icon_texture.texture.txt

Diesel.tga
64x64 32 bit

Diesel Fuel directory structure

DIESEL FUEL PRODUCT

CRUDE OIL PRODUCT

Version 3.0   20   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:-3:10014>
username ���������������� "��������������� 20ft Container�"

product-category <KUID:-3:10042>
instance-type instance
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 11000

mesh-table
{
 default
 {
 mesh 20ft_container.im
 }
 20ft_Pil
 {
 mesh 20ft_Pil.im
 }
 20ft_Capital
 {
 mesh 20ft_Capital.im
 }
 20ft_matsui
 {
 mesh 20ft_matsui.im
 }
 20ft_Gen1
 {
 mesh 20ft_Gen1.im
 }
}

allows-mixing 1

20ft Container Product Config.txt

Primary=Containers20ft.tga
Alpha=Containers20ft.tga
Tile=none

icon_texture.texture.txt

Containers20ft.tga
64x64 32 bit

20ft Container directory structure

20 FT CONTAINER PRODUCT

20 ft CONTAINER Mesh Dimensions

Length������������� 		 6.10 metres
Width		 2.44 metres
Height		 3.05 metres

Version 3.0   21   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:-3:10041>
username ���������������� "��������������� 40ft Container�"

product-category <KUID:-3:10042>
instance-type instance
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 22000

mesh-table
{
 default
 {
 mesh 40ft_container.im
 }
 pils
 {
 mesh 40ft_pils.im
 }
 matsui
 {
 mesh 40ft_matsui.im
 }
 capital
 {
 }
 blue
 {
 mesh 40ft_blue.im
 }
}

allows-mixing 1

40ft Container Product Config.txt

icon_texture.texture.txt

40 FT CONTAINER PRODUCT

40ft Container directory structure

Primary=Containers40ft.tga
Alpha=Containers40ft.tga
Tile=none

Containers40ft.tga
64x64 32 bit

icon_texture.texture.txt

40 ft CONTAINER Mesh Dimensions

Length�������������� 		 12.20 metres
Width		 2.44 metres
Height		 3.05 metres

Version 3.0   22   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:-3:10003>
username ��������"�������Lumber�"
product-category <KUID:-3:10042>

instance-type resource
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 8000

mesh-table
{
 default
 {
 mesh lumberstack.im
 }
}

allows-mixing 1

Lumber Product Config.txt

Primary=Lumber.tga
Alpha=Lumber.tga
Tile=none

icon_texture.texture.txt

Lumber.tga
64x64 32 bit

Lumber directory structure

kind product
kuid <KUID:-3:10012>
username “Petrol Fuel”

product-category <KUID:-3:10044>
instance-type resource
icon-texture “icon_texture.texture”

mass 0.7

mesh-table
{
}

Petrol Fuel Product Config.txt

Primary=Petrol.tga
Alpha=Petrol.tga
Tile=none

icon_texture.texture.txt

Petrol.tga
64x64 32 bit

Petrol directory structure PETROL FUEL PRODUCT

LUMBER PRODUCT

Log Mesh Dimensions

Length������������ 		 6.0 metres
Diameter	 1.2 metres

Lumber Mesh Dimensions

Length������������� 		 6.10 metres
Width		 2.13 metres
Height		 1.62 metres

Version 3.0   23   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:-3:10004>
username �������"������Water�"

product-category <KUID:-3:10044>
instance-type resource
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 1.0

mesh-table
{
}

Water Product Config.txt

Primary=Water.tga
Alpha=Water.tga
Tile=none

icon_texture.texture.txt

Water.tga
64x64 32 bit

Water directory structure

kind product
kuid <KUID:-3:10002>
username "Woodchips"

instance-type resource
product-category <KUID:-3:10040>
icon-texture "icon_texture.texture"

mass 0.400

product-texture "woodchips.texture"

mesh-table
{
}

Woodchips Product Config.txt

Primary=WoodChips_icon.tga
Alpha=WoodChips_icon.tga
Tile=none

icon_texture.texture.txt

WoodChips_icon.tga
64x64 32 bit

Woodchips directory structure

WOODCHIPS PRODUCT

WATER PRODUCT

Version 3.0   24   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:-3:10060>
name �����������"����������Passenger�"
product-category <KUID:-3:10091>
instance-type instance
icon-texture ����������������������"���������������������icon_texture.texture�"

mass 65

mesh-table
{
 male-suit
 {
 mesh MaleSuit.im
 effects
 {
 walk
 {
 kind animation
 anim MaleSuit_walk.kin
				 looped 1
 }
 pissedoff
 {
 kind animation
 anim MaleSuit_pissedoff.kin
 }
 lookatwatch
 {
 kind animation
 anim MaleSuit_lookatwatch.kin
 }
 lookdownline
 {
 kind animation
 anim MaleSuit_lookdownline.kin
 }
 shuffle
 {
 kind animation
 anim MaleSuit_shuffle.kin
 }
 sitdown
 {
 kind animation
 anim MaleSuit_sitdown.kin
 }
 sitdownloop1
 {
 kind animation
 anim MaleSuit_sitdownloop1.kin
 }
 sitdownloop2
 {

 kind animation
 anim MaleSuit_sitdownloop2.kin
 }
 standup
 {
 kind animation
 anim MaleSuit_standup.kin
 }
 standloop1
 {
 kind animation
 anim MaleSuit_standloop1.kin
				 looped 1
 }
 standloop2
 {
 kind animation
 anim MaleSuit_standloop2.kin
				 looped 1
 }
 }
 }
 FemaleLongDress
 {
 mesh FemaleLongDress.im
 effects
 {
 walk

 kind animation
 anim FemaleLongDress_walk.kin
				 looped 1

 lookatwatch
 {
Etc. Etc....
 }
 }
 }
Etc. Etc....
 FemaleLongDressFat
 FemalemumBaby
 Female_Pants
 FemaleShortDress
 FemaleSuit
 KidFemale
 KidMale
 MaleFat
 MaleShirt
 MaleShorts
 }
 }
}

Passenger Product Config.txt - Extract

Primary=passengers.tga
Alpha=passengers.tga
Tile=none

icon_texture.texture.txt

passengers.tga
64x64 32 bit

PASSENGER PRODUCT
Passenger Product is unique as it is controlled
very differently from other products. All passenger
animations, meshes and texture files are located
within the passenger directory. There was simply too
many to list in this document.

Version 3.0   25   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: ENGINE
An engine file specifies a traincar’s performance and
physics parameters. TRS now supports steam physics
and thus, steam engine files have additional fields for
this. The following examples are of the SD40-2 Diesel
locomotive and the PB-15 Steam locomotive.

ENGINE FILE (SD40-2 Diesel locomotive)

kuid <KUID:-1:42004221>
kind engine
rem SD402
flowsize
{
 trainbrakepipe 170000
 epreservoirpipe 0.1
 no3pipe 0.1
 no4pipe 0.1
 auxreservoirvent 0.1
 auxreservoir_no3 0.1
 auxreservoir_trainbrakepipe 0.1
 autobrakecylindervent 0.1
 auxreservoir_autobrakecylinder 0.1
 equaliser_mainreservoir 0.06
 equaliservent 0.06
 equaliserventhandleoff 0.1
 equaliserventemergency 0.1
 no3pipevent 1.5
 no3pipe_mainreservoir 0.1
 compressor 10
 trainbrakepipe_reservoir 1
 trainbrakepipevent 0.06
 no3pipe_autobrakecylinder 0.1
 epreservoirpipe_autobrakecylinder 0.1
 mainreservoir_ep 0.1
 vacuumbrakepipe 0.1
 vacuumbrakepipereleasevent 0.1
 vacuumbrakepipevent 0.1
 vacuumbrakereservoir_vacuumbrakepipe 0.1
 vacuumbrakecylinder_vacuumbrakepipe 0.1
 highspeedexhauster_vacuumbrakepipe 0.1
}
volume
{
 scale 1
 trainbrakepipe 0.2
 epreservoirpipe 0.2
 no3pipe 0.2
 no4pipe 0.2
 auxreservoir 0.0384678
 autobrakecylinder 0.00969387
 vacuumbrakepipe 0
 vacuumbrakereservoir 0
 vacuumbrakecylinder 0
 mainreservoir 0.9
 equaliser 0.5
 independantbrakecylinder 0.0103239
}
pressure
{
 scale 1
 compressor 0.00946941
 mainreservoir 0.00946941
 highspeedexhauster 0
 brakepipe 0.00736041
 brakeinitial 0.00693861
 brakefull 0.0044992
 indbrakefull 0.005075

 trainbrakepipe_start 0.00553261
 epreservoirpipe_start 0
 no3pipe_start 0
 no4pipe_start 0
 auxreservoir_start 0.00553261
 autobrakecylinder_start 0.00560291
 vacuumbrakepipe_start 0
 vacuumbrakereservoir_start 0
 vacuumbrakecylinder_start 0
 mainreservoir_start 0.00946941
 equaliser_start 0.00553261
 independantbrakecylinder_start 0.00560291
}
mass
{
 scale 1
 fuel 6.2156e+006
}
motor
{
 resistance 1.7
 adhesion 7
 maxvoltage 600
 maxspeed 40
 brakeratio 55000
 max-accel 3500
 max-decel 9000
 axle-count 6
 surface-area 80
 moving-friction-coefficient .03
 air-drag-coefficient .00017
}

throttle-power
{
	 0 {
		 0	 0
	 }

	 1 {
		 0	 107
 2.2 62
 4.4 34
 6.6 31
 8.8 25
 13.3 18
 22.2 11
	 }

	 2 {
		 0	 224
 2.2 125
 4.4 68
 6.6 62
 8.8 50
 13.3 36
 22.2 22
	 }

Continues next page...

WARNING: ALTERING ENGINE FIGURES MAY
RESULT IN UNDESIRED EFFECTS IN PERFORMNACE
AND BEHAVIOR OF YOUR TRAINS. (MAKE BACK-UP
COPIES OF YOUR ENGINE CONFIG FILES!!)

Version 3.0   26   Trainz Railroad Simulator - The Content Creator’s Guide

	 3 {
		 0	 373
 2.2 187
 4.4 125
 6.6 93
 8.8 75
 13.3 53
	 }

	 4 {
		 0	 448
 2.2 249
 4.4 166
 6.6 125
 8.8 100
 13.3 71
 22.2 45
	 }

	 5 {
		 0	 618
 2.2 309
 4.4 206
 6.6 154
 8.8 123
 13.3 88
 22.2 56
 35.5 36
	 }

	 6 {
		 0	 747
 2.2 374
 4.4 249
 6.6 187
 8.8 149
 13.3 107
 22.2 68
 35.5 44
	 }

	 7 {

		 0	 872
 2.2 436
 4.4 291
 6.6 218
 8.8 174
 13.3 124
 22.2 79
 35.5 51
 44.4 42
	 }

	 8 {
		 0	 996
 2.2 498
 4.4 332
 6.6 249
 8.8 199
 13.3 142
 22.2 90
 35.5 58
 44.4 48
	 }
}

dynamic-brake

{
	 0 {
		 0	 0
	 }

	 1 {
		 1.333	 0
		 2	 30
		 5	 25
		 10	 15
		 12	 0
	 }

	 2 {
		 1.333	 0
		 3	 50
		 10	 35
		 14	 20
		 15	 0
	 }

	 3 {
		 1.333	 0
 3 60
		 10	 40
		 17	 20
		 22	 0
	 }

	 4 {
		 1.333 	0
 4 80
		 10	 60
		 20	 20
		 25	 0
	 }

	 5 {
		 1.333	 0
 5 190
		 10	 70
		 25	 25
		 29	 0
	 }

	 6 {
		 1.333	 0
 5 250
		 10	 80
		 29	 70
		 32	 0
	 }

	 7 {
		 1.333	 0
 5 250
		 10	 100
		 32	 60
		 36	 0
	 }

	 8 {
		 1.33	 0
 5 250
		 10	 100
		 36	 50
		 40	 0
	 }
}

Version 3.0   27   Trainz Railroad Simulator - The Content Creator’s Guide

ENGINE FILE (PB15 locomotive)

kuid <KUID:44179:51002>
kind steam-engine
rem PB15
epbrakes 1
flowsize
{
 trainbrakepipe 170000
 epreservoirpipe 0.1
 no3pipe 0.1
 no4pipe 0.1
 auxreservoirvent 0.1
 auxreservoir_no3 0.1
 auxreservoir_trainbrakepipe 0.1
 autobrakecylindervent 0.1
 auxreservoir_autobrakecylinder 0.1
 equaliser_mainreservoir 0.06
 equaliservent 0.06
 equaliserventhandleoff 0.1
 equaliserventemergency 0.1
 no3pipevent 1.5
 no3pipe_mainreservoir 0.1
 compressor 5
 trainbrakepipe_reservoir 1
 trainbrakepipevent 0.06
 no3pipe_autobrakecylinder 0.1
 epreservoirpipe_autobrakecylinder 0.1
 mainreservoir_ep 0.1
 vacuumbrakepipe 0.1
 vacuumbrakepipereleasevent 0.1
 vacuumbrakepipevent 0.1
 vacuumbrakereservoir_vacuumbrakepipe 0.1
 vacuumbrakecylinder_vacuumbrakepipe 0.1
 highspeedexhauster_vacuumbrakepipe 0.1
}
volume
{
 scale 1
 trainbrakepipe 0.2
 epreservoirpipe 0.2
 no3pipe 0.2
 no4pipe 0.2
 auxreservoir 0.0384678
 autobrakecylinder 0.00969387
 vacuumbrakepipe 0
 vacuumbrakereservoir 0
 vacuumbrakecylinder 0
 mainreservoir 1.0
 equaliser 0.5
 independantbrakecylinder 0.0103239
}
pressure
{
	 scale 1
	 compressor 0.00946941
	 mainreservoir 0.00946941
	 highspeedexhauster 0
 brakepipe 0.00595441
	 brakeinitial 0.00560291
	 brakefull 0.00398601
	 indbrakefull 0.00398601

	 trainbrakepipe_start 0.00440781
	 epreservoirpipe_start 0
	 no3pipe_start 0
	 no4pipe_start 0

	 auxreservoir_start 0.00504051
	 autobrakecylinder_start 0.00489991
	 vacuumbrakepipe_start 0
	 vacuumbrakereservoir_start 0
	 vacuumbrakecylinder_start 0
	 mainreservoir_start 0.00876641
	 equaliser_start 0.00440781
	 independantbrakecylinder_start 0.00489991
}
mass
{
	 scale 1
	 fuel 6.2156e+006
}
motor
{
	 resistance 1.3
	 adhesion 2.5
	 maxvoltage 600
	 maxspeed 21
	 brakeratio 55000
	 max-accel 1500
	 max-decel 5000
	 throttle-notches 32
	 axle-count 4
	 surface-area 150
	 moving-friction-coefficient 0.01
	 air-drag-coefficient 0.0001
}
throttle-power
{
	 0 {
		 0	 0
	 }

	 1 {
		 0	 35
		 5	 28
		 10	 18
		 12	 0
	 }

	 2 {
		 0	 85
		 5	 70
 	 10 	60
 	 15 	30
		 30	 0
	 }

	 3 {
		 0	 140
		 5	 93
 	 10 	70
 	 15 	 62
		 30	 0
	 }

	 4 {
 	 2 	 187
		 5	 109
 	 10 	 93
 	 15 	 87
		 30	 0
	 }

Continues next page...

Version 3.0   28   Trainz Railroad Simulator - The Content Creator’s Guide

	 5 {
		 0	 281
		 5	 218
 	 10 	109
 	 15 	87
		 30	 0
	 }

	 6 {
		 0	 343
		 5	 265
 	 10 	172
 	 15 	 125
		 30	 0
	 }

	 7 {
		 0	 359
		 5	 343
 	 10 	 187
 	 15 	 156
		 30	 0
	 }

	 8 {
		 0	 436
 	 3.5 	429
 	 4.25 	425
 	 5 	408
		 10	 234
 	 15 	 172
		 21	 0
	 }
}
dynamic-brake {
	 0 {
		 0 	 0
	 }
	 1 {
		 1.333 	0
		 2 	 30
		 5 	 25
		 6 	 15
		 7 	 0
	 }
	 2 {
		 1.333 	0
		 2 	 50
		 5 	 35
		 7 	 20
		 8 	 0
	 }
	 3 {
		 1.333 	0
		 2 	 60
		 5 	 40
		 7 	 20
		 8 	 0
	 }
	 4 {
		 1.333 	0
		 3 	 80
		 7 	 60
		 10 	 20
		 12 	 0
	 }

	 5 {
		 1.333 	0
		 5 	 90
		 9 	 70
		 12 	 25
		 15 	 0
	 }
	 6 {
		 1.333 	0
		 5 	 150
		 9 	 80
		 13 	 70
		 17 	 0
	 }
	 7 {
		 1.333 	0
		 5 	 200
		 10 	 100
		 16 	 60
		 19 	 0
	 }
	 8 {
		 1.33 	 0
		 5 	 200
		 10 	 150
		 18 	 50
		 21 	 0
	 }
}

steam
{
	 ; pressure in kPa
	 ; flow sizes (nominal figure)
	 ; volume in L
	 ; mass in kg

	 firebox-volume			 1000.0
	 firebox-to-boiler-heat-flow	 0.055
	 firebox-efficiency		 0.995

	 boiler-volume			 3000.0
	 water-injector-rate		 4.0

	 westinghouse-volume		 100
	 main-reservoir-volume	 50.0

	 cylinder-volume		 50.0
	 piston-volume-min		 1.48
	 piston-volume-max		 68.7
	 piston-area			 0.177
	 piston-angular-offsets	 0.1
	 piston-to-atmosphere-flow	 0.0021

	 safety-valve-low-pressure	 956.0
	 safety-valve-low-flow		 0.011
	 safety-valve-high-pressure	1010.0
	 safety-valve-high-flow	 0.2

	 max-fire-coal-mass		 50.0
	 max-fire-temperature		 1873.0
	 shovel-coal-mass		 2.0
	 burn-rate			 0.0001
	 fuel-energy			 100.0
	
	 boiler-to-piston-flow		 0.0017
}

Version 3.0   29   Trainz Railroad Simulator - The Content Creator’s Guide

DIESEL ENGINE FILE BREAKDOWN

kind – asset type
rem and ; - comment lines, not used in TC

flowsize
	 rate of flow through pipes, generally leave 			
	 these settings:

trainbrakepipe 170000
epreservoirpipe 0.1
no3pipe 0.1
no4pipe 0.1
auxreservoirvent 0.1
auxreservoir_no3 0.1
auxreservoir_trainbrakepipe 0.1
autobrakecylindervent 0.1
auxreservoir_autobrakecylinder 0.1
equaliser_mainreservoir 0.06
equaliservent 0.06
equaliserventhandleoff 0.1
equaliserventemergency 0.1
no3pipevent 1.5
no3pipe_mainreservoir 0.1
compressor 10
trainbrakepipe_reservoir 1
trainbrakepipevent 0.06
no3pipe_autobrakecylinder 0.1
epreservoirpipe_autobrakecylinder 0.1
mainreservoir_ep 0.1
vacuumbrakepipe 0.1
vacuumbrakepipereleasevent 0.1
vacuumbrakepipevent 0.1
vacuumbrakereservoir_vacuumbrakepipe 0.1
vacuumbrakecylinder_vacuumbrakepipe 0.1
highspeedexhauster_vacuumbrakepipe 0.1

volume – size of pipes and appliances.
scale 1
	 multiplies volume by given value, generally 			
leave this setting.

trainbrakepipe……………………….. 0.2
	 brake pipe volume

epreservoirpipe ………………………0.2
	 For electro pneumatic braking - not 				
currently in use, generally leave this setting

no3pipe………………………………. 0.2
	 Independent brake pipe

no4pipe ……………………………….0.2
	 Bail pipe - not currently in use, generally 			
	 leave this setting

Auxreservoir…………………………..0.0384678
	 Auxiliary reservoir volume.

Autobrakecylinder…………………… 0.00969387
	 Brake cylinder volume.

vacuumbrakepipe …………….……...0

vacuumbrakereservoir……………… 0
vacuumbrakecylinder……………….. 0
	 For vacuum braking - not currently in use, 			
	 generally leave this setting

mainreservoir …………………………0.9
	 Main reservoir volume.

equaliser ………………………………0.5
	 Equalising reservoir volume

independantbrakecylinder……………0.0103239
	 Loco brake cylinder volume.

pressure
	 Brake system pressures.

scale 1
	 Multiplies pressure by given value, generally 		
	 leave this setting.

compressor…………………………...0.00946941 		
(120psi expressed in grams/m³)
	 Compressor maximum pressure.

mainreservoir………………………….0.00946941
	 Main reservoir maximum pressure

highspeedexhauster …………………0
	 For vacuum braking - not currently in use, 			
	 generally leave this setting

brakepipe ………………………….….0.00736041 		
(80psi expressed in grams/m³)
	 Brake pipe pressure when fully charged

brakeinitial………………………….…0.00693861 		
(72psi expressed in grams/m³)
	 Brake pipe pressure after initial service 			
	 reduction (for self lapping brakes)

brakefull ………………………….…...0.0044992		
(57psi expressed in grams/m³)
	 Brake pipe pressure after full service reduction 		
	 (for self lapping brakes)

indbrakefull …………………………...0.005075
	 Brake cylinder pressure for independant brake 		
	 service.

trainbrakepipe_start …………………0.00553261
	 Brake pipe pressure on loading the game.

epreservoirpipe_start ………………..0
	 For electro pneumatic braking - not currently in 		
	 use, generally leave this setting

no3pipe_start …………………………0
no4pipe_start ………………………...0
	 Generally leave these settings.

Version 3.0   30   Trainz Railroad Simulator - The Content Creator’s Guide

auxreservoir_start…………………….0.00553261
	 Auxiliary reservoir pressure on loading the 			
	 game.

autobrakecylinder_start ……………..0.00560291
	 Train brake cylinder pressure on loading the 		
	 game.

vacuumbrakepipe_start ……………..0
vacuumbrakereservoir_start ………..0
vacuumbrakecylinder_start ………....0
	 For vacuum braking - not currently in use, 			
	 generally leave this setting

mainreservoir_start …………………..0.00946941 		
rem (100psi expressed in grams/m³)
	 Main Reservoir pressure on loading the game.

equaliser_start ……………………….0.00553261			
Equalising Reservoir pressure on loading the 			
game.

independantbrakecylinder_start ……0.00560291			
Locomotive brake cylinder pressure on loading 			
the game.

mass
scale 1
	 Multiplies fuel mass by given value, not 			
	 currently in use, generally leave this setting.

fuel …………………………………….6.2156e+006
	 Fuel level, not currently in use, generally leave 		
	 this setting.

motor
resistance………………………….…..1.7
	 Power figure for DCC, higher resistance 			
	 value=less power

adhesion ……………………………....2.5
	 Adhesion parameter, higher value=greater 			
	 adhesion

maxvoltage …………………………...600
	 Generally leave this setting

maxspeed ………………………….….40
	 Maximum speed for DCC, expressed in 			
	 metres per second.

Brakeratio…………………………….. 55000
	 Brake force for pressure reduction

max-accel……………………………..3500
max-decel……………………………..9000
	 Parameters for DCC acceleration & 			
	 deceleration.

axle-count……………………………..4
	 Resistance – axle count

surface-area …………………………80
	 Resistance – surface area

moving-friction-coefficient…………...0 .03 			
	 Resistance – moving friction

air-drag-coefficient…………………...0.00017
	 Resistance – air drag

throttle-power
	 Acceleration variables in cabin mode.

	 1 { 		 = notch number (1)
0	 30

		 5	 25	 = At speed 5, acceleration = 25	
	 	 10	 15	

12	 0
}

dynamic-brake
	 Deceleration variables while dynamic braking in 		
	 cabin mode.

	 1 { 		 = notch number (1)
1.333	0
2	 30 	 	 	

	 	 5	 25	 = At speed 5, deceleration = 25
		 10	 15	

12	 0
}

Equalisation of Pressures There is a point at which
no further brake pipe pressure reduction will result in
increased braking effort, this is known as full application
or equalisation of pressures.
Imagine you made a 26 psi reduction when operating a
loco with a 90psi brake pipe. 90psi in the train pipe minus
26psi reduction equals 64 psi in the pipe. Due to the
2.5:1 ratio of auxiliary reservoir volume to brake cylinder
volume, the 26 psi reduction puts 64 psi into the brake
cylinder.

As the pressure in the reservoir and the pressure in the
cylinder is now equal, no more air will flow into the brake
cylinder; and making a further reduction in brake pipe
pressure will have no effect on braking.

Equalisation occurs at different pressures, depending on
the train pipe feed pressure.

100 psi pipe (e.g. the UK locos - 7 bar) equalisation at 71
psi.

90 psi pipe (e.g. the US locos) equalisation at 64 psi.

72 psi pipe (e.g. French & Queensland locos)
equalisation at 49 psi.

The easiest way to set your custom content to the desired
brake pipe feed pressure is to copy the entire pressure
section from the config of a loco that uses the pressure
you desire.

Version 3.0   31   Trainz Railroad Simulator - The Content Creator’s Guide

Note: Converting PSI to Grams /m cubed…

e.g. 90psi... 	 (90+14.7).0000703

		 104.7 x .0000703=.00736041

STEAM ENGINE FILE BREAKDOWN
Generally identical to a diesel engine file with the addition
of the following:

Units:	
	 Pressure in kPa
	 Volume in Litres
	 Mass in kg
	 Flow sizes (nominal figure)
Temperature degrees Kelvin

steam
firebox-volume……………… 1000.0
	 Physical volume of firebox in Litres.

firebox-to-boiler-heat-flow...…0.055

Rate of heat flow from firebox to boiler and vice-
versa.

firebox-efficiency………..……0.995
	 Atmosphere leakage. 1.0 = No leakage.

boiler-volume……………..…..3000.0
	 Physical volume of boiler in Litres.

water-injector-rate………...….4.0
	 Water injection rate into boiler in Litres/second.

westinghouse-volume....….…100
	 Westinghouse volume in Litres.

piston-volume-min……..….…1.48
The volume of the space in the cylinder ahead of the
piston at the end of a full stroke.

piston-volume-max….........…68.7
The volume of the space in the cylinder ahead of the
piston at the start of a full stroke.

piston-area………….....…..…0.177
The cross section of one piston in m2. It is assumed
there is one piston only on each side of the
locomotive.

piston-angular-offsets……...…0.1
See the additional notes in Comments and New
Tags below.

piston-to-atmosphere-flow…..0.0021
Atmospheric leakage from piston. Nominal hole size.

safety-valve-low-pressure…..956.0
When boiler pressure hits this value in kPa the
safety-valve-low-flow release is initiated. (below)

safety-valve-low-flow……...…0.011
Lower pressure valve release. Nominal hole size.

safety-valve-high-pressure....1010.0
When boiler pressure hits this value in kPa the
safety-valve-high-flow release is initiated. (below)

safety-valve-high-flow…….…0.2
Higher pressure valve release. Nominal hole size.

max-fire-coal-mass…....….…50.0
The maximum mass of coal the firebox can take in
kilograms.

max-fire-temperature…......…1873.0
Maximum heat obtainable.
(Kelvin scale temperature)

shovel-coal-mass……........…2.0
	 Amount of coal in one shovel load in kilograms.

burn-rate……………….......…0.0001
Coal consumption rate.

fuel-energy………………...…100.0
Relative energy in kilojoules per kilogram of coal.

	
boiler-to-piston-flow…….....…0.0017

Relative energy.

COMMENTS AND NEW TAGS

The above information is specific to the small PB 15
locomotive. A Big Boy locomotive for example, is at the
other size extreme for locomotives. The following is
an expanded discussion for other size locomotives, of
additional tags and options, with some examples.

firebox-volume
westinghouse-volume
main-reservoir-volume

The above tags are currently not implemented.

boiler-volume……………..…..00000.0
maximum-volume…………….00000.0
minimum-volume……………..00000.0

These above three tags are used together. Because of
the way fireboxes are handled in Trainz, basing these
figures on the actual litre volume of the boiler results in
the water being used too quickly.

All three values for real world boiler size should be
multiplied by 10 to give a more realistic consumption
rate.

maximum-volume - this volume should be 90% of the
boiler-volume, this simulates the steam space left over
the top of the water.
	
minimum-volume - this value should be 90% of the
maximum-volume, this represents the working low water
level in the boiler.

Version 3.0   32   Trainz Railroad Simulator - The Content Creator’s Guide

Alternatively there are three (3) sets of figures that cover
all boilers, this is a relatively coarse setting and as such a
broad range of vessels can be “blanket” covered:

Small locos with grate areas under 10 Sq metres

 boiler-volume 37500.0
 minimum-volume 28500.0
 maximum-volume 32500.0

Medium locos with a grate area 10 to 25 Sq metres

 boiler-volume 47500.0
 minimum-volume 37750.0
 maximum-volume 40500.0

Large locos with a grate area over 25 Sq metres

 boiler-volume 95000.0
 minimum-volume 73000.0
 maximum-volume 81000.0

initial-boiler-temperature.........380

This line has been added to allow the locomotives to be
at an almost ready to go state when the session starts.
Then, in conjunction with the firebox-to-boiler-heat-flow-
idle and burn-rate-idle values, it allows a locomotive to
stay in this state with the water and fire left for as long as
is required, i.e. on stand by. This is nominally 80 - 90% of
working pressure.

Full pressure is not required initially, as it only takes a
short time to get the fire brightened up, and the boiler
to pressure from this point. Most locomotives will go to
blowing off pressure with a press of the N key to turn
the blower on and a single tap on the space bar for a
shovel of coal, remembering that in the real world it is
considered very bad practice to have the locomotive
blowing the safeties, a waste of resources and energy,
and shows a lack of control by the crew.

The following table may be useful as a comparison
of initial-boiler-temperature and related pressures.
Temperature values (e.g.369) are in degrees Kelvin, see
the important Notes to the right of the table:

		 369 	 = 869kpa / 140psi	 = 460.3K
		 380 	 = 1008kpa / 146psi	 = 466.5K
		 381 	 = 1021kpa / 148psi	 = 467.0K
		 389 	 = 1122kpa / 163psi	 = 471.5K
 		 389.6 	 = 1129kpa / 165psi	 = 471.8K
 		 401 	 = 1275kpa / 185psi	 = 478.2K
 		 404 	 = 1297kpa / 188psi	 = 479.8K
 		 409 	 = 1374kpa / 199psi	 = 482.6K
 		 410 	 = 1387kpa / 201psi	 = 483.2K
 		 411 	 = 1401kpa / 203psi	 = 483.7K
 		 412 	 = 1410kpa / 204psi	 = 484.3K
 		 413 	 = 1414kpa / 206psi	 = 484.8K
 		 424 	 = 1564kpa / 227psi	 = 490.9K
 		 426 	 = 1589kpa / 230psi	 = 492.4K
 		 455 	 = 1956kpa / 284psi	 = 508.2K

piston-angular-offsets

Determines the number of power impulses a locomotive
has for each wheel revolution, thus simulating the
prototype.

For a 2 cylinder locomotive use:
piston-angular-offsets 0.0174,1.5254,3.0333,4.5413

For a 3 cylinder locomotive use:
piston-angular-offsets 0.0174,1.065,2.107,3.061,
4.206,5.253

For a 4 cylinder locomotive use:
piston-angular-offsets 0.0174,0.8028,1.5254,2.3736,
3.0333,3.9444,4.5413,5.5152

These are expressed in radians (2 π radians = 360
degrees, where π = 3.1416) and the values were
determined so as to achieve the smoothest operation
possible, they have been deliberately kept away from the
sound impulse point. It is recommended not to alter these
tested settings.

firebox-to-boiler-heat-flow-idle	 0.003
burn-rate-idle 	 0.003

These two tags in conjunction with the initial-boiler-
temperature tag are the “brakes” for the boiler when the
locomotive is in standby mode, i.e. unattended, and they
don’t need any alteration, unless you desire the boiler to
run out of water or fire when parked unattended.

See the separate section on Page 365 for a discussion
on how a locomotive using these tags and values may be
tuned to give realistic performance.

Notes on the Initial Boiler Temperature Table:

Trainz does not actually use correct Kelvin temperatures
for the input to the initial-boiler-temperature tag value, a
correction factor is applied to these values in Trainz.

The bolded values in the left column are to be entered in
the tag.

The Kelvin values in the right hand column of the table
are more representative of the actual Kelvin temperatures
associated with the pressures shown.

If you know the initial boiler pressure, for example
1275kpa, enter 401 as the value in the tag.

If you know the initial boiler temperature, for example
467K, enter 381 as the value in the tag.

Version 3.0   33   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: BOGEY

A ‘bogey’ is a term used for a locomotive or rolling stock
wheel mechanism. In some countries these are known as
‘Trucks’.

Referenced by the bogey tag in a traincar config.txt

Config.txt:

BREAKDOWN OF CONFIG.TXT

animdist
Leave this tag out if the bogey is not animated.

The distance traveled in meters by the bogey in 1 second
(30 frames) of animation. This figure would normally
be the circumference of the wheel (multiply the wheel
diameter by Pi which is 3.1416). If for instance there are
large driving wheels and smaller wheels used on the
pilot, of a steam locomotive, you will need to work out the
correct value for each bogey using the angular rotation
for 30 frames.

For an example calculation see Page 380.

Note: Bogey animations (exported from gmax or 3dsmax)
are called “anim.kin”.

In previous versions of Trainz, the following lines were
used in the config.txt file -

	 anim anim.kin
	 animation-loop-speed 1.0

These are no longer required. Trainz automatically

kuid <KUID2:###:#####:#>
kind bogey
animdist 2.1
mesh-table
{
 default
 {
 mesh Car_bogey.lm
 auto-create 1
 }
 shadow
 {
 mesh Car_bogey_shadow/Car_bogeyshadow.im
 }
}

obsolete-table
{
}
username mybogey
description " "
trainz-build 2.0
category-class AC
category-region-0 AT
category-era-0 1980s

direct-drive 1

recognises the anim.kin file for the bogey. These lines if
used in the config.txt will generate an error log message
about incorrectly specified animation being ignored.

Refer to Chapter 7 - Bogeys for modeling guidelines,
Page 377.

direct-drive
For Steam Locomotive animated driving bogeys only.

Important:
When direct-drive is present, the bogey animation is
linked to the steam piston and physics system. If this
tag is not included the piston and steam sounds will
not work!

The direct-drive tag may also be used on an invisible
locomotive bogey to achieve correct sound timing for the
asset.

Note: The example on the left shows a bogey with LOD
mesh reduction. Please refer to the LOD discussions on
Page 370 to illustrate the additional .lm file required.

The UTC setup (without a mesh-table) will of course still
work but we do recommend using a mesh-table.

Reversing bogey animation:

If a front bogey is attached to a train car, and the same
bogey is to be used at the rear, but rotated 180 degrees.

In TRS2004, this was accomplished by entering bogey-
r in the config.txt file for the train car, for that bogey, for
example:

In TC the bogey container in the config.txt file uses a
boolean 0 or 1 to set the direction, for example:

If the bogey has animation, the animation will have
reversed orientation (this will cause bogey animation to
play in reverse). The attachment point for the bogey also
has to be rotated 180 degrees in 3dmax/gmax to correct
the rotation direction.

in the traincar config.txt:

bogey <KUID:####:#####>
bogey-1 <KUID:####:#####>
bogey-2-r <KUID:####:#####>

in the traincar config.txt:

bogeys {
	 0 {
	 bogey		 <kuid:-1:100009>
	 reversed	 0
	 }
}

Version 3.0   34   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TRAINCAR

A ‘traincar’ is a Locomotive or Rolling stock asset. One
of the main features of TRS is that traincars, (namely
rolling stock), have the ability to transport commodities
(products) and to interact with compatible industry assets.

As there are a range of products and product
categories, each rolling stock type is set up differently to
accommodate the load type both visual representation
and through it’s config. For this reason we have made
available individual downloads for the various rolling
stock types.

Refer to KIND: PRODUCT & KIND: PRODUCT-
CATEGORY for further information.

The following example is a config.txt file from a
locomotive. Note the mesh-table and animation setup.

kuid <KUID2:####:#####.#>
category-class AC
category-region AU
category-era 1970s;1980s;1990s;2000s

kuid-table
{
}
obsolete-table
{
}

mesh-table
{
 default
 {
 mesh loco_body/loco_body.lm
 auto-create 1
 }
 shadow
 {
 mesh loco_shadow/loco_shadow.im
 }
 fan1
 {
 mesh loco_body/fan/fan.im
 anim loco_body/fan/fan.kin
 auto-create 1
 att a.fan0
 att-parent default
 animation-loop-speed 1.0
 }
 fan2
 {
 mesh loco_body/fan/fan.im
 anim loco_body/fan/fan.kin
 auto-create 1
 att a.fan2
 att-parent default
 animation-loop-speed 1.0
 }
 default-night-forward
 {
 mesh loco_body/night/night.im
 auto-create 0
 att a.bog0
 att-parent default

 }
}

bogey <KUID:####:#####>
bogey-1 <KUID:####:#####>
bogey-2-r <KUID:####:#####>
pantograph <KUID:###:#####>
interior <KUID:####:#####>
engine 1
name Electric Loco
mass 37000
company Queensland Rail
origin AU
kind traincar
fonts 2

cabinsway 0

enginespec <KUID:####:#####>
enginesound <KUID:####:#####>
hornsound <KUID:####:#####>

smoke_shade 0.3
smoke_random 2
smoke_slowlife 1
smoke_fastlife 6
smoke_height 7
smoke_fastspeed 4

smoke0
{
 attachment a.exhaust0
 mode speed
 enabled 1
 maxspeedkph 120
 file "lospeed.tfx"
}

smoke1
{
 attachment a.exhaust1
 mode speed
 enabled 1
 maxspeedkph 120
 file "hispeed.tfx"
}

description " "

Version 3.0   35   Trainz Railroad Simulator - The Content Creator’s Guide

TRAINCAR CONFIG.TXT BREAKDOWN
Some config.txt tags are not explained below, but are
covered in the general config.txt explanation, see
Page 10.

default-night-forward
The name for a submesh attached to a locomotive, to
show a beam of light for example, in the direction of
movement of the locomotive. Trainz recognises the name
and turns on the correct mesh depending on the running
direction.

Note in the example the use of auto-create 0 to make
the mesh invisible when placed. The mesh will be visible
when the light switch is activated.

bogey
The bogey KUID number (default for a.bog0 and a.bog1)

bogey-1
The bogey KUID number for a.bog1 (Used only if different
to a.bog0).

Reversing a bogey

In TC, reversing the bogey orientation is accomplished
by ticking the reverse box in CCP, a boolean choice.
The bogey will have reversed orientation. Note: This
will cause bogey animation to play in reverse unless
the attachment point for the bogey is also rotated 180
degrees in 3dmax/gmax.

pantograph
The pantograph KUID number inserted at a.pant0,
a.pant1, etc. Use this tag only when needed.

interior
Kuid number of the required interior. Inserted at
a.cabfront or a.cabback. Use this tag only when needed
e.g.locomotives.

engine
States type of traincar.

0 = Rolling stock
1 = Locomotive

mass
Mass in kilograms

company
The Locomotive or car owner

origin
The Country Abbreviation

kind
Traincar

fonts
Indicates how many types of numbering fonts used, e.g.

0 = no fonts used

1 = one font
Digit textures (digit_1.tga to digit_6.tga) replaced
automatically with alphanumber textures (alphanumber_0

to alphanumber_9) as numbers are changed via the
Surveyor Trains tab - ‘Edit Properties’ icon (the ‘?’ icon).

2 = two fonts
Digit textures (digit_1a.tga to digit_6a.tga and digit_1b.tga
to digit_6b.tga) replaced automatically with alphanumber
textures (alphanumber_0a to alphanumber_9a and
alphanumber_0b to alphanumber_9b) as numbers are
changed via the Surveyor Trains tab - ‘Edit Properties’
icon (the ‘?’ icon).

Enginespec
References the engine KUID number. This specifies the
driver physics boundaries for the traincar.
Refer KIND: ENGINE Page 25.

enginesound
References the KUID number for the traincar’s sound.
Refer to KIND: ENGINESOUND Page 37.

hornsound
References the KUID number for the traincar horn sound.
Refer Chapter 3, KIND: HORNSOUND Page 39.

cabinsway “strength”
strength is a floating point number. This controls the
magnitude of the random roll in internal view. The roll is
also affected by the speed of the train. Negative numbers
are not used.

	 0 = no sway

	 larger numbers (2, 6 etc) = larger sway.

smoke 0
Sets boundaries for smoke, steam, vapor and similar
effects. Refer: Smoke Effects Chapter 10 on Page 391.

description " "
Description of the model for ‘Railyard’ information and
display on the Download station with the model.

light_color
RGB headlight colour. eg. 255,255,255
This is the color of the train headlight corona, not the
lighting itself.

Please download the examples and source files from the
links on the next page.

Version 3.0   36   Trainz Railroad Simulator - The Content Creator’s Guide

TRAINCAR EXAMPLES
The following models were developed for TRS2004, and
are still useful as examples. These contain mesh files as
well as ingame files. Download the following rolling stock
descriptions and examples for reference.

COAL HOPPER
A Coal Hopper is a typical example of a rolling stock item
that uses an animated load representation. This asset
also has animated opening doors and particle effects,
each controlled by a script.

Download a zipped pack containing a PDF description,
in-game files and source 3dsmax 4 and gmax files of the
TRS asset ‘Coal hopper’.

http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_Coal_Hopper.zip

TANK CAR
A Tank Car is a typical example of a rolling stock item that
can take a liquid load.

Download a zipped pack containing a PDF description,
in-game files and source 3dsmax 4 and gmax files of the
TRS asset ‘GATX Oilco Tank Car’.

http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_Tank_Car.zip

CONTAINER FLATCAR
The Container Flat is a typical example of a rolling stock
item that can take a variety of loads by attachment.

Download a zipped pack containing a PDF description,
in-game files and source 3dsmax 4 and gmax files of the
TRS asset ‘Container Flat’ Car.

http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_Container_Flat.zip

BOX CAR
The Box Car is a typical example of a rolling stock item
that can take the General Goods Product without having
attachments.

Download a zipped pack containing a PDF description,
in-game files and source 3dsmax 4 and gmax files of the
TRS asset ‘PRR 40ft Box Car’.

http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_Box_Car.zip

PASSENGER STATION AND VEHICLE TUTORIAL

The Passenger Asset Tutorial gives information on pas-
senger stations and vehicles compatible with the new
passenger supported features. The information has been
included in this document, but the don\wnload includes
useful ingame files.

http://files.auran.com/TRS2004/downloads/contentcreation/
SP2-Passenger_Asset_Tutorial.zip

http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Coal_Hopper.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Coal_Hopper.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Tank_Car.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Tank_Car.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Container_Flat.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Container_Flat.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Box_Car.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Box_Car.zip
http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip
http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip

Version 3.0   37   Trainz Railroad Simulator - The Content Creator’s Guide

ENGINESOUND - ������������������� DIESEL AND ELECTRIC

Diesel enginesound Directory Structure

KIND: ENGINESOUND

These are the locomotive engine sounds, referenced by
the enginesound tag in a traincar config.txt

With the inclusion of steam in TRS, we have added
additional features for engine sound support.

For diesel and electric loco’s the sound is generally as-
per the UTC release (described on this page).

Steam sound requirements are described on the following
page.

Note:
Diesel enginesound files (.wav) must be located in the
same subfolder as the config.txt. �������������������� You must ensure all
custom engine sound files are named the same as those
described���������������������������� in the example on the left.

Note:

For general information on soundfiles and soundscripts
for other uses see Page 395.

Config,txt (Diesel enginesound)

kuid			 <kuid:56113:1243>
trainz-build		 2.5
category-class	 “ZS”
category-region	 “US”
category-era		
“1980s;1990s;2000s”
username		 “testEngineSound Die-
sel”
kind			 “enginesound”
description		 “Test Engine Sounds for
diesel or electric.”
thumbnails {
0 {
image			 “thumb.jpg”
width			 240
height			 180
	 }
}

Version 3.0   38   Trainz Railroad Simulator - The Content Creator’s Guide

ENGINESOUND - STEAM

Custom steam sounds can be created for TRS. The following is a general break down of the required sounds needed
and a brief description of how the sounds are used by TRS. These sound files described can be downloaded in zip
format from this location: http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Steam_Sound.zip

Steam sounds can be located in the default enginesound directory.

These file are the steam engine idling sounds played after the steam engine is stationary for 1, 2 and 3 minutes
	 •  loco_stationary_fast.wav (after 1min)
	 •  loco_stationary_med.wav (after 2mins)
	 •  loco_stationary_slow.wav (after 3mins)
Note: Silent .wav files may be used for the above, for locomotives that do not use an aircompressor, for example most
UK locomotives.

Piston stoke sounds, played every 180 degrees revolution of the piston wheel played in sequence and repeated up to
about 40 kph.
	 •  piston_stroke1.wav
	 •  piston_stroke2.wav
	 •  piston_stroke3.wav
	 •  piston_stroke4.wav

From 40 kph upwards, the following sound loop is cross-faded as the piston sounds die off. In TRS2004 the loop
is pitched shifted (through code) relative to the locomotive’s velocity. In TRS2006 the pitch shift is not currently
functional.
	 •  steam_loop.wav.

The general hiss from the smoke stack:
	 •  smoke_stack_hiss.wav Config.txt

Steam enginesound Directory Structure

IMPORTANT Note 1:
You must ensure all custom sound files for steam trains
are named the same as those described above.

IMPORTANT Note 2:
The Steam loco driving bogey is connected to the piston
and physics system by adding the following tag to the
bogey’s config.txt: direct-drive 1

(See PB_15_bogey2 Config.txt right)

This tag MUST be included for piston and steam sounds
to work.

kind			 “bogey”
kuid			 <kuid:44179:50003>
animdist		 3.816
category-class	 “AS”
category-region-0	“AU”
category-era-0	 “1920s;1930s;1940s;1950
s;1960s”
direct-drive	 1
asset-filename	 “PB_15_bogey2”

PB_15_bogey2 Config.txt

kuid			 <kuid:56113:1243>
trainz-build		 2.5
category-class	 “ZS”
category-region	 “US”
category-era	 “1980s;1990s;2000s”
username		 “testEngineSound
(Steam)”
kind			 “enginesound”
description		 “Test Steam Engine
Sounds, based on the PB15.”
thumbnails {
0 {
image			 “thumb.jpg”
width			 240
height		 180
	 }
}

http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_Steam_Sound.zip

Version 3.0   39   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: HORNSOUND

This is the traincar horn sound, referenced by the
hornsound tag in a traincar config.txt

Hornsound config.txt

Hornsound Directory Structure

two-part 1
Indicates that the Railyard and Driver hornsounds are
different. The Driver hornsound is looping. If this tag is
not present, the hornsound defauts to UTC equivalent
non-looping format.

Sound files:
•  horn.wav
‘Railyard’ hornsound (non-looping)

•  horn_loop.wav
The looping hornsound used in ‘Driver’.

•  horn_start.wav
The starting sound played before the looping hornsound
above.

•  idle 1.wav
Generally used for the bell sound (bell keystroke = b)

Download DriverCharacter example
An in-game example of this character is available for
download through the following link:
http://www.auran.com/TRS2004/downloads/contentcreation/
DriverCharacter.zip
We suggest you re-skin the mesh files provided in this zip
in order to keep consistency.

kuid			 <kuid:56113:1273>
trainz-build	 2.5
category-class	 “ZH”
category-region	 “AN”
category-era	 “1950s;1960s;1970s”
username	 “testHornsound (2 Part)”
kind		 “hornsound”
two-part	 1
thumbnails {
0 {
image			 “thumb.jpg”
width			 240
height		 180
	 }
}

KIND: DRIVERCHARACTER

This is the TRS locomotive driver character.

DriverCharacter Config.txt

					 dave64.tga

DriverCharacter Directory Structure

face-texture
This is the driver icon used in TRS.

mesh
This refers to the kuid of the mesh inserted in the
locomotive mesh at a.driver0, (when in the Driver
Module).

DriverCharacter Mesh Directory Structure

kind DriverCharacter
face-texture dave64.texture
KUID <KUID:16:10129>
mesh <KUID:-3:10130>

kind mesh
KUID <KUID:-3:10130>
mesh-table
{
standing
	 {
mesh dave/dave.im
	 }
sitting
	 {
mesh dave_lowres/dave_lowres.im
	 }
}

DriverCharacter Mesh Config.txt

http://www.auran.com/TRS2004/downloads/contentcreation/DriverCharacter.zip
http://www.auran.com/TRS2004/downloads/contentcreation/DriverCharacter.zip

Version 3.0  4 0   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: INTERIOR

This is the traincar interior.

Referenced by the interior tag in a traincar config.txt

In TRS, an interior config.txt file has the ability to be
setup using a mesh-table. This gives greater control over
animations and allows for script implementation.

In the following example, the generic UP DD40 interior
has scripted, animated wipers and a fan, both controlled
by a switches. Also, when these switches are in the ‘on’
position, a mesh is rendered to represent the switch light
coming on.

Actually, the DD40 interior is a great example of what
can be done using standard levers alone. The sliding
windows, the retractable sun visors and the swivel chair
are all ‘levers’. Sure they contain no real function...
It adds a bit of fun if anything!

Download DD40 Interior source and in-games files here:
http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_dd40_interior.zip

Remember: Interiors created using a mesh-table cannot
be used in pre-TRS versions of Trainz.

DD40 Interior Config.txt

kind interior

script "DD40Cabin"
class "DD40Cabin"

kuid <KUID:-3:10085>

cameralist
{
 camera0 -0.564, 0.984, 0.987, 13.528, -0.137
 camera1 0.707, -0.333, 1.023, -6.189, -0.049
 camera2 1.317, 0.949, 1.023, -13.501, -0.122
 camera3 -1.058, 0.522, 0.887, 0.1, -0.089
 camera4 -1.382, 0.78, 0.987, 6.592, -0.194
 camera5 -1.361, 0.923, 1.137, 6.902, -0.503
 camera6 -0.618, 0.715, 1.023, -0.983, -0.234
}
cameradefault 3

mesh-table
{
 default
 {
 mesh gen_dd40_int.im
 auto-create 1
 }

 Fan_Switch
 {
 kind lever
 auto-create 1
 mesh switch_red.im
 att a.switch0

 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default
 }
 switchlight0
 {
 kind light
 mesh switchlight.pm
 att a.switch0
 auto-create 0
 att-parent default
 }
 Wiper_Switch
 {
 kind lever
 auto-create 1
 mesh switch_red.im
 att a.switch1
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default
 }
 switchlight1
 {
 kind light
 mesh switchlight.pm
 att a.switch1
 auto-create 0
 att-parent default
 }
 Switch_3
 {
 kind lever
 auto-create 1
 mesh switch.pm
 att a.switch2
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0

DD40 Cab interior

Continues next page...

http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_dd40_interior.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_dd40_interior.zip

Version 3.0  41   Trainz Railroad Simulator - The Content Creator’s Guide

 mousespeed -1
 radius 0.05
 att-parent default

 }
 switchlight2
 {
 kind light
 mesh switchlight.pm
 att a.switch2
 auto-create 0
 att-parent default
 }
 Switch_4
 {
 kind lever
 auto-create 1
 mesh switch.pm
 att a.switch3
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default
 }
 switchlight3
 {
 kind light
 mesh switchlight.pm
 att a.switch3
 auto-create 0
 att-parent default
 }
 Switch_5
 {
 kind lever
 auto-create 1
 mesh switch.pm
 att a.switch4
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default
 }
 switchlight4
 {
 kind light
 mesh switchlight.pm
 att a.switch4
 auto-create 0
 att-parent default
 }
 Switch_6
 {
 kind lever
 auto-create 1
 mesh switch.pm
 att a.switch5
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default

 }
 switchlight5
 {
 kind light
 mesh switchlight.pm
 att a.switch5
 auto-create 0
 att-parent default
 }
 Switch_7
 {
 kind lever
 auto-create 1
 mesh switch.pm
 att a.switch6
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default
 }
 switchlight6
 {
 kind light
 mesh switchlight.pm
 att a.switch6
 auto-create 0
 att-parent default
 }
 Switch_8
 {
 kind lever
 auto-create 1
 mesh switch.pm
 att a.switch7
 limits 0, 1
 angles 0, -2
 notches 0, 1
 notchheight 0, 0
 mousespeed -1
 radius 0.05
 att-parent default
 }
 switchlight7
 {
 kind light
 mesh switchlight.pm
 att a.switch7
 auto-create 0
 att-parent default
 }
 reverser_lever
 {
 kind lever
 auto-create 1
 mesh reverser_lever.pm
 att a.reverser_lever
 limits 0, 2
 angles 0.55, -0.55
 notches 0, 0.5, 1
 notchheight 1, 1, 1
 att-parent default
 }
 independantbrake_lever
 {
 kind lever

Continues next page...

Version 3.0  4 2   Trainz Railroad Simulator - The Content Creator’s Guide

 auto-create 1
 mesh ind_brake_lever.pm
 att a.ind_brake_lever
 limits 0, 32
 angles 0, -2.1
 notches 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1
 notchheight 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
 radius 0.15
 att-parent default
 }
 trainbrake_lever
 {
 kind lever
 auto-create 1
 mesh train_brake_lever.pm
 att a.train_brake_lever
 limits 0, 4
 angles 0, -2.4
 notches 0, 0.25, 0.27, 0.29, 0.31, 0.33,
0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49,
0.5, 0.75, 1
 notchheight 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 1, 1, 1
 radius 0.15
 att-parent default
 }
 throttle_lever
 {
 kind lever
 auto-create 1
 mesh throttle_lever.pm
 att a.thottle_lever
 limits 0, 8
 angles 1.2, 0
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 1, 2, 2, 2, 2, 2, 2, 2, 1
 radius 0.35
 att-parent default
 }
 dynamicbrake_lever
 {
 kind lever
 auto-create 1
 mesh dynamic_lever.pm
 att a.dynamic_brake
 limits 0, 2
 angles 0, -1.2
 notches 0, 0.5, 1
 notchheight 1, 1, 1
 radius 0.35
 att-parent default
 }
 light_switch
 {
 kind lever
 auto-create 1
 att a.light_switch
 mesh dial.pm
 limits 0, 1
 angles 0, 4.5
 notches 0, 0.5, 1
 notchheight 0, 0, 0
 att-parent default
 }
 ampmeter_needle
 {
 kind needle
 auto-create 1

 mesh ampmeter_needle.pm
 att a.ammeter
 limits 0, 1500
 angles 0, 1.9
 att-parent default
 }
 bploco_equaliser
 {
 kind needle
 auto-create 1
 mesh whitepress_needle.pm
 att a.equaliser_pressure
 limits 0, 1000
 att-parent default
 }
 bplocomain_needle
 {
 kind needle
 auto-create 1
 mesh redpress_needle.pm
 att a.main_res_pressure
 limits 0, 1000
 att-parent default
 }
 bptrainbrakecylinder_needle
 {
 kind needle
 auto-create 1
 mesh redpress_needle.pm
 att a.brake_cyl_pressure
 limits 0, 1000
 att-parent default
 }
 bptrainbrakepipe_needle
 {
 kind needle
 auto-create 1
 mesh whitepress_needle.pm
 att a.brake_pipe_pressure
 limits 0, 1000
 att-parent default
 }
 speedo_needle
 {
 kind needle
 auto-create 1
 mesh whitepress_needle.pm
 att a.speedo
 limits 0, 48
 att-parent default
 }
 horn
 {
 kind lever
 auto-create 1
 mesh horn.pm
 att a.horn
 limits 0, 1
 angles 0, -0.6
 notches 0, 1
 notchheight 3, 3
 radius 0.16
 mousespeed -2
 att-parent default
 }
 wheelslip_light
 {
 kind light
 auto-create 0
 mesh wheelslip.pm Continues next page...

Version 3.0  4 3   Trainz Railroad Simulator - The Content Creator’s Guide

 }

 swivel_chair
 {
 kind lever
 auto-create 1
 mesh chair.im
 att a.chair1
 limits 0, 8
 angles 6.8, -6.8
 radius 0.5
 mousespeed 0.2
 att-parent default
 }

 dial0
 {
 kind lever
 auto-create 1
 att a.dial0
 mesh dial.pm
 limits 0, 1
 angles 0, 3.8
 notches 0, 1
 notchheight 0, 0
 att-parent default
 }
 dial1
 {
 kind lever
 auto-create 1
 att a.dial1
 mesh dial.pm
 limits 0, 1
 angles 0, 3.8
 notches 0, 1
 notchheight 0, 0
 att-parent default
 }
 fan
 {
 mesh fan.im
 anim fan.kin
 auto-create 1
 att a.fan
 att-parent default
 }
 visor0
 {
 mesh visor.im
 auto-create 1
 att a.visor0
 att-parent default
 kind lever
 mousespeed -1
 limits 0, 1
 angles 0, 1.7
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 0, 0, 0, 0, 0, 0, 0, 0, 0
 }
 visor1
 {
 mesh visor.im
 auto-create 1
 att a.visor1
 att-parent default
 kind lever
 mousespeed -1
 limits 0, 1

 angles 0, 1.7
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 0, 0, 0, 0, 0, 0, 0, 0, 0
 }
 sl_wind_R_Fr
 {
 mesh sliding_wind_R_Fr.im
 auto-create 1
 att a.sliding_wind_R_Fr
 att-parent default
 limits 0, 1.0
 angles 0, 0.011
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 0, 0, 0, 0, 0, 0, 0, 0, 0
 kind lever
 }
 sl_wind_R_Bk
 {
 mesh sliding_wind_R_Bk.im
 auto-create 1
 att a.sliding_wind_R_Bk
 att-parent default
 limits 0, 1.0
 angles 0, -0.011
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 0, 0, 0, 0, 0, 0, 0, 0, 0
 mousespeed -1
 kind lever
 }
 sl_wind_L_Fr
 {
 mesh sliding_wind_L_Fr.im
 auto-create 1
 att a.sliding_wind_L_Fr
 att-parent default
 limits 0, 1.0
 angles 0, -0.011
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 0, 0, 0, 0, 0, 0, 0, 0, 0
 kind lever
 }
 sl_wind_L_Bk.im
 {
 mesh sliding_wind_L_Bk.im
 auto-create 1
 att a.sliding_wind_L_Bk
 att-parent default
 limits 0, 1.0
 angles 0, 0.011
 notches 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 1
 notchheight 0, 0, 0, 0, 0, 0, 0, 0, 0
 mousespeed -1
 kind lever
 }
 wipers
 {
 mesh wipers.im
 anim wipers.kin
 auto-create 1
 att a.wipers
 att-parent default
 }
}
End of DD40 interior config.txt

Version 3.0  44   Trainz Railroad Simulator - The Content Creator’s Guide

DD40Cabin.gs
This is the DD40 interior script file.
This sets up the fan and wiper animations to be switch
controlled and controls the visibility of switchlights.

include "defaultlocomotivecabin.gs"

class DD40CabinData isclass CabinData
{
 public bool animatingFan;
 public bool animatingWiper;
 public bool switchOn3;
 public bool switchOn4;
 public bool switchOn5;
 public bool switchOn6;
 public bool switchOn7;
 public bool switchOn8;
 };

 class DD40Cabin isclass
DefaultLocomotiveCabin
 {
 // Switches
 CabinControl cabin_fan_switch;
 CabinControl window_wipers;
 CabinControl switch3;
 CabinControl switch4;
 CabinControl switch5;
 CabinControl switch6;
 CabinControl switch7;
 CabinControl switch8;

 // Lights
 CabinControl cabin_fan_light;
 CabinControl window_wipers_light;
 CabinControl light3;
 CabinControl light4;
 CabinControl light5;
 CabinControl light6;
 CabinControl light7;
 CabinControl light8;

 thread void SlowFanDown(void);
 thread void SpeedFanUp(void);

 void UpdateFan(void);
 void UpdateWipers(void);
 thread void RunAnimation(void);

 float fanSpeed;
 bool isFanSpeedingUp;
 bool isFanSlowingDown;

 //! Attach this cabin to a game object
(i.e. a locomotive).
 //
 // Param: obj Game object to attach this
cabin to (usually a Locomotive).
 //
 void Attach(GameObject obj)
 {
 inherited(obj);

 // get cabin data
 CabinData cd = loco.GetCabinData();
 if(cd)
 {
 // reset the controls from saved values
 DD40CabinData ddcd =

cast<DD40CabinData>cd;
 float value = 0.0;

 // ANIMATING FAN
 if (ddcd.animatingFan)
 {
 fanSpeed = 1.0;
 SetMeshAnimationSpeed("fan", 1.0);
 StartMeshAnimationLoop("fan");
 value = 1.0;
 }
 else
 value = 0.0;

 cabin_fan_switch.SetValue(value);
 cabin_fan_light.SetValue(value);

 // ANIMATING WIPER
 if (ddcd.animatingWiper)
 {
 value = 1.0;
 SetMeshAnimationSpeed("wipers", 1.0);
 StartMeshAnimationLoop("wipers");
 }
 else
 value = 0.0;

 window_wipers.SetValue(value);
 window_wipers_light.SetValue(value);

 // SWITCH 3
 if (ddcd.switchOn3)
 value = 1.0;
 else
 value = 0.0;
 switch3.SetValue(value);
 light3.SetValue(value);

 // SWITCH 4
 if (ddcd.switchOn4)
 value = 1.0;
 else
 value = 0.0;
 switch4.SetValue(value);
 light4.SetValue(value);

 // SWITCH 5
 if (ddcd.switchOn5)
 value = 1.0;
 else
 value = 0.0;
 switch5.SetValue(value);
 light5.SetValue(value);

 // SWITCH 6
 if (ddcd.switchOn6)
 value = 1.0;
 else
 value = 0.0;
 switch6.SetValue(value);
 light6.SetValue(value);

 // SWITCH 7
 if (ddcd.switchOn7)
 value = 1.0;
 else
 value = 0.0;
 switch7.SetValue(value);
 light7.SetValue(value);

Continues next page...

Version 3.0  45   Trainz Railroad Simulator - The Content Creator’s Guide

 // SWITCH 8
 if (ddcd.switchOn8)
 value = 1.0;
 else
 value = 0.0;
 switch8.SetValue(value);
 light8.SetValue(value);
 }
 else
 {
 DD40CabinData ddd = new
DD40CabinData();
 loco.SetCabinData(ddd);
 }
 }

 void UserPressKey(string s)
 {
 if(s == "cabin-fans")
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();
 cd.animatingFan = !cd.animatingFan;

 float value;
 if (cd.animatingFan)
 value = 1.0;
 else
 value = 0.0;

 cabin_fan_switch.SetValue(value);
 cabin_fan_light.SetValue(value);

 UpdateFan();
 }
 if(s == "wipers")
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();
 cd.animatingWiper = !cd.animatingWiper;

 float value;
 if (cd.animatingWiper)
 value = 1.0;
 else
 value = 0.0;

 window_wipers.SetValue(value);
 window_wipers_light.SetValue(value);

 UpdateWipers();
 }
 }

 public void Init(void)
 {
 inherited();

 cabin_fan_switch = GetNamedControl("fan_
switch");
 window_wipers = GetNamedControl("wiper_
switch");
 switch3 = GetNamedControl("switch_3");
 switch4 = GetNamedControl("switch_4");
 switch5 = GetNamedControl("switch_5");
 switch6 = GetNamedControl("switch_6");
 switch7 = GetNamedControl("switch_7");
 switch8 = GetNamedControl("switch_8");

 cabin_fan_light = GetNamedControl("switch
light0");
 window_wipers_light = GetNamedControl("sw
itchlight1");
 light3 = GetNamedControl("switchlight2");
 light4 = GetNamedControl("switchlight3");
 light5 = GetNamedControl("switchlight4");
 light6 = GetNamedControl("switchlight5");
 light7 = GetNamedControl("switchlight6");
 light8 = GetNamedControl("switchlight7");

 RunAnimation();

 }

 void UserSetControl(CabinControl p_control,
float p_value)
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();

 if (p_control == cabin_fan_switch)
 {
 bool wantFanAnimation = p_value > 0.5;
 if (wantFanAnimation !=
cd.animatingFan)
 {
 cd.animatingFan = wantFanAnimation;
 UpdateFan();
 }

 if (wantFanAnimation)
 cabin_fan_light.SetValue(1.0);
 else
 cabin_fan_light.SetValue(0.0);
 }

 else if (p_control == window_wipers)
 {
 bool wantWiperAnimation = p_value >
0.5;
 if (wantWiperAnimation !=
cd.animatingWiper)
 {
 cd.animatingWiper =
wantWiperAnimation;
 UpdateWipers();
 }

 if (wantWiperAnimation)
 window_wipers_light.SetValue(1.0);
 else
 window_wipers_light.SetValue(0.0);

 }

 else if (p_control == switch3)
 {
 bool isOn = p_value > 0.5;
 float value = 0.0;
 if (isOn)
 value = 1.0;

 light3.SetValue(value);
 cd.switchOn3 = value;

Continues next page...

Version 3.0  46   Trainz Railroad Simulator - The Content Creator’s Guide

 }

 else if (p_control == switch4)
 {
 bool isOn = p_value > 0.5;
 float value = 0.0;
 if (isOn)
 value = 1.0;

 light4.SetValue(value);
 cd.switchOn4 = value;
 }

 else if (p_control == switch5)
 {
 bool isOn = p_value > 0.5;
float value = 0.0;
 if (isOn)
 value = 1.0;

 light5.SetValue(value);
 cd.switchOn5 = value;
 }

 else if (p_control == switch6)
 {
 bool isOn = p_value > 0.5;
 float value = 0.0;
 if (isOn)
 value = 1.0;

 light6.SetValue(value);
 cd.switchOn6 = value;
 }

 else if (p_control == switch7)
 {
 bool isOn = p_value > 0.5;
 float value = 0.0;
 if (isOn)
 value = 1.0;

 light7.SetValue(value);
 cd.switchOn7 = value;
 }

 else if (p_control == switch8)
 {
 bool isOn = p_value > 0.5;
 float value = 0.0;
 if (isOn)
 value = 1.0;

 light8.SetValue(value);
 cd.switchOn8 = value;
 }

 else
 inherited(p_control, p_value);

 }

 thread void SlowFanDown(void)
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();

 if (isFanSlowingDown)
 return;

 isFanSlowingDown = true;
 isFanSpeedingUp = false;

 // Slow it down...
 while (fanSpeed > 0.1)
 {
 fanSpeed = fanSpeed - 0.1;
 SetMeshAnimationSpeed("fan", fanSpeed);

 Sleep(0.5);
 if (!isFanSlowingDown)
 return;
 }

 fanSpeed = 0.0;
 StopMeshAnimation(vfan");
 }

 thread void SpeedFanUp(void)
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();

 if (isFanSpeedingUp)
 return;

 isFanSpeedingUp = true;
 isFanSlowingDown = false;

 // Speed it up...
 while (fanSpeed < 1.0)
 {
 fanSpeed = fanSpeed + 0.1;
 SetMeshAnimationSpeed("fan", fanSpeed);
 StartMeshAnimationLoop("fan");

 Sleep(0.5);
 if (!isFanSpeedingUp)
 return;
 }

 fanSpeed = 1.0;
 SetMeshAnimationSpeed("fan", fanSpeed);
 //isFanSpeedingUp = false;
 }

 void UpdateFan(void)
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();

 if (cd.animatingFan)
 SpeedFanUp();
 else
 SlowFanDown();
 }

 void UpdateWipers(void)
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();

 // Don’t need to worry about else, as it
will be handled when the loop is done.
 if (cd.animatingWiper)
 {
 SetMeshAnimationSpeed("wipers", 1.0);
 StartMeshAnimationLoop("wipers");
 } Continues next page...

Version 3.0  4 7   Trainz Railroad Simulator - The Content Creator’s Guide

 }

 thread void RunAnimation(void)
 {
 DD40CabinData cd =
cast<DD40CabinData>loco.GetCabinData();

 wait()
 {
 on "Animation-Event", "wiperstop":
 if (!cd.animatingWiper)
 StopMeshAnimation("wipers");
 continue;
 }

 }
 };

INTERIOR CONFIG.TXT BREAKDOWN
script
class
This refers to the name of the script file and the class of
asset it is (the class must match that stated within the
script file).

cameralist
Multiple in-cab camera positions relative to a.cabfront.

0,0,0,0,0 =left/right, front/back, up/down, yaw, pitch

To determine these variables add -freeintcam to the
trainzclassicoptions.txt file. Pan around the interior in
Driver, using arrow keys and mouse. See Page 386 for
information.

Viewing co-ordinates are displayed at the bottom left of
the screen. Make sure you include any negative sign for
coordinates where appropriate when entering them in
CCP for the config.txt file.

cameradefault
The in-cab camera view Trainz defaults to when entering
the cab.

INTERIOR ATTACHMENT TYPES
pantograph_lever
Pantograph lever/switch. For raising and lowering
pantographs on electric locos.

horn
Locomotive’s horn.

independantbrake_lever
Independent (Loco) brake lever

reverser_lever
Reverser lever (Forward/Neutral/Reverse)

throttle_lever
Throttle / power handle

trainbrake_lever
Train brake lever - self lapping

trainbrakelap_lever
Train brake lever with lap position.

dynamicbrake_lever
For selecting dynamic brake

bplocomain_needle
Main reservoir pressure needle

bploco_equalizer
Equalising reservoir pressure needle

bptrainbrakepipe_needle
Brake pipe pressure needle

bptrainbrakecylinder_needle
Brake cylinder pressure needle

speedo_needle
Speedometer needle

ampmeter_needle
Power meter needle

flow_needle
Flow gauge needle

windows
Textured mesh with low opacity (semi-transparent) to
give impression of reflection. This mesh has the same 3D
origin point as the main .pm model, therefore does not
require an attachment point

wheelslip_light
A warning light mesh that is only visible when the
locomotive loses traction. This mesh has the same 3D
origin point as the main .pm model, therefore does not
require an attachment point

switch0, switch1 etc
Switches

light_switch
Headlight switch

INTERIOR ATTACHMENT VARIABLES
Kinds:	 lever
	 Levers, switches, dials etc

	 animated-lever
	 Animated Levers etc e.g. in steam cabs

	 collision-proxy
	 Mouse collisions for animated levers

	 needle	
	 Gauge needles (i.e. Speedo, brake pres.)

	 pullrope
	 Pull rope horn as in the F7

	 light
	 Wheelslip light

mesh
Mesh file to be inserted.

Version 3.0  48   Trainz Railroad Simulator - The Content Creator’s Guide

RADIAN / DEGREE CIRCLE (for angle reference)

att
Attachment point where mesh is inserted. If no
attachment point is specified the mesh will be inserted at
a.cabfront (the same insertion point as main mesh)

limits
Mathematical boundaries Trainz uses determine the
objects function. These values vary as different objects
use different mathematical units. Generally use the
default values used in the config files provided.

angles
Rotational boundaries in radians relative to its attachment
point. Refer to the radian/degree circle diagram below to
help you out.

notches
The position of notches within the angle boundaries.
These are represented as decimal points between and
including 0 and 1.

notchheight
The size of the notches specified.

radius
The notch position relative to the attachment point.

mousespeed
This controls the use of the mouse on screen. Use this
to control the mouse speed and push/pull direction for
levers and dials.
 •  mousespeed -1	 Inverts mouse direction.
 •  mousespeed 2	 Doubles mouse speed in default 	
			 direction.
 •  mousespeed -0.5	 Inverts mouse direction and 		
			 halves the speed.

test-collisions 0
Mouse cannot be used for this mesh. Collision mesh
used instead. i.e. animated-levers.

opacity
Usually used for the window mesh to give transparency
(and the impression of reflection).

Version 3.0  49   Trainz Railroad Simulator - The Content Creator’s Guide

STEAM CAB INTERIORS
Overview
TRS steam cab interiors have been set-up in generally
the same way as diesel and electric cabs with a few
additional steam specific features.

Many of the levers and fireplates have several moving
objects and required mouse controlled animations. This
differed from the usual lever types with only one object,
set to rotate around an attachment point.

Not only did the levers need reviewing, but the cab
firebox itself had to produce fire and glow variations and
the coal shoveller needed to be controlled and linked to
the coal requirements also.

Download PB15 Interior source and in-games files here:
http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_PB15_interior.zip

See PB15 interior Config.txt on the following page.

http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_PB15_interior.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_PB15_interior.zip

Version 3.0  5 0   Trainz Railroad Simulator - The Content Creator’s Guide

PB15 Steam Interior Config.txt

kuid <KUID:-3:10191>
kind interior

script "pb15cabin"
class "PB15Cabin"

camera -0.769, 0.566, 0.617
cameralist
{
 camera0 0.817, 0.026, 0.654, 0.026, -0.146
 camera1 -0.808, 0.474, 0.694, 0.214, -0.773
 camera2 -1.429, 0.461, 0.617, 0.162, -0.075
 camera3 -0.769, 0.566, 0.617,0.157, -0.125
 camera4 0.703, 0.831, 0.694, -0.715, -0.561
 camera5 1.344, 0.305, 0.617, -0.015, -0.049
}
cameradefault 3

obsolete-table
{
 0 <KUID:44179:55003>
}

soundscript
{
 coal_on
 {
 trigger coal_on
 attachment a.coalman
 ambient 1
 nostartdelay 1
 repeat-delay 0,0.001
 distance 5,200
 sound
 {
 sound/coal_shovel2.wav
 }
 }
 shovel_againstmetal
 {
 trigger shovel_againstmetal
 attachment a.coalman
 ambient 1
 nostartdelay 1
 repeat-delay 0,0.001
 distance 5,200
 sound
 {
 sound/shovel_hit.wav
 }
 }
 step_metal
 {
 trigger step_metal
 attachment a.coalman
 ambient 1
 nostartdelay 1
 repeat-delay 0,0.001
 distance 5,200
 sound
 {
 sound/metal_footstep_left.wav
 }
 }
 coal_off
 {
 trigger coal_off
 attachment a.coalman

 ambient 1
 nostartdelay 1
 repeat-delay 0,0.001
 distance 5,200
 sound
 {
 sound/coal_into_firebox1.wav
 }
 }
}

mesh-table
{
 default
 {
 mesh PB_interior_main.im
 auto-create 1
 }

 trainbrake_lever
 {
 mesh brake_lever/brake_lever.im
 auto-create 1
 att a.brake
 limits 0, 4
 angles -0.75, 0.35
 notches 0, 0.5,1.0
 notchheight 1, 1, 1
 radius 0.16
 att-parent default
 kind lever
 }

 left_window
 {
 mesh window_sides.im
 auto-create 1
 limits 0, 1.0
 angles 0, -1
 notches 0, 1.0
 notchheight 1,1
 att a.window_l
 att-parent default
 kind lever
 }

 right_window
 {
 mesh window_sides.im
 auto-create 1
 att a.window_r
 att-parent default
 limits 0, 1.0
 angles 0, -1
 notches 0, 1.0
 notchheight 1,1
 kind lever
 }

 left_sliding_window
 {
 mesh window_sliding.im
 auto-create 1
 att a.windowsliding_l
 att-parent default
 limits 0, 1.0
 angles 0, -0.009
 notches 0, 1.0
 notchheight 1,1
 kind lever Continues next page...

Version 3.0  51   Trainz Railroad Simulator - The Content Creator’s Guide

 }

 right_sliding_window
 {
 mesh window_sliding.im
 auto-create 1
 att a.windowsliding_r
 att-parent default
 limits 0, 1
 angles 0, -0.009
 notches 0, 1.0
 notchheight 1,1
 kind lever
 }

 cylinder_drain
 {
 limits 0,4
 angles 0,-0.3
 mesh cylinder_clean/cylinder_clean.im
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 att a.cylinderclean
 att-parent default
 kind lever
 }

 regulator
 {
 mesh regulator/regulator.im
 anim regulator/regulator.kin
 auto-create 1
 att a.regulator
 limits 0, 1.0
 x-notches 0, 0.25, 0.5, 0.75, 1.0
 x-notchheight 1, 1, 1, 1, 1
 att-parent default
 kind animated-lever
 test-collisions 0
 mousespeed -1.0
 }

 regulator-collision-box
 {
 mesh regulator/selection_box/selection_box.
im
 att-parent regulator
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent regulator
 }

 seat0
 {
 mesh seat/seat.im
 anim seat/seat.kin
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 att a.seat0
 att-parent default
 kind animated-lever
 test-collisions 0
 }

 seat0-collision-box
 {
 mesh seat/selection_box/selection_box.im
 att-parent seat0
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent seat0
 }

 seat1
 {
 mesh seat/seat.im
 anim seat/seat.kin
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 att a.seat1
 att-parent default
 kind animated-lever
 test-collisions 0
 }

 seat1-collision-box
 {
 mesh seat/selection_box/selection_box.im
 att-parent seat1
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent seat1
 }

 water_injector_0
 {
 mesh injector/injector.im
 anim injector/injector.kin
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 att a.injector0
 att-parent default
 kind animated-lever
 test-collisions 0
 mousespeed -1.0
 }

 water_injector_0-collision-box
 {
 mesh injector/selection_box/selection_box.
im
 att-parent water_injector_0
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent water_injector_0
 }

 water_injector_1
 {
 mesh injector/injector.im
 anim injector/injector.kin
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0 Continues next page...

Version 3.0  5 2   Trainz Railroad Simulator - The Content Creator’s Guide

 notchheight 1, 1
 att a.injector1
 att-parent default
 kind animated-lever
 test-collisions 0
 mousespeed -1.0
 }

 water_injector_1-collision-box
 {
 mesh injector/selection_box/selection_box.
im
 att-parent water_injector_1
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent water_injector_1
 }

 fire_plates
 {
 mesh fireplates/fireplates.im
 anim fireplates/fireplates.kin
 auto-create 1
 kind animated-lever
 test-collisions 0
 notches 0, 1.0
 notchheight 1,1
 limits 0, 1.0
 }

 fire_plates-collision-box
 {
 mesh fireplates/selection_box/selection_box.
im
 att-parent fire_plates
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent fire_plates
 }

 water_valve0
 {
 mesh water_valve/water_valve.im
 auto-create 1
 att a.water_valve0
 att-parent default
 kind lever
 }

 water_valve1
 {
 mesh water_valve/water_valve.im
 auto-create 1
 att a.water_valve1
 att-parent default
 kind lever
 }

 water_valve2
 {
 mesh water_valve/water_valve.im
 auto-create 1
 att a.water_valve2
 att-parent default
 kind lever
 }

 water_valve3
 {
 mesh water_valve/water_valve.im
 auto-create 1
 att a.water_valve3
 att-parent default
 kind lever
 }

 water_valve4
 {
 mesh water_valve/water_valve.im
 auto-create 1
 att a.water_valve4
 att-parent default
 kind lever
 }

 water_valve5
 {
 mesh water_valve/water_valve.im
 auto-create 1
 att a.water_valve5
 att-parent default
 kind lever
 }

 blowdown
 {
 kind lever
 mesh blowdown/blowdown.im
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 angles 0, 0.01
 att a.blowdown
 att-parent default
 mousespeed -1.0
 }

 sanding_lever
 {
 kind lever
 mesh sanding_lever/sanding_lever.im
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 angles 0, 0.2
 att a.sanding_lever
 att-parent default
 mousespeed -1.0
 }
 whistle_lever
 {
 kind lever
 mesh whistle_lever/whistle_lever.im
 auto-create 1
 limits 0, 1.0
 notches 0, 1.0
 notchheight 1, 1
 angles 0, 0.3
 att a.whistle
 att-parent default
 }

 bplocomain_needle
 { Continues next page...

Version 3.0  5 3   Trainz Railroad Simulator - The Content Creator’s Guide

 kind needle
 mesh main_res_needle/main_res_needle.im
 auto-create 1
 att a.reservoir_press_red
 att-parent default
 limits 0, 3600
 }

 bptrainbrakepipe_needle
 {
 kind needle
 mesh trainline_needle_black/trainline_
needle_black.im
 auto-create 1
 att a.brake_press_black
 att-parent default
 limits 0, 3600
 }

 boiler_needle
 {
 kind needle
 mesh boiler_needle/boiler_needle.im
 att a.boiler_pressure
 limits 0, 1570
 auto-create 1
 }

 reverser
 {
 mesh reverser/reverser.pm
 anim reverser/reverser.kin
 auto-create 1
 kind animated-lever
 test-collisions 0
 limits -1.0, 1.0
 }

 reverser-collision-box
 {
 mesh reverser/selection_box/selection_box.
im
 att-parent reverser
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent reverser
 }
 waterglass_right
 {
 mesh waterglass_right.im
 anim waterglass_right.kin
 auto-create 1
 limits 0, 100
 kind animated-dial
 }
 waterglass_left
 {
 mesh waterglass_left.im
 anim waterglass_left.kin
 auto-create 1
 limits 0, 100
 kind animated-dial
 }
 firebox
 {
 mesh firebox.im
 auto-create 1
 kind firebox

 light 0
 test-collisions 0
 }
 fire
 {
 mesh fire.im
 auto-create 1
 light 0
 test-collisions 0
 }
 coal
 {
 mesh coal.im
 auto-create 1
 light 0
 test-collisions 0
 }
 fireglow
 {
 mesh fireglow.im
 auto-create 1
 light 0
 test-collisions 0
 }
 coalman
 {
 mesh coalman/coalman.im
 auto-create 1
 att-parent default
 att a.coalman
 effects
 {
 shovel
 {
 kind animation
 anim coalman/Coalman_shovel.kin
 }
 wave
 {
 kind animation
 anim coalman/Coalman_wave.kin
 }
 idle1
 {
 kind animation
 anim coalman/Coalman_loop1.kin
 }
 idle2
 {
 kind animation
 anim coalman/Coalman_loop2.kin
 }
 loop2shovel
 {
 kind animation
 anim coalman/Coalman_loop2shovel.kin
 }
 shovel2loop
 {
 kind animation
 anim coalman/Coalman_shovel2loop.kin
 }
 wipebrow
 {
 kind animation
 anim coalman/Coalman_wipebrow.kin
 }
 }
 }
}

Version 3.0  54   Trainz Railroad Simulator - The Content Creator’s Guide

PB15Cabin.gs
This is the PB15 steam interior script file.

This script is responsible for mapping all the steam-specific controls to the physics system, and for handling PB-15
specific functions such as the coal shovelling dude.

include "train.gs"
include "locomotive.gs"
include "cabin.gs"

class PB15CabinData isclass CabinData
{
 public float fire_plates_val;
 public float left_window_val;
 public float right_window_val;
 public float left_sliding_window_val;
 public float right_sliding_window_val;
 public float seat0_val;
 public float seat1_val;
 public float sanding_lever_val;
 public float whistle_lever_val;
 public float regulator_lever_val;
 public float blowdown_lever_val;
 public bool fireboxDoorOpen;
 };

 class PB15Cabin isclass Cabin
 {
 Locomotive loco;

 CabinControl speedometer;
 CabinControl main_reservoir_needle;
 CabinControl brake_cylinder0_needle;
 CabinControl brake_cylinder1_needle;
 CabinControl no3_pipe_needle;
 CabinControl brake_pipe_needle;
 CabinControl equaliser_needle;
 CabinControl flow_needle;
 CabinControl ampmeter_needle0;
 CabinControl ampmeter_needle1;
 //CabinControl throttle_lever;
 CabinControl reverser_lever;
 CabinControl train_brake_lever;
 CabinControl train_lapbrake_lever;
 CabinControl loco_brake_lever;
 CabinControl dynamic_brake_lever;
 CabinControl wheelslip_light;
 CabinControl horn_rope;
 CabinControl pantograph_lever;
 CabinControl light_switch;

 CabinControl waterGlassLeft_dial, waterGlassRight_dial;
 CabinControl firebox;
 CabinControl boiler_needle;
 CabinControl regulator_lever;
 CabinControl fire_plates;
 CabinControl left_window;
 CabinControl right_window;
 CabinControl left_sliding_window;
 CabinControl right_sliding_window;
 CabinControl seat0;
 CabinControl seat1;
 CabinControl sanding_lever;
 CabinControl whistle_lever;
 CabinControl blowdown_lever;

 CabinControl waterInjector0, waterInjector1;

 PB15CabinData cabinData;

Version 3.0  55   Trainz Railroad Simulator - The Content Creator’s Guide

 bool shovellingCoal;
 bool waving;

 thread void RunAnimation(void);

 public void Init(void)
 {
 speedometer = GetNamedControl("speedo_needle");
 main_reservoir_needle = GetNamedControl("bplocomain_needlev);
 brake_cylinder0_needle = GetNamedControl(vbptrainbrakecylinder_needle");
 brake_cylinder1_needle = GetNamedControl("no3pipe_needle");
 no3_pipe_needle = GetNamedControl("bptrainbrakecylinder2_needle");
 brake_pipe_needle = GetNamedControl("bptrainbrakepipe_needle");
 equaliser_needle = GetNamedControl(vbploco_equaliser");
 flow_needle = GetNamedControl("flow_needle");
 ampmeter_needle0 = GetNamedControl("ampmeter_needle");
 ampmeter_needle1 = GetNamedControl(vampmeter2_needle");
 //throttle_lever = GetNamedControl(vthrottle_lever");
 train_brake_lever = GetNamedControl("trainbrake_lever");
 train_lapbrake_lever = GetNamedControl("trainbrakelap_lever");
 loco_brake_lever = GetNamedControl(vindependantbrake_lever");
 dynamic_brake_lever = GetNamedControl("dynamicbrake_lever");
 wheelslip_light = GetNamedControl("wheelslip_light");
 horn_rope = GetNamedControl("horn");
 light_switch = GetNamedControl("light_switch");

 waterGlassLeft_dial = GetNamedControl("waterglass_left");
 waterGlassRight_dial = GetNamedControl("waterglass_right");

 firebox = GetNamedControl("firebox");
 boiler_needle = GetNamedControl("boiler_needle");
 regulator_lever = GetNamedControl("regulator");
 reverser_lever = GetNamedControl("reverser");

 waterInjector0 = GetNamedControl(vwater_injector_0");
 waterInjector1 = GetNamedControl("water_injector_1");

 fire_plates = GetNamedControl("fire_plates");
 left_window = GetNamedControl("left_window");
 right_window = GetNamedControl("right_window");
 left_sliding_window = GetNamedControl("left_sliding_window");
 right_sliding_window = GetNamedControl("right_sliding_window");
 seat0 = GetNamedControl("seat0");
 seat1 = GetNamedControl("seat1");
 sanding_lever = GetNamedControl("sanding_lever");
 whistle_lever = GetNamedControl("whistle_lever");
 blowdown_lever = GetNamedControl("blowdown_lever");

 RunAnimation();
 }

 //! Attach this cabin to a game object (i.e. a locomotive).
 // Param: obj Game object to attach this cabin to (usually a Locomotive).
 public void Attach(GameObject obj)
 {
 loco = cast<Locomotive>(obj);

 // get cabin data
 CabinData cd = loco.GetCabinData();
 if(cd)
 {
 // reset the controls from saved values
 PB15CabinData pbcd = cast<PB15CabinData>cd;
 if(fire_plates)
 fire_plates.SetValue(pbcd.fire_plates_val);
 if(left_window)
 left_window.SetValue(pbcd.left_window_val);
 if(right_window)
 right_window.SetValue(pbcd.right_window_val);
 if(left_sliding_window)

Version 3.0  56   Trainz Railroad Simulator - The Content Creator’s Guide

 left_sliding_window.SetValue(pbcd.left_sliding_window_val);
 if(right_sliding_window)
 right_sliding_window.SetValue(pbcd.right_sliding_window_val);
 if(seat0)
 seat0.SetValue(pbcd.seat0_val);
 if(seat1)
 seat1.SetValue(pbcd.seat1_val);
 if(sanding_lever)
 sanding_lever.SetValue(pbcd.sanding_lever_val);
 if(whistle_lever)
 whistle_lever.SetValue(pbcd.whistle_lever_val);
 if(regulator_lever)
 regulator_lever.SetValue(pbcd.regulator_lever_val);
 if(blowdown_lever)
 blowdown_lever.SetValue(pbcd.blowdown_lever_val);
 }
 else
 {
 PB15CabinData pbd = new PB15CabinData();
 loco.SetCabinData(pbd);
 }
 }

 // the default locomotive config uses kPa to describe pressure dial ranges
 // this function converts from g/m^3 into kPa-above-atmospheric
 public float GetPressureParam(string param)
 {
 float pressureMultiplier = 1.0 / (0.145 * 0.0000703);
 float pressureBase = 14.7 * 0.0000703;

 return pressureMultiplier * (loco.GetEngineParam(param) - pressureBase);
 }

 public void Update(void)
 {
 float value;
 Train train = loco.GetMyTrain();

 // Update Needles

 if (speedometer)
 speedometer.SetValue(train.GetVelocity());

 if (main_reservoir_needle)
 main_reservoir_needle.SetValue(GetPressureParam("main-reservoir-pressure"));

 value = GetPressureParam("brake-cylinder-pressurev);
 if (brake_cylinder0_needle)
 brake_cylinder0_needle.SetValue(value);
 if (brake_cylinder1_needle)
 brake_cylinder1_needle.SetValue(value);

 if (no3_pipe_needle)
 no3_pipe_needle.SetValue(GetPressureParam("no3-pipe-pressure"));

 if (brake_pipe_needle)
 brake_pipe_needle.SetValue(GetPressureParam("brake-pipe-pressure"));

 if (equaliser_needle)
 equaliser_needle.SetValue(GetPressureParam("equaliser-pressure"));

 if (flow_needle)
 flow_needle.SetValue(GetPressureParam("flow"));

 value = loco.GetEngineParam("current-drawn");
 if (ampmeter_needle0)
 ampmeter_needle0.SetValue(value);
 if (ampmeter_needle1)
 ampmeter_needle1.SetValue(value);
 //

Version 3.0  5 7   Trainz Railroad Simulator - The Content Creator’s Guide

 // Update Levers
 // This is done in case the game logic has changed any of the settings from what
 // the user selected.
 //if (throttle_lever)
 // throttle_lever.SetValue(loco.GetEngineSetting("throttle"));// * 8.0);

 if (reverser_lever)
 reverser_lever.SetValue(loco.GetEngineSetting("reverser"));

 if (train_brake_lever)
 train_brake_lever.SetValue(loco.GetEngineSetting("train-auto-brake"));

 if (train_lapbrake_lever)
 train_lapbrake_lever.SetValue(loco.GetEngineSetting("train-lap-brake"));

 if (loco_brake_lever)
 loco_brake_lever.SetValue(loco.GetEngineSetting("loco-auto-brake"));

 if (dynamic_brake_lever)
 dynamic_brake_lever.SetValue(loco.GetEngineSetting("dynamic-brake"));

 if (wheelslip_light)
 wheelslip_light.SetValue(loco.GetEngineParam("wheelslip"));

 if (horn_rope)
 horn_rope.SetValue(loco.GetEngineParam("horn"));

 if (pantograph_lever)
 pantograph_lever.SetValue(loco.GetEngineSetting("pantograph"));

 if (light_switch)
 light_switch.SetValue(loco.GetEngineSetting("headlight"));

 if (waterGlassLeft_dial)
 waterGlassLeft_dial.SetValue(loco.GetEngineParam("steam-boiler-liquid-percent"));

 if (waterGlassRight_dial)
 waterGlassRight_dial.SetValue(loco.GetEngineParam("steam-boiler-liquid-percent"));

 // update cabin data
 PB15CabinData cd = cast<PB15CabinData>loco.GetCabinData();
 if(left_window)
 cd.left_window_val = left_window.GetValue();
 if(right_window)
 cd.right_window_val = right_window.GetValue();
 if(left_sliding_window)
 cd.left_sliding_window_val = left_sliding_window.GetValue();
 if(right_sliding_window)
 cd.right_sliding_window_val = right_sliding_window.GetValue();
 if(seat0)
 cd.seat0_val = seat0.GetValue();
 if(seat1)
 cd.seat1_val = seat1.GetValue();
 if(sanding_lever)
 cd.sanding_lever_val = sanding_lever.GetValue();
 if(whistle_lever)
 cd.whistle_lever_val = whistle_lever.GetValue();
 if(regulator_lever)
 cd.regulator_lever_val = regulator_lever.GetValue();
 if(fire_plates)
 cd.fire_plates_val = fire_plates.GetValue();
 if(blowdown_lever)
 cd.blowdown_lever_val = blowdown_lever.GetValue();
 cd.fireboxDoorOpen = fire_plates.GetValue() > 0.9;

 if (firebox)
 {
 firebox.SetNamedValue("amount-burning-coal", 0.5);
 if(fire_plates)
 {

Version 3.0  58   Trainz Railroad Simulator - The Content Creator’s Guide

 firebox.SetNamedValue("door-open", fire_plates.GetValue());
 }
 firebox.SetNamedValue("fire-life", loco.GetEngineParam("fire-temperature") / 1600.0);
 firebox.SetNamedValue("steam-piston-cycle", loco.GetEngineParam("steam-piston-cycle"));
 }

 if (boiler_needle)
 {
 boiler_needle.SetValue(GetPressureParam("steam-boiler-pressure"));
 }

 if (waterInjector0)
 waterInjector0.SetValue(loco.GetEngineSetting("injector"));

 if (waterInjector1)
 waterInjector1.SetValue(loco.GetEngineSetting("injector"));
 }

 void UserSetControl(CabinControl p_control, float p_value)
 {
 Interface.Log("control: " + p_control.GetName() + " value: " + p_value);

 if (p_control == reverser_lever)
 loco.SetEngineSetting("reverser", p_value);

 // else if (p_control == throttle_lever)
 // loco.SetEngineSetting("throttle", p_value);

 else if (p_control == train_brake_lever)
 loco.SetEngineSetting("train-auto-brake", p_value);

 else if (p_control == train_lapbrake_lever)
 loco.SetEngineSetting("train-lap-brake", p_value);

 else if (p_control == loco_brake_lever)
 loco.SetEngineSetting("loco-auto-brake", p_value);

 else if (p_control == dynamic_brake_lever)
 loco.SetEngineSetting("dynamic-brake", p_value);

 else if (p_control == horn_rope)
 ; // todo

 else if (p_control == pantograph_lever)
 loco.SetEngineSetting("pantograph", p_value);

 else if (p_control == light_switch)
 loco.SetEngineSetting("headlight", p_value);

 else if (p_control == regulator_lever)
 loco.SetEngineSetting("regulator", p_value);

 else if (p_control == waterInjector0 or p_control == waterInjector1)
 loco.SetEngineSetting("injectorv, p_value);
 }

 void UserPressKey(string s)
 {
 if(s == "shovel-coal")
 {
 PB15CabinData cd = cast<PB15CabinData>loco.GetCabinData();
 // if(cd.fireboxDoorOpen)
 {
 if(FireAddCoal())
 {
 if(!shovellingCoal)
 {
 if(!waving)
 {
 if(fire_plates)

Version 3.0  59   Trainz Railroad Simulator - The Content Creator’s Guide

 fire_plates.SetValue(1.0f);
 shovellingCoal = true;
 SetFXAnimationState("idle1", false);
 SetFXAnimationState("idle2", false);
 SetFXAnimationState("loop2shovel", false);
 SetFXAnimationState(vloop2shovel", true);
 }
 }
 }
 }
 }
 else if(s == "wave")
 {
 if(!shovellingCoal)
 {
 if(!waving)
 {
 waving = true;
 SetFXAnimationState("wave", false);
 SetFXAnimationState("wave", true);
 }
 }
 }
 }
 thread void RunAnimation(void)
 {
 SetFXAnimationState("idle1", true);

 wait()
 {
 on "Animation-Event", "Coalman_loop1_end":
 SetFXAnimationState("idle1", false);
 SetFXAnimationState("idle2", true);
 continue;

 on "Animation-Event", "Coalman_loop2_end":
 SetFXAnimationState("idle2", false);
 SetFXAnimationState("idle1", true);
 continue;

 on "Animation-Event", "Coalman_loop2shovel_end":
 SetFXAnimationState("loop2shovel", false);
 SetFXAnimationState("shovel", true);
 continue;

 on "Animation-Event", "Coalman_shovel_end":
 SetFXAnimationState("shovel", false);
 SetFXAnimationState("wipebrow", true);
 continue;

 on "Animation-Event", "Coalman_wipebrow_end":
 SetFXAnimationState("wipebrow", false);
 SetFXAnimationState("shovel2loop", true);
 continue;

 on "Animation-Event", "Coalman_shovel2loop_end":
 SetFXAnimationState("shovel2loop", false);
 SetFXAnimationState("idle1", true);
 shovellingCoal = false;
 continue;

 on "Animation-Event", "Coalman_wave_end":
 SetFXAnimationState("wave", false);
 SetFXAnimationState("idle1", true);
 waving = false;
 continue;

 }
 }
 };

Version 3.0  6 0   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: PANTOGRAPH

These are the animated mechanisms on the roof of
electric locomotives that conduct to an electric catenary
(wires) above.

Referenced by the pantograph tag in a traincar config.txt

Config.txt:
kind			 “pantograph”
kuid			 <kuid:171456:100023>
username		 “testPantograph”
trainz-build	 2.5
category-class	 “ZP”
category-era	 “1960s;1970s;1980s”
description		 “Test pantograph
asset.”
category-region	 “00”
thumbnails {
0 {
image			 “thumb.jpg”
width			 240
height		 180
	 }
}

KIND: ENVIRONMENT

Config.txt:
kuid			 <kuid:56113:1227>
trainz-build	 2.5
category-class	 “ES”
category-region	 “00”
category-era	 “2010s”
username		 “testEnvironment”
kind			 “environment”
normal		 “norm”
storm			 “storm”
night			 “night”
thumbnails {
0 {
image			 “thumb.jpg”
width			 240
height		 180
	 }
}

Breakdown for Environment Config.txt:

region
Surveyor region.

normal
Name of image file for normal sky.
File should be 256 x 256 pixel 24bit tga.

storm
Name of image file for stormy sky.
File should be 256 x 256 pixel 24bit tga.

night
Name of image file for night sky.
File should be 256 x 256 pixel 24bit tga.

Version 3.0  61   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: WATER2

Default location:
C:\Program Files\Auran\TRS2004\World\Custom\Environment\

Note: New animated water in TRS (kind water2)
supercedes previous UTC water (kind water).

Therefore kind water is no longer supported by TRS.

Where a UTC map refers to an old kind water asset it
will automatically be updated to one of the new animated
water assets.

Essentially the new water system comprises of an
animated, bump-mapped, transparent surface. The
animation variables are controlled through the water.
anim.txt. The tile size and material properties are
controlled though the water.config.txt file (following page).

The following example is of Calm Water.
Choppy, Glassy and Rough water are described on the
following pages.

Typical Water2 Directory Structure

version 1.00

// Water DetailAnim configuration file
// Is used from DefaultWater.config.txt
DetailAnim
{
 animSampleRate = 10; // Sample rate (samples per sec)
 animPeriod = 5; // Looping period in sec.
 animSpeed = 2.0; 	 // Speed of waves
 animSize = 128,128; // Bump map dimentions
 animWorldSize = 450.0; // "Size" of one tile
 animMaxHeight = 0.4; // Max height of the wave
 animScaleNormXY = 4.0; // scale X,Y coordinates of the normal map for better interpolation

 FFT
 {
 animFFTWindVec = -15.0,5.0;	 // Direction and speed of the wind affecting length of the waves
 animPhillipsA = 1.0e-3; 	// Phillips spectrum constant affecting heights of the waves
 animFFTSeed = 0;
 }
}

water.anim.txt Calm Water Note: // indicates start of creator notes only (comments on script)

kuid			 <kuid:56113:1226>
trainz-build		 2.5
category-class	 “EW”
category-region	 “00”
category-era		 “2010s”
username		 “CalmWater”
kind			 “water2”
description		 “This is a test water2.”
thumbnails {
0 {
image			 “thumb.jpg”
width			 240
height		 180
	 }
}

config.txt Calm Water

water2a.tga

256 x 256 pixel 32bit tga.

Calm Water

Bump-mapping requires special settings and naming
conventions in 3dsmax. Refer to Page 350 and the
following download for information:

http://www.auran.com/TRS2004/downloads/contentcreation/
TRS_Max4_Plugin_Bump.zip

http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip

Version 3.0  6 2   Trainz Railroad Simulator - The Content Creator’s Guide

version 1.00

// WaterManager config data
WaterManager("WaterManagerGeneric")
{
 WaterMaterial
 {
 materialColor = (0.20, 0.45, 0.45, 0.8);
 materialRI = 0.3;
 opacityTex = WaterOpacity.texture;
 opacityAmount = 0.5;
 }

 // Compiled DetailAnim or text ConfigData file ‘water.anim.txt’
 // This is now loaded manually by Trainz so Trainz can cache the anim file in a separate folder.
 // DetailAnimFile = water.anim;
}

// WaterGeometry config data
WaterGeometry
{
 UVScrollVelocity = 0.0, 0.05;
 TileUVScale = 1.0, 1.0;

 GridSpacing = 10.0; 	 // "Size" of one cell of the grid (is used if MaxAmp > 0)
 TileGridSize = 2, 2; 	 // Number of vertices in one tile (use more if MaxAmp > 0)
 WaveFreq = 0.0;		 //0.15;
 MaxAmp = 0.0;		 //0.25;

// Mesh animation
// TileGridSize = 3, 3; 	 // Number of vertices in one tile (use more if MaxAmp > 0)
// WaveFreq = 0.15;
// MaxAmp = 0.25;
}

water.config.txt Calm Water Note: // indicates start of creator notes only

version 1.00

DetailAnim
{
 animSampleRate = 10;
 animPeriod = 5;
 animSpeed = 5.0;
 animSize = 128,128;
 animWorldSize = 450.0;
 animMaxHeight = 1.0;
 animScaleNormXY = 4.0;

 FFT
 {
 animFFTWindVec = -15.0,5.0;
 animPhillipsA = 1.0e-3;
 animFFTSeed = 0;
 }
}

water.anim.txt Choppy Water

version 1.00

WaterManager("WaterManagerGeneric")
{
 WaterMaterial
 {
 materialColor = (0.20, 0.45, 0.45, 0.8);
 materialRI = 0.3;
 opacityTex = WaterOpacity.texture;
 opacityAmount = 0.5;
 }
}

WaterGeometry
{
 UVScrollVelocity = 0.0, 0.05;
 TileUVScale = 1.0, 1.0;
 GridSpacing = 10.0;
 TileGridSize = 2, 2;
 WaveFreq = 0.0;
 MaxAmp = 0.0;
}

water.config.txt Choppy Water

Choppy Water

kuid <KUID2:###:#####:1>
kind water2
username "Choppy water"
description " "
trainz-build 2.5
category-class “EW”
category-region “00”
category-era	 “2010s”

config.txt Choppy Water
Notation (comments on the script) removed for clarity.

Version 3.0  6 3   Trainz Railroad Simulator - The Content Creator’s Guide

version 1.00

DetailAnim
{
 animSampleRate = 1;
 animPeriod = 1;
 animSpeed = 1.0;
 animSize = 128,128;
 animWorldSize = 450.0;
 animMaxHeight = 0.0;
 animScaleNormXY = 4.0;

 FFT
 {
 animFFTWindVec = 0.0,0.0;
 animPhillipsA = 1.0e-3;
 animFFTSeed = 0;
 }
}

water.anim.txt Glassy Water

version 1.00

WaterManager("WaterManagerGeneric")
{
 WaterMaterial
 {
 materialColor = (0.20, 0.45, 0.45, 0.8);
 materialRI = 0.3;
 opacityTex = WaterOpacity.texture;
 opacityAmount = 0.5;
 }
}

WaterGeometry
{
 UVScrollVelocity = 0.0, 0.05;
 TileUVScale = 1.0, 1.0;
 GridSpacing = 10.0;
 TileGridSize = 2, 2;
 WaveFreq = 0.0;
 MaxAmp = 0.0;
}

water.config.txt Glassy Water

Glassy Water

kuid <KUID2:###:#####:1>
kind water2
username "Glassy water"
description " "
trainz-build 2.5
category-class “EW”
category-region “00”
category-era	 “2010s”

config.txt Glassy Water

version 1.00

DetailAnim
{
 animSampleRate = 10;
 animPeriod = 5;
 animSpeed = 5.0;
 animSize = 128,128;
 animWorldSize = 450.0;
 animMaxHeight = 2.0;
 animScaleNormXY = 4.0;

 FFT
 {
 animFFTWindVec = -12.0,4.0;
 animPhillipsA = 1.0e-3;
 animFFTSeed = 0;
 }
}

water.anim.txt Rough Water

version 1.00

WaterManager("WaterManagerGeneric")
{
 WaterMaterial
 {
 materialColor = (0.20, 0.45, 0.45, 0.8);
 materialRI = 0.3;
 opacityTex = WaterOpacity.texture;
 opacityAmount = 0.5;
 }
}

WaterGeometry
{
 UVScrollVelocity = 0.0, 0.05;
 TileUVScale = 1.0, 1.0;
 GridSpacing = 10.0;
 TileGridSize = 2, 2;
 WaveFreq = 0.0;
 MaxAmp = 0.0;
}

water.config.txt Rough Water

Rough Water

kuid <KUID2:###:#####:1>
kind water2
username "Rough water"
description " "
trainz-build 2.5
category-class “EW”
category-region “00”
category-era	 “2010s”

config.txt Rough Water

Notation (comments on the script)removed for clarity

Notation (comments on the script) removed for clarity

Version 3.0  64   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MAP

The config.txt for maps are automatically generated by
TRS Surveyor.

You can add a soundscript to the config.txt file if desired
such as the example below. Refer Soundscripts Page
395 for more information.

Config.txt :
kind map
kuid <KUID2:###:#####:1>
username Britain
workingscale 0
workingunits 0
water <KUID:-1:8009>

trainz-build 2.5
soundscript
{
 morning
 {
 ambient 1
 value-range 1, 0.1
 volume 0.3
 sound
 {
 ctry_day_1.wav
 }
 }
 night
 {
 ambient 1
 value-range 0, 0.9
 volume 0.3
 sound
 {
 night_loop.wav
 }
 }
}

KIND: PROFILE

A Profile is otherwise known as a Session in TRS.

You can now create multiple Sessions in Surveyor for
a single route with different consists, starting points,
industry outputs etc. You may have different sets of trains
in each different session.

The config.txt and profile.dat files for Profiles are
automatically generated by TRS Surveyor and generally
shouldn’t be edited.

KIND: GROUNDTEXTURE

These are the text.

Config.txt :
kuid <KUID2:###:#####:1>
kind groundtexture

clutter-mesh <KUID2:###:#####:1>
username
description " "
trainz-build 2.5
category-class “GL”
category-region“UK”
category-era “1980s”

Breakdown of Groundtexture Config.txt:

region
Surveyor region.

clutter-mesh
Not a requirement. Optional only. See below.

Ground textures can now reference a mesh and insert
the mesh automatically as the ground is painted. Painting
over a clutter-mesh ground texture effectively deletes the
clutter meshes and texture.

The mesh it refers to is can be standard scenery object or
kind mesh.

Clutter-meshes must have only one 3dsmax material
assigned to it only. Polycounts must be very low.

Note: The draw distance is very short for clutter-mesh
assets. We suggest only scrubs or grasses be used like
the example below.

Ground Clutter Mesh

GROUNDTEXTURE CLUTTER MESH

Version 3.0  65   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: SCENERY

The example right shows how flexible the mesh table can
be. Note this asset has 2 animations. One as part of he
default mesh, and another external mesh inserted into an
attachment point within the default mesh (the radar).

Note: We no longer need the UTC tag “autoanimation 1”
as all animations are now referenced through the
mesh-table.

The night mesh (default-night) has also changed from
UTC. It too is now referenced through the mesh-table.

Breakdown of Scenery Config.txt:

Please refer to earlier config.txt examples for other
entries not described here.

region
Surveyor region.

type
Surveyor type.

light
Sets lighting to be used for the object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value (uniform colouring), 1 sets directional
light which is affected by the position of the sun (shows
shadows on the object surfaces).

nightmode
Only add this tag if you reference a default-night mesh in
the mesh-table.

Values: home, lamp or constant.

Home switches on night effect at dusk and off sometime
during the night. Lamp switches the night effect on from
dusk to dawn. Constant lights are on day and night.

corona and name effects (optional)
Refer Effects - Page 13.

SCENERY MOVEMENT VARIABLES

snapgrid n
Where n is a value in meters. This lets you specify the
size of the grid the object snaps to.

We recommend factors/fractions of 720 as this is the size
of a base board and the positioning may do funny things
across section borders. e.g. 1, 2, 5, 10, 20, 30, 40, 45,
60, 80, 90, 120, 180, 240, 360, 720.

The default snapgrid is 10. See snapmode (below) on
how to enable grid snapping.

rotstep n
Where n is a value in degrees. This lets you specify the
step size of rotation angles for this object. Other example
values are 1, 10, 20, 90, 180 etc.
The default rotstep is 1.0

kuid <KUID2:###:#####:1>
kind scenery

light 1
nightmode home
username “Airport Building 1”
kuid-table{
}
obsolete-table {
}
mesh-table
{
 default
 {
 mesh scenery_asset.im
 anim anim.kin
 auto-create 1
 animation-loop-speed 1
 effects
 {
 0
 {
 kind name
 fontsize 0.15
 fontcolor 30,30,30
 att a.name0
 name name
 }
 1
 {
 kind corona
 att a.coronawhite
 frequency 1
 directional 0
 texture-kuid <KUID:-3:10111>
 }
 }
 }
 default-night
 {
 mesh night.im
 night-mesh-base default
 }
 radar
 {
 mesh radar/radar.im
 anim radar/radar.kin
 att a.radar
 att-parent default
 animation-loop-speed 1.0
 }
}

description " "
trainz-build 2.5
category-class “FS”
category-region “UK”
category-era “1980s”

Typical Scenery Config.txt :

Version 3.0  66   Trainz Railroad Simulator - The Content Creator’s Guide

snapmode n
Where n is either 0 (default) , 1 or 2. Use snapmode to
enable snapping of a scenery object to the snap grid.

0 will disable grid snapping (default)
1 will enable grid snapping
2 will enable an offset grid snapping.

Offset grid snapping will cause objects to be snapped to
the grid but will also offset the object’s position by ½ the
grid size – essentially positioning the object in between
the normal grid lines.

See snapgrid (above) on how to set the snap grid size
from the default of 10 meters.

Note: In TRS, you can now hold down the control key
while moving object’s to snap them to the default grid of
10 meters.

rotate n
Where n is 0 or 1 (default). This lets you disable rotation
on a scenery object.
0 to disable
1 to enable (default).

rotate-yz-range min, max
eg: rotate-yz-range –90, 90
Where min and max are values in degrees. This tag lets
you set the roll / yz rotation range (normal object rotation
is an xy rotation). If you want your scenery object to
support rolling then use this tag to set the minimum and
maximum roll range. By default, objects have a min/max
roll range of 0 to 0.

rollstep n
Where n is a value in degrees. Used in conjunction with
rotate-yz-range, rollstep lets you specify the step size of
roll angles for this object. Other example values are 1, 5,
20 etc. The default rollstep is 1.0.

height-range min, max
eg: height-range –10, 100
Where min and max are values in meters.

Custom scenery objects are height adjustable, and this
tag allows you to specify the minimum and maximum
height ranges for changing the height with the new
“Adjust Height” tool in Surveyor’s ‘Object Tools’ panel.

Adding a height range is particularly useful for ships/
buoys (placed on water) and for Station accessories.

Note: Animation Events
Sounds events and generic events can be linked to an
animation key-frame to give great control over sound and
script timing for industry and scenery assets.
Refer to Page 369.

Version 3.0  6 7   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: INDUSTRY

An industry is best described as a scenery asset with
product processing functionality. Industry assets interact
with compatible rolling stock assets through their script
file. See note at bottom of page.

Tags that apply in a scenery asset may also apply in an
industry asset. See Kind Scenery Page 65.

Full config or script files are not included in this section
because all TRS released industry config.txt files and
script files (.gs) are available for download from:

http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10

Overview
All TRS industries have attached-tracks, attached-
triggers, queues and processes to input or output
products (or commodities).

Attached-track (required)
Attached tracks are setup in an industries config.txt. Auto-
generated spline track is generated through attachment
points located within the default mesh.

Attached-tracks update automatically to the spline track
connected to it. You may over-ride this auto-update
feature by adding useadjoiningtracktype 0

Note. Correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
the Z axis must point ‘up’. Refer to Page 75.

Attached-trigger (required)
A Trigger is a point along an attached track with a
specified radius. When a compatible rolling stock
item enters this radius it triggers a set of commands,
controlled through its script.

Note: The increasing use of scripts in TRS adds huge flexibility and control to assets and their functionality.

Adding scripts on a per asset basis is a logical progression in the development of Trainz. However, we do understand
that most 3D modelers do not know a great deal about scripts let alone how to write them. With the release of TRS,
we are really dawning on a new era in Trainz custom content creation.

Because of this, we recognise there will need to be far more collaboration and group efforts for custom industry asset
creation. There are several very good script writers in the Trainz content Creation community. Just ask around the
forums.

A trigger is setup in an industries config.txt.

Queues (required)
The queues field states which product or products the
industry can use. It contains the size of each product, the
initial count when placed, and can refer to it’s visual load
state whether through a load animation or attachment.
Any load animations are set-up within the mesh-table.

Processes (required)
The input and output settings of the industry.
You can specify the amount of input and output for each
queue referenced product as well as the duration (or rate)
in seconds for that process to take place.

All queues and processes are linked through the industry
asset’s script file.

Industry functionality

Perhaps the simplest examples of industry functionality
are the TRS released Coalmine and the Powerstation
assets.

When the coal hopper enters the trigger radius of the
coalmine loading bay, it’s script interacts with the hoppers
own script. Particle effects (pfx) from the coalmine
visually display the coal entering the hopper and the
hopper animated load rises to show it’s full state. The
coalmine’s own animated load pile reduces as does it’s
commodity level.

Similarly, when the full hopper enters the Powerstation
trigger radius, the hopper’s animated load lowers, the
side doors open and the pfx effects on the hopper itself
initiate. The animated load pile in the Powerstation
increases and it’s commodity level increases.

The hopper pfx, and the animated doors are both
controlled by the hopper.gs script file.

Refer: IN-GAME VISUALISATION OF PRODUCTS
Page 16.

Note: Animation Events
Sounds events and generic events can be linked to an
animation key-frame to give great control over sound and
script timing for industry and scenery assets.
Refer to Page 369.

attached-track
{
 track0
 {
 track <KUID:-3:15>
 useadjoiningtracktype 0
 vertices
 {
 0 a.track0a
 1 a.track0b
 }
 }
}

http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip

Version 3.0  68   Trainz Railroad Simulator - The Content Creator’s Guide

Note: Preview Window Icons:
Auran released Industry assets (and industry compatible
assets) have an additional tag in their config: icon0
<KUID:-3:10164>

The kuid is of a kind texture and the icon texture is a
32x32 pixel - 32 bit tga file and you may have up to 4
(icon0, icon1, icon2, icon3)

PORTAL
A portal �� is an industry object used to create and emit
trains. It relies on a script to function. An example
config.txt file is shown for a basic portal asset.

HTML lines have been omitted under the string-table. The
working asset has extensive entries here to make it fully
functional. Refer to the example Portal asset available on
the Auran Content Creation Art Source CDs.

Breakdown of Portal Config.txt:
Some config.txt tags are explained below. Others are
covered in the general config.txt explanation, see
Page 10.

region
Surveyor region.

type
Surveyor type.

light
Sets lighting to be used for object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value (uniform coloring), 1 sets directional
light which is affected by the position of the sun (shows
shadows on the object surfaces).

script
Name of Script to be used with this asset.

class
Script class.

icon-texture
The in-game representation of the asset when specifying
a drive to command in Driver.

category-class
The class code for this asset. Refer to Appendices.

kuid-table
KUIDs required for this asset to function correctly, sample
only shown (the rolling stock listed in the consists entry).

default
Default is the ‘main’ mesh of the asset.

mesh
The model name.

auto-create 1
The model is generated automatically when placed, or
when you load a map which includes the model. In some
instances you don’t want the mesh visible (as this may be
controlled through script). If auto-create is 0 the mesh will
not be visible when placed.

kuid <KUID2:###:#####:1>
kind industry
light 1
kuid-table {
}
obsolete-table {
}
description " "
trainz-build 2.5
username Portal
script PortalTunnel
class PortalTunnel
icon-texture icon_portal.tga
category-region “AU”
category-era “2000s”
category-class BIN
kuid-table
{
 loco <kuid:-1:100861>
 wagon <kuid:-1:100048>
 guardsvan <kuid:-1:100770>
}

mesh-table
{
 default
 {
 mesh portal.im
 auto-create 1
 effects
 {
 portalentry
 {
 kind attachment
 att a.track0g
 default-mesh <KUID:-3:10239>
 surveyor-only 1
 }
	 portalend
 {
 kind attachment
 att a.track0a
 default-mesh <KUID:-3:10238>
 surveyor-only 1
 }
 }
 }
}

 string-table
 {
 }

 attached-track
 {
 out_track0
 {
 track <KUID:-1:15>
 vertices
 {
 0 a.track0a
 1 a.track0b
 2 a.track0c
 3 a.track0d
 4 a.track0e
 5 a.track0f
 6 a.track0g
 }
 }
 }
 attached-trigger
 {
 trig_end

Portal Config.txt:

Version 3.0  69   Trainz Railroad Simulator - The Content Creator’s Guide

 {
 att a.track0d
 radius 10.0
 }
 trig_entry
 {
 att a.track0f
 radius 10.0
 }
 }
icon0	 <kuid:-3:10164

effects
kind attachment
Attaching a mesh to the default mesh using the kind
attachment effect. Each effect is given a name such as
“portalentry”.

default-mesh
Kuid of the mesh to be attached.

att
The mesh is inserted at a mesh attachment point rather
than the origin (without this line the mesh is placed
relative to the origin of the parent model).

surveyor-only 1
The attached mesh will only be visible in Surveyor.

string-table
A listing of HTML options to be called by the script file to
display when the properties option of the asset is used
in Surveyor. H lines have been omitted in this example.
Refer to the example Portal model available on the Auran
Content Creation Art Source CDs.

running-number
The default number for the vehicle. It is changeable in
Surveyor.

attached-track
Track to be attached to the model, including a name for
the track (out_track0), the track KUID to be used, and
attachment points, placed in the 3dsmax/gmax model.

attached-trigger
A point on the attached track with a specified radius.
When a compatible rolling stock item enters this radius it
triggers a set of commands, controlled through script.

icon0
Window preview icon - see information on Page 68.

Version 3.0   70   Trainz Railroad Simulator - The Content Creator’s Guide

kuid <KUID2:###:#####:1>
kind industry
light 1
kuid-table {
}
description " "
trainz-build 2.5
username	 Multiple_Industry_New
obsolete-table {
0 <kuid:-19:10152>
}
nightmode	 lamp
script		 MultipleIndustryNew
class		 MultipleIndustryNew
icon-texture	 icon_multiple.tga
preview-mesh-kuid	 <kuid:-3:10154>
kuid-table {
	 coal		 <kuid:44179:60013>	
	 diesel		 <kuid:-3:10011>
	 cont20ft	 <kuid:-3:10014>	
	 cont40ft	 <kuid:-3:10041>	
	 gengoods	 <kuid:-3:10013>	
	 logs		 <kuid:-3:10001>	
	 lumber		 <kuid:-3:10003>	
	 woodchips	 <kuid:-3:10002>	
	 oil		 <kuid:-3:10010>	
	 petrol		 <kuid:-3:10012>	
	 water		 <kuid:-3:10004>	
	 avgas		 <kuid:-3:10045>
	 }
mesh-table {
 default {
	 mesh	 Multiple_Industry.im
	 auto-create	 1
	 effects {
	 arrow0 {
	 	 att a.track0a
	 	 default-mesh <kuid:-3:10092>
		 surveyor-only	1
		 kind	 attachment
	 }
	 arrow1 {
		 att	 a.track0f
		 default-mesh <kuid:-3:10092>
		 surveyor-only	1
		 kind	 attachment
	 }
 }
 }
}
attached-track {
	 out_track0 {
		 track	 <kuid:-1:15>
		 vertices {
			 0	 a.track0a
			 1	 a.track0b
			 2	 a.track0c
			 3	 a.track0d
			 4	 a.track0e
			 5	 a.track0f
		 }
	 }
}
attached-trigger {
	 trig0 {
		 att	 a.track0b
		 radius	10
	 }
	 trig1 {
		 att	 a.track0c
		 radius	10
	 }
	 trig2 {

MULTI INDUSTRY NEW
This is an��� industry object used to set up your own
industry, with loading and unloading of products on
attached track.

The example model consists of track with attachment
points and triggers, allowing you to place your own
buildings to suit. It relies on a script to function. An
example config.txt file is shown for the asset.

Breakdown of Multi Industry New Config.txt:

Some config.txt tags are explained below. Others are
covered in the general config.txt explanation, see
Page 10.

script
Name of Script to be used with this asset.

class
Script class.

icon-texture
The in-game representation of the asset when specifying
a “Drive To” command in Driver.

preview-mesh-kuid
As spline tracks will not render in the Preview window a
preview-mesh is needed, as a kind mesh (this example
model consists of spline track only).

kuid-table
A list of KUIDs required for this asset to function correctly,
in this case the products to be supported.

default
Default is the ‘main’ mesh of the asset.

mesh
The ‘main’ mesh name.

auto-create 1
The model is generated automatically when placed, or
when you load a map which includes the model. In some
instances you don’t want the mesh visible (as this may be
controlled through script). If auto-create is 0 the mesh will
not be visible when placed.

effects
The effects to be attached to the model.

arrow0
The name of the effect, in this case a red arrow to be
attached to the model to shows the ends of the track.

att
The mesh is inserted at a mesh attachment point rather
than the origin (without this line the mesh is placed
relative to the origin of the parent model).

default-mesh
The mesh for the arrow model to be attached.

surveyor-only 1
The attached mesh will only be visible in Surveyor.

Multi Industry New Config.txt

Version 3.0   71   Trainz Railroad Simulator - The Content Creator’s Guide

		 att	 a.track0d
		 radius	10
	 }
	 trig3 {
		 att	 a.track0e
		 radius	10
	 }
}
queues {
	 queue1 {
		 size	 100
		 allowed-products {
		 }
	 }
	 queue2 {
		 size	 100
		 allowed-products {
		 }
	 }
	 queue3 {
		 size	 100
		 allowed-products {
		 }
	 }
	 queue4 {
		 size	 100
		 allowed-products {
		 }
	 }
	 queue5 {
		 size	 100
		 allowed-products {
		 }
	 }
	 queue6 {
		 size	 100
		 allowed-products {
		 }
	 }
}
processes {
	 multi_consumer_producer {
		 start-enabled	 1
		 duration	 30
		 inputs {
		 }
		 outputs {
		 }
	 }
}

icon0		 <kuid:-3:10164>
						

kind
Kind attachment.

attached-track
Details of the track to be attached to the model, defined
by the attachment points in the 3dsmax/gmax model
using the a.name convention. Note the axis orientation
of the end attachment points. Refer to the Fixed Track
example Page 75.

out_track0
Name of the track.

track
The track type (kuid) to be used for the attachment, in this
case the red invisible track kuid.

vertices
List of attachment vertices from the 3dsmax/gmax model,
for track attachment.

attached-trigger
A point inserted in 3dsmax/gmax, on the attached track,
with a specified radius in the config.txt file. When a
compatible rolling stock item enters this radius it triggers
a set of commands, controlled through script.

trig0
Name of the trigger.

radius
The radius of operation in metres.

queues
The queues field defines the queue name, the product,
the size and the initial count when placed.

size
The initial size of the queue (in product units)

allowed-products
The allowed products, not specified, therefore allows
multiproducts listed in the kuid-table.

processes
The input and output settings of the passenger asset.
You can specify the amount of input and output for each
queue referenced product as well as the duration (or rate)
in seconds for that process to take place.

start-enabled 1
Option is set such that this process will be running by
default when the session is launched

duration
Duration time of the process in seconds.

inputs
Input quantity (in product units) for the process.

outputs
Output quantity (in product units) for the process.

icon0
Window preview icon - see information box Page 68.

Version 3.0   72   Trainz Railroad Simulator - The Content Creator’s Guide

PASSENGER STATION ASSET
A passenger station industry asset �������������������� has more attributes
than normal industry assets. It allows loading and
unloading of passengers, and a "spawn" and "delete"
process for passengers. It relies on a script to function.

An example config.txt file is shown for the a basic two
platform passenger station asset. Some similar multiple
attachment point entries in the original asset have been
omitted for brevity.

For more information refer to the Passenger Station and
Vehicle Assets Tutorial available for download:
http://files.auran.com/TRS2004/downloads/contentcreation/
SP2-Passenger_Asset_Tutorial.zip

Breakdown of Passenger Station Config.txt:

Some config.txt tags are explained below. Others are
covered in the general config.txt explanation, see
Page 10.

icon-texture

The icon for the asset, used for the “Drive To” command,
the file is a 64x64 tga texture with no alpha channel.

passenger-height
This value sets the height of the passenger asset in
metres, to suit the platform model height.

queues
The queues field defines the passenger product, the size
and the initial count when placed. Passenger attachment
points placed in 3dsmax/gmax are referenced, but only a
limited number have been included in this example.

passenger_on_X
Queue name for the passenger on platform, and must be
of this form, where “X” is the platform number, starting at
0. Passenger off queues must be named similarly.

size
The size of the queues must match the number of
attachment points. Note the special name for the
attachment points, for seated passengers the name ends
in “sitNN” where NN is any two characters, usually digits.

processes
The input and output settings of the passenger asset.
You can specify the amount of input and output for each
queue referenced product as well as the duration (or
rate) in seconds for that process to take place. This asset
spawns or deletes passengers from the model.

passenger_spawn_X
The queue name for the passenger spawn process. The
name must be of this form, where “X” is the platform
number, starting at 0. Passenger off queues must be
named similarly.

string_table
Defines the name for each platform track.

icon0
Window preview icon - see information on Page 68.

kuid <KUID2:###:#####:1>
username Small_Station Example
kind industry
light 1
trainz-build 2.5
icon-texture icon_small_station.tga
script SmallStation
class SmallStation
passenger-height 1.204
kuid-table {
passenger	 <kuid:-3:10060>
}
mesh-table {
 default {
	 mesh	 small_station.im
	 auto-create	 1
	 effects {
		 0 {
		 kind	 name
		 fontsize 0.08
 		 fontcolor 220,220,220
	 att	 a.name0
	 name	 name
			 }
			 1 {
 	 kind	 name
	 fontsize	 0.08
 	 fontcolor	 220,220,220
 	 att		 a.name1
 	 name		 name
			 }
			 2 {
 	 kind	 name
 	 fontsize	 0.08
 	 fontcolor	 220,220,220
 	 att		 a.name2
	 name		 name
			 }
		 }
	 }
}
attached-track {
	 track_one {
		 track 	<kuid:-1:15>
		 vertices {
			 0 a.track0a
			 1 a.track0b
			 2 a.track0c
			 3 a.track0d
		 }
	 }
	 track_two {
		 track 	<kuid:-1:15>
		 vertices {
			 0 a.track1a
			 1 a.track1b
			 2 a.track1c
			 3 a.track1d
		 }
	 }
}
attached-trigger {
	 trigger_track_one_a {
		 att 	 a.track0a
		 radius 	 2
		 track 	track_one
	 }
	 trigger_track_one_b {
		 att 	 a.trigmain
		 radius 	 19
		 track 	track_one
	 }
	 trigger_track_one_c {
		 att 	 a.track0d

Passenger Station config.txt

http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip
http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip

Version 3.0   73   Trainz Railroad Simulator - The Content Creator’s Guide

		 radius 	 2
		 track 	track_one
	 }
	 trigger_track_two_a {
		 att 	 a.track1a
		 radius 	 2
		 track 	track_two
	 }
	 trigger_track_two_b {
		 att 	 a.trigmain
		 radius 	 19
		 track 	track_two
	 }
	 trigger_track_two_c {
		 att 	 a.track1d
		 radius 	 2
		 track 	track_two
	 }
}
queues {
	 passengers_on_0 {
	 passenger-queue 1
	 size 	 48
	 initial-count 0
	 product-kuid <kuid:-3:10060>
	 attachment-points {
	 0 a.passon30
	 1 a.passsit02
	 2 a.passsit03
	 3 a.passsit04
	 4 a.passon32
	 5 etc
	 		 }
	 }
	 passengers_on_1 {
		 passenger-queue 1
		 size 	 40
		 initial-count 0
		 product-kuid <kuid:-3:10060>
		 attachment-points {
	 0 a.passon61
	 1 a.passsit67
	 2 a.passon43
	 3 etc	 		 }
	 }
	 passengers_off_0 {
		 passenger-queue 1
		 size 	 26
		 initial-count 0
		 product-kuid <kuid:-3:10060>
		 attachment-points {
 	0 a.passoff01
	 1 a.passoff15
	 2 a.passoff03
	 3 etc 		 }
	 }
	 passengers_off_1 {
		 passenger-queue 1
		 size 	 26
		 initial-count 0
		 product-kuid <kuid:-3:10060>
		 attachment-points {
 	0 a.passoff27
	 1 a.passoff44
	 2 a.passoff29
	 3 etc 		 }
	 }
}
processes {
	 passenger_spawn_0 {
		 start-enabled 1
		 duration 20
		 outputs {
			 0 {
 		 amount 1

 		 queue	 passengers_on_0
			 }
		 }
	 }
	 passenger_spawn_1 {
		 start-enabled 1
		 duration 20
		 outputs {
			 0 {
 		 amount 1
 		 queue	 passengers_on_1
			 }
		 }
	 }
	 passenger_delete_0 {
		 start-enabled 1
		 duration 3
		 inputs {
			 0 {
 		 amount 1
		 queue	 passengers_off_0
			 }
		 }
	 }
	 passenger_delete_1 {
		 start-enabled 1
		 duration 3
		 inputs {
			 0 {
 		 amount 1
 		 queue	 passengers_off_1
			 }
		 }
	 }
}
soundscript {
	 dayloop {
		 repeat-delay 0
		 distance 8,130
		 sound {
			 station_amb_2.wav		
		 }
	 }
}
string-table {
	 smallstation_plat1 Platform 1
	 smallstation_plat2 Platform 2
}
username-fr 		 Gare_petite
string-table-fr
{
	 smallstation_plat1 Plateforme 1
	 smallstation_plat2 Plateforme 2
}
username-it 		 Small_Station
string-table-it {
	 smallstation_plat1 Platform 1
	 smallstation_plat2 Platform 2
}
username-de 		 Kleiner_Bahnhof
string-table-de {
	 smallstation_plat1 Bahnsteig 1
	 smallstation_plat2 Bahnsteig 2
}
username-es 		 Estación_Pequeña
string-table-es {
	 smallstation_plat1 Platform 1
	 smallstation_plat2 Platform 2
}

icon0 <kuid:-3:10164>

Version 3.0   74   Trainz Railroad Simulator - The Content Creator’s Guide

PASSENGER VEHICLE ASSET
A passenger vehicle asset������������������������������ allows loading and unloading
of passengers. No additional script is required for this
asset to function. As this is configured to operate with
the Passenger Station Asset, an example config.txt file is
shown here.

For more information refer to the Passenger Station and
Vehicle Assets Tutorial available for download:
http://files.auran.com/TRS2004/downloads/contentcreation/
SP2-Passenger_Asset_Tutorial.zip

Breakdown of Passenger Vehicle Config.txt:

Some config.txt tags are explained below. Others are
covered in the general config.txt explanation, see
Page 10.

soundscript
Optional sound script for door operation, triggered as an
event from the animation file.

mesh
The model name. The model uses an LOD mesh
(modelname.lm).

shadow
The model ‘shadow’ name, the mesh has been included
in a subdirectory.

left-passenger-door, right-passenger-door
The ‘animated door‘ names, these must be named like
this to work with passenger stations. The mesh has been
included in a subdirectory.

.kin
The animation file for the door model, the mesh has been
included in a subdirectory.

att-parent ‘name’
The door mesh attachment point is located within the
mesh ‘name’ .

queues
The queues field defines the passenger product, the size
and the initial count when placed. Passenger attachment
points placed in 3dsmax/gmax are referenced, but only a
limited number have been included in this example.

passengers
The name you choose for the queue.

size
The size of the queues must match the number of
attachment points, note the special names, for seated
passengers, “a.sitNN”, for standing passengers,
“a.standNN”, where NN is any two characters, usually
digits. Each point must have a unique name.

initial-count
The initial number at starting.

passenger-queue
Enables the queue to carry passengers, when set to 1.

product-kuid
The passenger product kuid required for this vehicle.

kuid <KUID2:###:#####:1>
name	 BR MK1 RMB Example
kind	 traincar
trainz-build 2.5
engine	0
mass	 28000
bogey	 <kuid:-3:10061>
enginespec	 <kuid:-1:42004201>
soundscript {
	 door_open {
		 trigger door_open
		 nostartdelay	 1
		 repeat-delay	 1
		 distance	 5,170
		 sound {
			 start.wav			
			 }
		 }
	 door_close {
		 trigger door_close
		 nostartdelay	 1
		 repeat-delay	 1
		 distance	 5,170
		 sound {
			 start.wav			
		 }
	 }
}
mesh-table {
 default {
 mesh mk1_rmb_body/mk1_rmb_body.lm
 auto-create	 1
 }
 shadow {
 mesh	mk1_rmb_shadow/mk1_rmb_shadow.pm
 }
 left-passenger-door {
 mesh	mk1_rmb_body/left_door/left_door.im
 anim	mk1_rmb_body/left_door/left_door.kin
	 auto-create	 1
	 att	 a.doors
	 att-parent	 default
	 }
 right-passenger-door {
 mesh mk1_rmb_body/right_door/right_door.im
 anim mk1_rmb_body/right_door/right_door.kin
	 auto-create	 1
	 att	 a.doors
	 att-parent default
	 }
}
queues {
 passengers {
	 size	 44
	 initial-count	0
	 passenger-queue 1
	 product-kuid	 <kuid:-3:10060>
	 attachment-points {
		 0	 a.sit5a
		 1	 a.sit1b
		 2	 a.stand3c
		 3	 etc			
		 }
	 }
}
icon0	 <kuid:-3:10164>
description "BR MK1 RMB Example Asset"
name-fr	 "MK1 RMB de BR"
name-de	 "BR MK1 RMB"
name-es	 "BR - MK1 RMB"
name-it	 "BR MK1 RMB"

Passenger Vehicle Config.txt

http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip
http://files.auran.com/TRS2004/downloads/contentcreation/SP2-Passenger_Asset_Tutorial.zip

Version 3.0   75   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: FIXEDTRACK

A fixedtrack in TRS could be likened to a model train
sectional track system. They snap into position when
moved onto another track in Surveyor.

Technically, all a fixedtrack comprises is a mesh asset
with an attached track (or tracks) and surveyor only
rendered arrows so the user knows where the fixedtrack
starts and ends.

The model simply comprises of a few attachment points
(using the a.name naming convention) set-up accurately
in 3dsmax or gmax, and a single invisible polygon to
allow exporting, and for in-game asset selection.

Note that correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
The Z axis must point ‘up’. Mid points only need to be in
the correct spline path. See diagram below.

TRS released fixedtracks comprise of only curved and
straight sections. Junctions are not possible in TRS,
as the lever switching functionality for trains is not
implemented. Crossings may be made, just create two
attached-track fields.

When a spline track is attached to a fixedtrack the
fixedtrack will update to the attached track type. (unless
useadjoiningtracktype 0 is used as shown left)

The arrows are inserted at each end as a kind attachment
- referenced by the arrow’s KUID: <KUID:-3:10092>

Each fixedtrack asset needs a preview-mesh, as spline
tracks will not render in the Preview window. A preview-
mesh can simply be setup as a kind mesh. This way
the preview-mesh will never be selectable or seen in
Surveyor.

Crossing Attachments		 Curve Attachments

username FT 10 Deg 700m Rad
kind fixedtrack
kuid <KUID2:#####:#######:1>
trainz-build 2.5
preview-mesh-kuid <KUID:-3:10099>
mesh-table
{
 default
 {
 mesh 10-700.im
 auto-create 1
 effects
 {
 arrow0
 {
 kind attachment
 att a.track0a
 default-mesh <KUID:-3:10092>
 surveyor-only 1
 }
 arrow1
 {
 kind attachment
 att a.track0e
 default-mesh <KUID:-3:10092>
 surveyor-only 1
 }
 }
 }
}
attached-track
{
 track0
 {
 track <KUID:-1:15>
 vertices
 {
 0 a.track0a
 1 a.track0b
 2 a.track0c
 }
 }
}

attached-track
{
 track0
 {
 track <KUID:-1:15>
 useadjoiningtracktype 0
 vertices
 {
 0 a.track0a
 1 a.track0b
 }
 }
 track1
 {
 track <KUID:-1:15>
 useadjoiningtracktype 0
 vertices
 {
 0 a.track1a
 1 a.track1b
 }
 }
}

Default fixedtrack preview mesh KUIDs:

	 STRAIGHT	 <KUID:-3:10154>
	 CURVE 	 <KUID:-3:10099>

Crossing Fixed Track

a.track1a

Y

X a.track0b

a.track0a

a.track1b a.track0a

a.track0b

a.track0c

X

X

X

X

Y Y

Y

Y
Y

Y
X X

Version 3.0   76   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TRACK – RAILS

This is used for creating rails.

Config.txt :
kuid <KUID2:####:#####:1>
kind track
trainz-build 2.5
rgb 255,200,0
length 4
istrack 1
width 4
chunky_mesh mstand_tex
chunky_info 0, 2, 1.2, 0.2, 0.85, 0.3, 0.7
username
description " "
trainz-build 2.5
category-class “TR”
category-region “UK”
category-era “1990s”

Breakdown:

region
Surveyor region.

type
Surveyor type.

rgb
This value should be left as default.

length
Length of track piece.

istrack
Sets whether the track is a rail for trains or not.

	 1 = This is a rail track

width
Width of track in meters.

chunky_mesh
Name of texture to apply to rail.

A

D

F

B

G

E

0,0,0 (Origin)C

D
+0

.0
5m

0.01

0,0,0 (Origin)

0.225 0.525
0.74

0.75

0.83 0.91

0.990.750.99

0.910.83

Fraction 0.01 0.225 0.525 0.74 0.75 0.83 0.91 0.99

Pixels 1 29 67 95 96 106 117 127

chunky_info
These values (in metres) define the shape of the mesh
created for the track. See drawing below:

chunky_info A, B, C, D, E, F, G
chunky_info 0, 2, 1.2, 0.2, 0.85, 0.3, 0.7

chunky_info texture file

The texture file with the track texture on the left and a rail
texture on the right is 128 x 128 uncompressed tga, and
may have an alpha layer. The texture is mapped to the
mesh shape above using the values in the drawing below,
as fractions of the 128 pixel width.

0.01 0.225 0.525 0.74 0.75 0.83 0.91 0.99

Version 3.0   77   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TRACK – ROAD

This is used for creating roads.

config.txt:
kuid <KUID2:####:####:1>
kind track
length 5
grounded 0.4
istrack 0
width 7.9
bendy 1
isroad 1
uncached_alphas 1
carrate 55
username
description " "
trainz-build 2.5
category-class “SR”
category-region “AU”
category-era “1990s”

Breakdown:

region
Surveyor region.

type
Surveyor type.

length
Length of track segment in meters.

grounded
Height in meters for the road to be offset from terrain.

istrack
	 0 = This is not rail tracks .

width
Width of track mesh in meters.

bendy
Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

isroad
Specifies track is a road with cars,

	 1 for cars to appear on road
	 0 for no cars to appear.

uncached_alphas
This is used in certain situations to improve alpha sorting.
This should only be set to 1 for tracks that use an alpha
texture and are always placed flat near the ground. This
is only used on road splines.

carrate
Defines traffic density on road (minimum seconds
between each car generated).

	 0 = No traffic.
	 Number must be greater than 3.

Additional Notes for splines:

Splines may be used to create a number of objects that
are not track, a building, bridges, walls, fences a row of
poles or trees for example.

upright 0
This effects how vertical the objects in the spline are, for
example a row of poles:

0 = the poles will be placed at right angles to the slope of
the ground.

1 = the poles will be truly vertical regardless of the ground
slope.

Notes: bendy and upright have a visible effect for Kind
Track splines, see diagram below. For Kind Bridge or
Tunnel, the splines show as in bendy 1, bendy 0 has
no visual effect. However, bendy 1 should always be
entered in the config.txt file for bridge and tunnel Kinds,
as the tag improves handling of the spline and Trainz
performance .

A Kind track placed on the ground is now height
adjustable, and is the best option for most spline models.
Splines of Kind track have a much less frame rate and
performance impact than Kind bridge.

	 Bendy 1		 Bendy 0

	 Upright 1		 Upright 0

Version 3.0   78   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: BRIDGE �– SINGLE TRACK

This kind is used for creating road and rail bridges.

Config.txt
kuid <KUID2:####:#####:1>
kind bridge

length 20
bendy 1
bridgetrack <KUID:-1:100395>	
trackoffsets 0.01
height -8
casts_shadows 1
istrack 1
initiator dark_stone_arch_2t_start
terminator dark_stone_arch_2t_end
endlength 40
kuid-table {
	 0 <KUID:-1:100395>
}
username
description " "
trainz-build 2.5
category-class “TB”
category-region “UK”
category-era “1980s”

Breakdown:

type
Surveyor type – e.g. bridge, tunnel or rail.

region
Surveyor region.

length
Length in meters of each bridge piece.

bridgetrack
Kuid for the type of rail or road used on bridge.

trackoffsets
Distance in meters the rail/s are attached to the center of
the bridge spline. Any number of tracks can be attached
to the spline, only splines with the same track offsets can
be connected together. For a single track bridge a small
offset of 0.01 metres for example, is necessary.

height
Height from the track level to the base of the bridge
supports, should be negative for bridges.

casts_shadows
Defines whether or not the shadows are cast.

	 0 = shadows off
	 1 = shadows on

If shadows are on there needs to be a bridge_shadow.im
model in a sub folder, for the bridge spline model, and the
initiator and terminator segments (if they are used).

istrack

	 0 = This is a road bridge
	 1 = This is a rail bridge

Initiator
Name of model to use at start of bridge, placed in sub
folder with same name.

terminator
Name of model to use at end of bridge, placed in sub
folder with same name.

endlength
Length in meters of the initiator and terminator models.

initiator “L1” spline “L” spline “L” terminator “L1”

In 3dsmax/gmax, the initiator, terminator and spline
models must be constructed starting on the origin and
extending in the negative Y axis direction. The top view in
the diagram shows the correct placement and dimensions
L1 or L.

The initiator may be rotated 180 degrees to create a
terminator model, if required.

Attachment points will be automatically generated in
Trainz at ground level. The model heights need to be
adjusted in 3dsmax/gmax so a road or track will connect
at the correct levels.

For additional notes on splines refer to Page 385.

origin

initiator/terminator length “L1”,
or spline length “L”

3dsmax/gmax Top view

Y

 X

origin

3dsmax/gmax Front view

Z

 X

ground level
in Trainz

Version 3.0   79   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: BRIDGE – TUNNEL

This kind is used for creating road and rail tunnels.

Config.txt :�
kuid <KUID2:####:#####:1>
kind bridge

length 20
bendy 1
bridgetrack <KUID:###:#####>
trackoffsets -2.5, 2.5
height 8
istrack 1
initiator oz_tunnel_start
terminator oz_tunnel_end
endlength 20
kuid-table
{
 0 <KUID:###:#####>
}

username
description " "
trainz-build 2.5
category-class “TB”
category-region “AU”
category-era “2000s”

Breakdown:

type
Surveyor type – e.g. bridge, tunnel or rail.

region
Surveyor region.

length
Length in meters of each bridge (tunnel) segment.

bridgetrack
Kuid for the type of rail or road used on the bridge.

trackoffsets
Distance in meters the rail/s are attached to the center of
the bridge spline. Any number of tracks can be attached
to the spline, only splines with the same trackoffsets can
be connected together.

For a single track tunnel, use:

	 trackoffsets 0.01

height
The height value for tunnels should be positive and
greater than the height of the ceiling of the tunnel, but
less than the height of the tunnel entrance structure.

istrack

	 0 = This is a road bridge (tunnel)
	 1 = This is a rail bridge (tunnel)

Initiator

Name of model to use at start of bridge, placed in
subfolder with same name.

terminator
Name of model to use at end of bridge, placed in
subfolder with same name.

endlength
Length in meters of the initiator and terminator models.
Refer to Page 78 for information on constructing initiator
and terminator models.

For additional notes on splines refer to Page 385.

Version 3.0  8 0   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: BRIDGE – DOUBLE TRACK

This kind can also be configured to create splines that
can be used for placing two or more tracks using the
trackoffsets tag.

Config.txt :
kuid <KUID2:####:#####:1>
kind bridge
length 20
bendy 1
bridgetrack <KUID:-1:100396>
trackoffsets -2.5,2.5
height 0
istrack 1
kuid-table {
	 0 <KUID:-1:100396>
}
username
description " "
trainz-build 2.5
category-class “TB”
category-region “AU”
category-era “2000s”

Breakdown:

type
Surveyor type – e.g. bridge, tunnel or rail.

region
Surveyor region.

length
Length in meters of each bridge segment.

bridgetrack
Kuid for the type of rail used on bridge.

trackoffsets
Distance in meters the rail/s are attached to the center of
the bridge spline. Any number of tracks can be attached
to the spline, only splines with the same track offsets can
be connected together.

height
	 0 is used for double tracks.

istrack

	 0 = This is a road bridge

	 1 = This is a rail bridge

Refer to Page 78 for information on constructing initiator
and terminator models, if required.

For additional notes on splines refer to Page 385.

KIND: MOSPEEDBOARD

This is a speed limit sign.

Config.txt:
kuid <KUID2:####:#####:1>
kind mospeedboard

trackside -2.5
speedlimit 5.56
username
description " "
trainz-build 2.5
category-class “WS”
category-region “AU”
category-era “2000s”

Breakdown:

trackside
This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will appear on the right.

Speedlimit
This value is the maximum speed allowed in meters per
seconds.

To convert miles per hour to meters per second multiply
by a conversion factor of 0.447.
e.g. 10mph is 4.47 m/s.
�
To convert kilometers per hour to meters per second
multiply by a conversion factor of 0.278.
e.g. 10kph is 2.78m/s.

Version 3.0  81   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MOSIGNAL

The standard light signals in TRS.

Config.txt
kuid <KUID2:####:#####:1>
kind mosignal
mesh-table
{
 default
 {
 mesh signalname.im
 auto-create 1
 effects
 {
 0
 {
 kind name
 fontsize 0.15
 fontcolor 30,30,30
 att a.name0
 name name
 }
 }
 }
}
light 1
trackside -2.7
function TrackSignal
region Britain
username
description " "
trainz-build 2.5
category-class “WA”
category-region “UK”
category-era “1980s”

Breakdown:

region
Surveyor region.

light
Sets lighting to be used for object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value (uniform colouring), 1 sets directional
light which is affected by the position of the sun (shows
shadows on the object surfaces).

trackside
This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will appear on the right.

function
Must be set to TrackSignal

Note: All editable signage must use the effect - name
set-up when a mesh-table is used. Refer Effects on
Page 12.

SIGNALS
The next section of the config explains which aspects
the signal is capable of displaying, and also which light
points are activated when each state is displayed. The
supported aspects are configured by reference number
as follows…

0	 STOP
1 	 STOP THEN PROCEED
2 	 CAUTION AND LEFT DIVERGE
3 	 CAUTION AND RIGHT DIVERGE
4 	 CAUTION
5 	 PROCEED AND LEFT DIVERGE
6 	 PROCEED AND RIGHT DIVERGE
7 	 ADVANCED CAUTION
8 	 PROCEED

The following two aspects are only used for scenarios….

9 	 SLOW
10 	 MEDIUM SPEED

The aspect section of the config.txt is arranged as
follows…..

signals
{
 0
 {
 light 7
 }
 2
 {
 light 6,0,1,2,3,4
 }
 4
 {
 light 6
 }
}

Note: Don’t forget the ‘space’ between the number and
bracket, if you are editing by hand in Explorer.

Looking at the example above, under the heading
‘signals’ we see the states the signal is capable of
displaying in the left column. From this extract we can
see that this signal is capable of displaying aspects 0, 2
& 4.

When aspect 0 (stop) is displayed, light point 7 is
activated.

When aspect 2 (caution left) is displayed, light points
6,0,1,2,3,4 are activated

When aspect 4 (caution) is displayed, light point 6 is
activated.

Version 3.0  8 2   Trainz Railroad Simulator - The Content Creator’s Guide

LIGHTS

Each light point needs to have a corona associated with
it. Coronas are stored in each signal object’s directory
alongside it’s textures. Examples have been packaged
within the zip file this document was located.

lights
{
 0
 {
 corona corona_white.tga
 }
 1
 {
 corona corona_white.tga
 }
 2
 {
 corona corona_white.tga
 }
 3
 {
 corona corona_white.tga
 }
 4
 {
 corona corona_white.tga
 }
 5
 {
 corona corona_green.tga
 }
 6
 {
 corona corona_yellow.tga
 }
 7
 {
 corona corona_red.tga
 }
 8
 {
 corona corona_white.tga
 }
 9
 {
 corona corona_white.tga
 }
}

Note: Don’t forget the ‘space’ between the number and
bracket, if you are editing by hand in Explorer.

Looking at the example above, under the heading ‘lights’
we see the light points that are attached to the 3D model.
This model has 10 of them, they are named a.light0 to
a.light9.

From the signals section we know that when aspect 0
(stop) is displayed, light point 7 is activated.

Looking at the extract left…

When light point 7 is activated, it displays corona red.

When aspect 2 (caution left) is displayed, light points
6,0,1,2,3,4 are activated

When light point 6 is activated, it displays corona_yellow.

When light points 0 – 4 are activated, each displays
corona_white.

Signal placement is very important for correct operation
of the system. There are some rules to consider while
signaling your map which if not observed may cause
problems with getting the correct aspects to display.

There are also various departures from prototypical
operation which should be considered when designing
new signaling, and also when installing it into a map.

Version 3.0  8 3   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MOJUNCTION

This is used for creating junction control levers.

Config.txt :
kuid <KUID2:####:#####:1>
kind mojunction
mesh-table
{
 mode0
 {
 mesh lever1/lever1.im
 auto-create 1
 }
 mode1
 {
 mesh lever2/lever2.im
 auto-create 1
 }
}
region Australia
trackside 2
light 1
soundscript
{
 toggle
 {
 trigger toggle
 distance 5, 100
 nostartdelay 1
 repeat-delay 1
 sound
 {
 points.wav
 }
 }
}
username
description " "
trainz-build 2.5
category-class “WX”
category-region “AU”
category-era “1980s”

Breakdown:

region
Surveyor region.

trackside
This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will place the object on the right.

light
Sets lighting to be used for object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value (uniform colouring), 1 sets directional
light which is affected by the position of the sun (shows
shadows on the object surfaces).

mode0
The model name of the initial junction, the model file is
located in subfolder (lever1). Example refers to a file
lever1\lever1.im

mode1
The model name of the initial junction, the model file is
located in subfolder (lever2). Example refers to a file
lever2\lever2.im

Note that this model does not have an animation file. The
model changes between the two positions defined by the
lever1.im and the lever2.im file models.

soundscript
Soundscripts for mojunction objects can be activated with
toggle trigger message as in the example.

When a model has animation it is possible to trigger
effects by an event associated with the animation at
defined key frames of the animation. This event is
activated by a trigger name such as “toggle” in the .evt
file and called up from the config.txt file.

Refer to the Animation Event descriptions on Page 369.

However, for this model without an animation, the
trigger name “toggle” is recognised by Trainz when the
mojunction is activated, and the sound will play.

If you delete the Auran default junction lever for a switch
junction in Trainz and replace it with your model, the
wave file defined in the config.txt file will be associated
with the trigger and play instead of the default in-built
sound.

kuid <KUID:-3:10092>
kind mesh
mesh-table
{
 default
 {
 mesh arrow.im
 auto-create 1
 }
}

Typical mesh config.txt

KI�������� ND: MESH

These are meshes that are never referenced through
Surveyor panels but are referenced by KUID from
another asset.

It could be referenced through the preview-mesh-kuid tag
(like the airport does) or as a kind attachment effect like
that of fixed-tracks.

Version 3.0  84   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TURNTABLE

This is a turntable object.

Config.txt :
kuid <KUID2:####:#####:1>
kind turntable

mesh-table
{
 default
 {
 mesh turntablebase/turntablebase.im
 auto-create 1
 }
 turntable
 {
 mesh platform/platform.im
 auto-create 1
 }
}
light 1
angle 0,165,180,345
track <KUID:-1:100966>
snapmode 2
dighole 3,3
kuid-table
{
 0 <KUID:###:#####>
}
username
description " "
trainz-build 2.5
category-class “TR”
category-region “AU”
category-era ”1980s”

Breakdown:

type
Surveyor type.

region
Surveyor region.

default (Previously mode0 for pre-TRS releases)
The name of the main turntable object, now referenced
from the mesh-table.

turntable (Previously mode1 for pre-TRS releases)
Name of the rotating turntable part, now referenced from
the mesh-table.

light
Sets lighting to be used for object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value (uniform colouring), 1 sets directional
light which is affected by the position of the sun (shows
shadows on the object surfaces).

angle
Specifies the angles at which the turntable stops.
NOT USED IF THE TURNTABLE IS SET UP AS AN
ANIMATION SEE BELOW.

track
Kuid for track to be attached to turntable

snapmode
Specifies the alignment of the turntable to the surveyor
grid. 1 = origin snaps to grid (use for removing even
dighole values), 2 = origin snaps to the center of a grid
square (use for odd dighole values).

dighole
Specifies the number of grid segments (length, width) to
be removed from the surveyor grid to accommodate the
turntable pit.

ANIMATED TURNTABLES
Turntables can now be set up as an animation.
Keyframes can be specified as the stopping points much
like ‘angles’ above. Use attached-tracks at keyframe
points.

keyframes
Specifies where on the animation the turntable is to stop.

frame-rate
Generally make this 30

Example:
The example below shows the entries using an animation
file for a transfer table model. For a sample model, see:

http://www.auran.com/TRS2004/downloads/contentcreation/
TransporterTestAsset.zip

kuid <KUID:44179:60004>

light 1
kind turntable
username transporter
track <KUID:-1:100966>
snapmode 1
dighole 4,8
keyframes 0,100,201,300,400,601
looping 0
frame-rate 30
nightmode home
mesh-table
{
 default
 {
 mesh trans_base/trans_base.im
 auto-create 1
 }
 turntable
 {
 mesh trans_platform/trans_platform.im
 anim trans_platform/anim.kin
 }
}
Etc.

http://www.auran.com/TRS2004/downloads/contentcreation/TransporterTestAsset.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TransporterTestAsset.zip

Version 3.0  85   Trainz Railroad Simulator - The Content Creator’s Guide

KI�������������� ND: MOCROSSING

This is an example level crossing consisting of script
animated boom gates, and flashing lights, however, only
the config.txt entries are discussed here. Some duplicate
entries in the config.txt file for the corona effects are not
shown to conserve space.

Note that an animated mocrossing can be created
without the use of scripts, the animation being triggered
automatically by a train. Animation events may also be
linked to an animation key-frame to give control over
effect and script timing.

The track and road types are specified in the attached-
track and the meshes are within the mesh-table. An
invisible road KUID may be useful for this type of model.

Breakdown:

class
Script class.

script
Script file name.

kuid-table
Lists the dependencies
(track, road, corona)

mesh
Name of the default
mesh model.

anim
Animation file attached to the default mesh.

att
Attachment point for the sub mesh.

att-parent
Defines the mesh to which the sub mesh is attached.

auto-create 1
The mesh is visible when the model is placed.

effects
The attached effects (coronas).

directional 0
The default alignment is overridden so the corona always
faces the screen.

texture-kuid
KUID for the corona.

attached-track
Track type that will be joined between the attachment
points, The names “a.track” and “a.road” are not
mandatory, any name using the “a.name” convention may
be used. The attachment points are defined in the model
mesh. Refer to Page 75 for attachment orientation.

useadjoiningtracktype 0
prevents the track used being updated to match the
attached track.

config.txt

kuid	 <KUID2:######:######:1>
light	 1
kind	 mocrossing
trainz-build	 2.5
category-region	 “AU”
category-era	 “1980s”
region			 Australia
class			 modular_xing
script			 xing.gs
KUID-table {
	 corona_red	 <KUID:-3:10112>
	 road		 <KUID:###:####>
}
mesh-table {
	 default	 {
	 mesh 	 road.im
	 anim	boomgates.kin
	 auto-create 	 1
	 effects {
		 pole1-light1 {
	 	 kind corona
		 att a.pole1-lamp0
		 texture-kuid <KUID:-3:10112>
			 }
		 pole1-light2 {
		 kind corona
		 att a.pole1-lamp1
		 texture-kuid <KUID:-3:10112>
			 }
							
		 boom1-light1 {
		 kind corona
		 att a.boom1-light0
		 directional 0
		 texture-kuid <KUID:-3:10112>
			 }
		 boom1-light2 {
		 kind corona
		 att a.boom1-light1
		 directional 0
		 texture-kuid <KUID:-3:10112>
			 }
		 }
	 }
attached-track {
	 track {
		 track 		 <KUID:-1:15>
		 vertices {
			 0	 a.track0a
			 1	 a.track0b
		 }
	 }
	 road {
		 track		 <KUID:###:####>
		 useadjoiningtracktype	 0
		 vertices {
			 0	 a.road0a
			 1	 a.road0b
		 }
	 }
}
string-table {
}
username	 QR Level Crossing
category-class	 TR
description	 "QR level crossing with animated
boomgates and flashing lights."

string-table
A list that can be accessed in script/scriptlet code.

Version 3.0  86   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: ACTIVITY

An activity is a scripted scenario.

Config.txt :

Breakdown:

username
Name of scenario displayed in TRS.

scriptlibrary
The name of the .gsl (compiled script) library on disk,
without the “.gsl” extension.

scriptclass
The name of the scenario class within the script file.

driver-settings{}
Specify the settings of this scenario, similar to Driver’s
‘settings’ screen. Allows you to set the weather, control
method (0 – dcc, 1 – cabin controlled) etc.

	 autopilotmode		 0=of
				 1=on

	 startingtime		 0..1 (0.5=midday)

	 timerate 		 1=real-time

	 deraillevel		 0=none
				 1=arcade
				 2=realistic

	 showhelp		 0=off
				 1=on

	 controlmethod		 0=dcc
				 1=cabin

	 weather			 0=clear
				 1=cloudy
				 2=drizzle
				 3=rain
				 4=stormy
				 5=light snow
				 6=medium snow
				 7=heavy snow

	 changeability		 0=none
				 1=periodic
				 2=extreme

kuid-table{}
A list of named assets used in the scenario. Scripts refer
to assets (eg trains) by the names in this table.

kind activity
kuid <KUID:-14:160>
username Highland Valley (DCC)

scriptlibrary SP3S1DCC
scriptclass SP3S1DCC

driver-settings
{
 autopilotmode 0
 startingtime 0.4
 timerate 1
 deraillevel 0
 showhelp 0
 controlmethod 0
 weather 3
 changeability 1
}
kuid-table
{
 highland_valley <KUID:-12:132>

 f7_sfred <KUID:-1:1>
 atsf_chair <KUID:-1:100160>
 atsf_pullman_pine <KUID:-1:100163>
 atsf_baggage <KUID:-1:100159>
 cflow_fert <KUID:-1:100012>
 prr_fm_tuscan <KUID:-1:100017>
 40ft_boxcar <KUID:-1:100085>
 pdhc_babyruth <KUID:-1:100066>
 4bhopper_il <KUID:-1:100929>
 50ft_boxcar <KUID:-1:100086>
 gatx_pennsalt <KUID:-1:100092>
 60ft_boxcar <KUID:-1:100087>
 sd40_2_santafe <KUID:-1:100871>
 4bhopper_il_coal_full <KUID:-1:101224>
 foundry_car <KUID:-1:101220>
}
description "Take contol of the morning
passenger service to Highland Valley stopping
at all stations and return to Greenwood. Bad
weather is forecast so drive with care.

Service : Highland Valley Passenger
Train No. : 7528
Consist : F7A + 5 cars
Weight in Tow : 300t
Total Length : 490’"

KI����������� ND: TEXTURE

You can now reference a simple texture as an asset.
These can be referenced by kuid for use as a custom
corona for example.

kind texture
kuid <KUID:-3:10112>

Typical mesh config.txt

Version 3.0  8 7   Trainz Railroad Simulator - The Content Creator’s Guide

KI����ND: buildable

A Kind buildable is a variant of Kind Scenery, and may be
used in place of a normal scenery item, with the following
attributes:

It inherits the Kind scenery attributes:

It allows attached track to be used as part of the model,
refer to Page 75 for information of the attachments and
orientation; and

It does not support processes, use Kind Industry for this
purpose.

MISCELLANEOUS CONFIG.TXT TAGS

There are a number of useful miscellaneous tags used in
config.txt files that may not have been covered fully in
previous Kind examples. A brief summary is provided for
some of these here:

invisible 1
A tag only used for Kind track, the track will only show in
Surveyor.

For other meshes use surveyor-only 1 to make it
invisible in Driver, refer to Page 14 for an example.

trigger 1
Used for a trackside object to send script messages.

default-night-forward, default-night-reverse
This is the name for a sub mesh attached to a locomotive,
to show a beam of light for example, in the direction of
movement of the locomotive. Trainz recognises the name
and turns on the correct mesh depending on the running
direction.

Note in the example the use of auto-create 0 to make
the mesh invisible when placed. The mesh will be visible
when the light switch is activated.

default-night
Similar to the previous tag, but not dependent on running
direction.

use-parent-bounds
Used for an animated object. A bounding box is a fairly

{
 default
 {
 mesh loco_body/loco_body.lm
 auto-create 1
 }
default-night-forward
 {
 mesh loco_body/night/night.im
 auto-create 0
 att a.bog0
 att-parent default
 }
}

generic term used to describe the size of an object for
clipping purposes. If the bounding box goes off the
screen, the game will stop rendering the object. The idea
is that the bounding box completely wraps the object,
but this is not always the case. Animation, for example,
may cause the object to pass outside its precalculated
bounding box. Distance is not relevant; it’s simply a
question of whether the bounding box is on the screen or
not.

The tag relates the sub mesh bounding box to the main
mesh bounding box, and makes the animated sub mesh
continuously visible. The tag is placed within the sub
mesh config.txt entries

buffer-speed
Sets the upper speed limit for an object to act as a buffer.
The value buffer-speed 5 sets a 5 metres per second
speed as the limit for stopping a traincar. Used in a Kind
mosignal object.

tender 1
Indicates the traincar is a locomotive tender. Used in
the tender config.txt file to enable the tender to remain
coupled with the locomotive in a runaround movement.

disable-extra-track-sounds 1

Disables the “click-clack” tracksounds. Could be used for
silent shipping, planes or maglev type vehicles. Values
are 0, 1 for the tag.

Note: There may be some residual tracksound for
example wheel squeal. See Page 186 for an example.

Trainz Railroad Simulator 2006

CHAPTER 3
Understanding and using Content
Creator Plus
The purpose of this chapter is to introduce users to Content Creator Plus, a powerful program used to
generate and validate “config.txt” files. Content Creator Plus is intended for in-experienced content
creators, however a degree of understanding regarding kinds and containers is assumed. Please refer to
other Chapters in this document for assistance in familiarising yourself with the requirements and structures
of containers and tags.

Version 3.0  89   Trainz Railroad Simulator - The Content Creator’s Guide

Getting Started

Main Screen

The main screen is divided into a number of areas:

1. Tree View 	 2. Tag space 	 3. 3D Viewport (only
visible when a mesh is selected)	 4. Error Message Box.

1. Tree View

When an existing config.txt file is loaded, the program
will “parse” the text file and gather 2 different sorts of
information: the tags and the containers. The tags are
values being assigned to a property, and a container is a
section of the config.txt that groups a number of tags or
other containers.

With many possible tags and containers, the best way to
manage the containers is to display them in a tree view
hierarchy (like the tree view of Explorer for example).
The diagram below is a section of the tree view for a Kind
traincar model:

The top “node” or Kind may be called traincar for
example, and is the main container for the complete
config.txt file. Traincar is the name of the Kind that we

are currently creating (for example, if we were making
a bogey, it would be listed as “bogey”). Under this main
container are other sub containers in the config.txt file.

The tree may be freely expanded or collapsed (by
clicking with the Left mouse button on the plus or minus
symbols). When you click on one of the nodes, it will
load the tags that are included for that container in the
tag space, so you can add new entries or edit existing
values. Left clicking on the node icon will select that
node, whilst Left clicking the node name will select
the node for renaming, if allowed (some names are
reserved).

When you click with the Right mouse button on one
of the nodes, a contextual menu will pop up with four
different sections:

Sub-Containers: The first section is the available sub-
container section. This section shows which sub-
containers you may add to the opened container. Select
a sub-container by clicking on it with the Left mouse
button. Depending on the type of container added,
when you click with the Left mouse button on the new
container name, a number of compulsory entry dialog
boxes may appear. The diagram above shows the
containers and tags available under a mesh container.

Tags: The second section is the tag section. This shows
you the list of non-compulsory tags (a non-compulsory
tag is an optional tag for additional functionality). When
you click on one of the choices with the Left mouse
button, it will be added to the tag space that represents
the container. You may also delete any non-compulsory
tags.

Rename: The rename option allows you to change the
name of a container, unless it is a reserved name.

Remove: The remove option allows you to delete an
unwanted container from the config.txt file. This is
particularly useful if you are editing a config.txt from
an existing asset to create a new asset. Click on a
container name with the Right mouse button to open the
options for the container, and select an item using the
Left mouse button.

Version 3.0  9 0   Trainz Railroad Simulator - The Content Creator’s Guide

2. Tag Space

This section of the program displays the content of a
container. It dynamically changes as you either select
different containers or add\delete tags.

Selected tags may have a variety of buttons placed
adjacently:

Tag Name: The name of every mandatory and\or user
selected tag will be displayed on the left hand side of the
space.

Tag Value: The value stored in the selected tag - initially
shows blank for a new asset.

Load: This button will let you select a file or asset
(depending on the tag type) which will be loaded into the
Tag Value display.

View in Content Manager Plus: This button will open
Content Manager Plus and allow you to find and select
an asset, or for an already selected asset, will show you
that asset. Because the assets are loaded using their
username, it allows you to verify that the selection is the
one intended.

Delete: Removes the selected tag from the working
config.txt.

3. 3D Viewport

When a mesh is referenced for the model, you need to
specify a mesh file. Clicking on the “...” button will allow
you to browse for the filename. The program will load the
referenced mesh file, and display it in the 3D viewport.
This viewport only appears in Content Manager Plus
when a valid mesh is loaded.

Buttons below the viewport allow the camera to be

moved, rotated or zoomed. Alternatively, you can control
the model with your mouse by interacting directly with the
3D Viewport.

	 Use the Mousewheel to zoom in and out

	 Hold the Left mouse button down and drag to 		
	 move the display

	 Hold the Right mouse button down to drag to 		
	 rotate the display

4. Error Message Box

When you load or save a config.txt file, the program will
validate your data input to make sure that everything is
correct. The error box is used to output error\warning
messages to the user to assist error checking if the model
is not working in Trainz.

Clicking on an error message within CCP with the Left
mouse button will jump to the relevant tag in the config.txt
file (in CCP) that is causing the error.

You can also Right click on the message, which will bring
up a contextual menu that will let you copy the error
message to the clipboard.

Note: Trainz offers many options (containers and tags)
for an asset, and a user may select those that are
considered appropriate for a particular Kind. CCP may
not prompt you for a container or tag that is required to
make the asset fully functional in Trainz.

For example, normally a traincar requires a reference
to a bogey; if you neglect to select the appropriate
bogey container for the asset, no error message will
be displayed, but the asset may not show or operate
correctly in Trainz. Using mandatory tags only may not
be sufficient for an asset to operate correctly (or to your
expectation) in Trainz.

Please refer to the chapters on Kinds, Containers, Tags
and asset examples for guidance on the containers and
tags required for a particular Kind.

Version 3.0  91   Trainz Railroad Simulator - The Content Creator’s Guide

Using Content Creator Plus

Creating a new Asset

In the “Content Manager Plus Program”, clicking on the
 button (New) will open Content Creator Plus and

display the “New Asset” window, from which you can
select a base Kind to use as a template.

.

The displayed list shows all the asset Kinds supported
by Trainz. Click on the name of the Kind that you want
to create and the program will generate the basic config.
txt structure for that kind, using the mandatory tags. You
may also add additional optional tags and containers to
your config.txt file for a more complex asset.

Refer also to the notes for containers and tags that are
required for the model to function correctly, on Page 90.

The Working Directory

When you are creating or editing an asset with Content
Creator Plus, all of your content exists in a temporary
“working directory” which is located in your “.\editing”
folder within your Trainz install. Assets in this folder are
considered “open for editing”.

All files required by your new model MUST be placed in
your temporary working directory.

You can open this folder by selecting “Edit|Edit in
Explorer” from the main menu bar. Note that the name
of the folder may be of the form “edit nfd0hk9y6”. After
you have given the asset a username, saved the config.
txt file, and committed the asset, the directory name will
change to the selected username when you next reopen
it in Explorer.

Formats for entering Tag Data

Tags require different forms of entry depending on the
type of data required. Some tags require a simple text
string, while others will require more complex data like a

Vector, a float list or a Boolean value.

String, floating point numbers or integers

These three data types are simple text or numeric values.

A string is a basic text field, a Floating point number (or
float) is a number that includes a decimal point, while and
integer is a numeric value with no decimal point (whole
number). The value placed in the text box will be directly
associated with the tag.

Vector

A vector is a series of values. A vector may have any
number of values depending on the type of data it stores,
for example a vector3 will display three separate text
boxes, one for each value.

Float list entry

A float list for a tag will take a series of floating point
number values.

The list above includes a series of four floats, each of
which can be removed if required. Additional values may
be added to the list by clicking on the add button.

KUIDs

The KUID entry is made up of three different parts: The
user ID, the content ID and the version ID.

KUIDs are handled internally, and are unable to be edited
directly.

Boolean Entry

A Boolean entry is a simple true or false value. It is
represented by a tick box.

Clicking with the Left Mouse button in the box will toggle
the tick mark on or off. A tick represents “True” or “1”.

Data choices

Where a large list of choices is offered, it is convenient for
CCP to display the available selections in a combo box.

Open the box and select a value by clicking on that value
with the Left mouse button. A tick-mark is shown in the
box. You may select multiple choices by ticking additional

Version 3.0  9 2   Trainz Railroad Simulator - The Content Creator’s Guide

boxes in the list. The category-region or category-era
are examples of multiple selection options, while the
category-class is a single selection from a drop down
box.

File Browser

Clicking on the “...” button adjacent to an appropriate tag
with the Left mouse button will open the file browser. The
file browser is used to locate the files you wish to use in
your asset.

Once the file is located, click on the “Open” button and
the field will be filled with the path for the file you have
selected.

Remember that your files must be placed in the working
directory.

The file type selections in the browser will reflect the
types that are required to fill the dialog box. For example,
a mesh dialog box offers a choice between “ *.im, *.lm,
and *.lm.txt” types, whereas a script will allow files with
“*.gs or *.gse” extensions to be selected.

New Assets

Some tags (typically images, scripts or HTML assets)
will have an adjacent “New” button when the entry box is
empty.

Clicking on the “New” button will allow you to create a
new asset of the appropriate kind, and will automatically
create the necessary files and load them into your editor
of choice (specified in your windows settings, for example
Photoshop may be your default image editor).

If these tags are populated, the “New” button is replaced
with an “Edit” button, which will open the asset in your
default editor.

Asset Browser

Some fields require a link to other assets. For simplicity,
a list of relevant assets is presented from which the user
can select their desired asset, in the Asset Browser.

For convenience, the top drop down selection box filters
assets by type, to simplify searching and selection.

Browse through the list of installed assets, or type in a
partial name in the search box (second top box) to locate
the asset required. Once you have found the asset
you wish to use, Left click on the “Select” button. This
will internally store the asset KUID. A null KUID may
alternatively be selected where required. Note that the
kuid for an asset is not displayed, usernames are used
for simplification. Care should be used in selecting assets
where the same username has been used for different
assets - it may be convenient to locate the required asset
in CMP to verify selections.

String Asset Browser

The string asset (KUID) browser works similarly to the
KUID browser, with the additional ability to change the
actual name of the tag.

Refer to the Getting Started section for additional
information on saving files and error checking, and to
Chapter 4 for detailed information on creating a new
asset.

Version 3.0  9 3   Trainz Railroad Simulator - The Content Creator’s Guide

Inheritance Template
The model asset Kinds have a certain relationshop to each other. The following chart shows how these are related,
the way the classes are inherited in the game.

Version 2.0  94   Trainz Railroad Simulator 2006 - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 4
Using Content Creator Plus to create
a New Asset
The purpose of this chapter is to explain the Workflow process using Content Creator Plus to efficiently
create a new asset for Trainz. An example asset will be used to illustrate the process.

Version 3.0  95   Trainz Railroad Simulator - The Content Creator’s Guide

Creating a New Asset

The aim of the Content Creator Plus (CCP) module is
to create the asset config.txt file. Additionally, it creates
a temporary directory where the model files are to
be placed, and then incorporated in the Trainz asset
database when the asset is committed.

Please refer to the previous Chapter 3 for an explanation
on how to navigate the CCP interface and menus.

A Workflow Process
A logical process should be used to create an asset. This
is a brief summary of one such process:

1. Using a pixel editing program, for example Photoshop
or Paint Shop Pro, create textures for the new model
asset, and save to a temporary directory.

2. Create the mesh model in 3dsmax or gmax, texture
and map the model and save the files to the directory.

3. Open CCP and choose the New asset option to select
an appropriate Kind for the model, in the example used in
this chapter, it would be a Kind traincar.

4. Enter as much data as possible, description, username
for example, following the guidelines in the previous
Chapter 3 for selecting containers and tags, and entering
values.

5. Find the newly created directory for the asset, it will
be called “New Asset” or in some instances may have
a coded name until the config file is first saved and
committed with a relevant Username tag. The “New
Asset” will also appear in the Content Manager Plus main
screen.

6. Make any appropriate subdirectories in this model
directory, and export the mesh files and textures from
3dsmax or gmax, into the directory. After exporting the
mesh file, remember to use the Resource Collector from
within 3dsmax or gmax to gather and place all the texture
files in the directory.

7. Continue to add containers and tags in CCP for the
model. Now you have a .im mesh file in the directory,
additional information and choices will be available
for data entry, for instance, selecting the mesh file will
make it visible in the graphics window; when choosing
attachment points within the mesh for tag data, you will
be offered the actual mesh attachment point name for
choosing.

8. Save the config.txt file (CCP knows where to place it,
in the created directory). If any error messages appear,
click with the Left Mouse Button (LMB click) on each
error message to be taken to the tag within the model.
Examine the data and fix the errors.

9. Some entries and changes to the asset may not

appear until the asset is committed. RMB click on the
“New Asset” name in the main screen of CMP and select
Edit/Commit. The temporary directory is closed and
any new error messages that are generated may be
examined.

10. Launching Trainz from within CMP will allow the new
asset to be examined after placing in Surveyor. Of course
if there are dependencies that have not been specified at
this early stage, or not enough containers or tags added
in CCP, the asset may not show up in Trainz.

11. Alternately, when working on the asset, the asset
does not have to be committed manually to view it in
Trainz. When launching Trainz you will be asked to
confirm that any assets open for editing should be
committed before proceeding. Any uncommitted asset will
not show in Trainz.

12. If you have selected the settings within CMP to “re-
open asset after exiting Trainz”, the temporary directory
will be re-opened automatically for you to continue
working with the asset files.

13. It is important to backup assets, particularly as the
exported files and textures are incorporated in the Trainz
data base on commitiing the asset, and are not available
for examination or copying once the temporary directory
has been closed. Refer to Page 4 for options to back up
the asset files.

Each creator will determine a suitable workflow process
with experience. CCP should make it easier for new
creators to create workable config.txt files.

Of course you can examine the saved config.txt file in the
asset temporary directory in Explorer, or even edit and
re-save the file. This however is not the recommended
process, as the config.txt file has then not be checked
for errors in the CCP module, and could have newly
introduced errors.

It is prefereable that CCP be used to build a working
config.txt file, and this process will validate the asset as
suitable for upload to the Download Station.

Example Asset
The example asset chosen is the PB15 locomotive,
which is included in Trainz. The various screenshots will
illustrate how the graphical user interface would appear
for this asset, and show the various forms of data value
input. It will not discuss all the containers or tags in detail,
but rather give a feel for the process of creating a new
asset.

There are many containers and tags to make a fully
functional locomotive asset, and duplicate containers and
tags have not been shown in this example. Please refer
to Chapter 5 and Chapter 6 for details on containers and
tags for all asset kinds.

Version 3.0  96   Trainz Railroad Simulator - The Content Creator’s Guide

Example Asset PB15 Directory Layout
Main Directory: The directory structure for this example
consists of a main directory “qr pb15”. This is also the
name of the asset taken from the Username tag.

The .tfx files in this directory are Twinkles smoke effect
files, created in the Twinkles Editor and placed in the
directory by the creator.

The config.txt file created by CCP will also be placed in
this top directory.

Coalman Directory: The asset has an animated coalman
in the cab. For convienience, a subdirectory “coalman”
has been created for the relevant files. This sub-directory
includes the exported coalman.im mesh file, a number of
animation files, coalman_loop1.kin file for example, and
all the textures for the coalman model.

Main diffuse texture files (main color texture placed
and mapped on the mesh in 3dsmax or gamax) in this
directory are .tga type files.

The .bmp file format is used for opacity files associated
with the texture files. These files allow certain parts of
the main texture file to be transparent or translucent,
depending on the amount and location of grey or black
areas in the file. Opacity can also be included as an
Alpha layer of the main .tga file - this is more efficient as
Trainz only has to load one file instead of two separate
files.

Please refer to Page 350 for the correct file format and
file sizes to be used for model assets.

Main Body Directory: The main body mesh of the model
is placed in the pb_15_body subdirectory. Files similar to
the ones described in the coalman directory, but specific
to the main locomotive body, are also included in this
directory.

When the mesh file is exported from 3dsmax or gmax,
a texture.txt file is automatically generated for each
combination of textures, for example the catcher-catcher.
texture.txt file. This text file includes details of the .tga
diffuse texture and the .bmp opacity file that have been
used in combination to texture the catcher part of the
locomotive. The opacity file will make parts of the metal
catcher on the front of the locomotive transparent,
showing the distinctive steel bars in the typical catcher.

When making a complicated model, there may be other
textures gathered in the Resource Collector process (in
3dsmax or gmax) into this directory. These textures may
have been for another mesh part to be exported later, and
are not necessary for this part of the model. All textures
without a matching texture.txt file should be removed
from the directory.

Likewise, if texture file names are changed during the
model development, unused texture.txt files may be left
in the directory. If these files do not have the associated

Version 3.0  9 7   Trainz Railroad Simulator - The Content Creator’s Guide

texture files present, they can cause Trainz to crash.

Good practice at the end of the model development, is
to remove all the files except the directory structure, the
mesh.im files and config file, and re-export all meshes
and the correct texture files. By leaving the mesh.im files,
these can be overwritten during the export, without errors
being introduced by re-typing the mesh names (they must
match the mesh names used in the config.txt file).

LOD files: There are some special mesh and text files
in the main body sub-directory, to use LOD (Level of
Detail) attributes to enhance frame rate in Trainz. The
aim in Trainz is to keep models as simple as possible
(reasonably sized textures, lowest polycount) to achieve
a high frame rate (minimum display time between
frames).

Briefly, Level of Detail (or ‘LOD’) is a technique used
for asset mesh reduction. Trainz uses a different mesh
dependant on the viewing distance, a lower quality mesh
as viewing distance increases.

This concept is different from the previous “progressive
mesh” (.pm) reduction. That is, instead of gradually
reducing the polycount of a single mesh you can now
have several versions of the same asset, each at different
polycounts and texture levels.

Assets with LOD reduction must comprise of ‘indexed
meshes’ or .im files only (exported from gmax or
3dsmax). No .pm files are used in LOD. TRS2004 looks
for these .im files through an .lm.txt (LOD mesh file)
which is referenced from the asset’s config.txt file.

The pb_15_body.lm.txt file in this example is the text file
that lists the details of the various meshes to be used,
depending on viewing distance. The four referenced files
are called
pb_15_body_lowest.im,
pb_15_body_low.im,
pb_15_body_med.im and
pb_15_body.im.

The last file is the highest quality for close viewing
distance.

Refer to Page 370 for information on Level of Detail.

Night Directory: This is an example of the night mesh
being placed in a night subdirectory.

Reverser Directory: The reverser.im mesh file is for
the reverser used in the cab of the locomotive. As the
reverser is animated in the model, an animation file,
reverser.kin has been exported from 3dsmax or gmax.

Shadow Directory: This is used to cast a shadow of
the locomotive on the ground when the Shadow option
is turned on in the Trainz configuration setup menu.
This is a very simple low polygon mesh (to assist Trainz
performance), to match the outline of the locomotive
shape, and textured plain black.

Version 3.0  98   Trainz Railroad Simulator - The Content Creator’s Guide

Example Asset Main CCP Screen

This is the main CCP screen for the model, showing the container structure to the left, and tags that have been
entered in the top container, for the Kind Traincar container. Some of these tags are mandatory, but many are optional.

Version 3.0  99   Trainz Railroad Simulator - The Content Creator’s Guide

Example Asset Smoke Container
The menu allows appropriate values to be entered for the smoke effects. Note that some values can be removed or
other input boxes added for additional values for the tags.

Example Asset Dropdown Selection Box for the Coalman Mesh
The selection box uses a dropdown menu, to display the attachment points found in the mesh model, for selection.

Version 3.0  1 00   Trainz Railroad Simulator - The Content Creator’s Guide

Example Asset Smoke Attachment Dropdown Box
The selection box uses a dropdown menu, to display the attachment points found in the mesh model, for selection.

Example Asset Kuid Table Container
A browse box is provided to select the appropriate kuid for the table. The referenced asset name is used, not the Kuid.

Example Asset Bogey Container

A browse box is provided to select the appropriate bogey for the model.

Version 3.0  1 01   Trainz Railroad Simulator - The Content Creator’s Guide

Example Obsolete Table and Mesh Table Browser

A kuid browse box presents the assets as proper names for selection, not kuids, and the mesh browser lists the
available meshes in the model directory.

Version 3.0  1 02   Trainz Railroad Simulator - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 5
Common Containers and Tags
Some container and tags are common to every kind. The purpose of this chapter is to detail those
common containers and tags, and to show their usage. These will not be described again in
later Chapters.

Note: New tags and functions introduced in TC are covered in Appendix D.

Version 3.0  1 03   Trainz Railroad Simulator - The Content Creator’s Guide

Common Containers
•	 Kuid Table

•	 Obsolete Table

•	 String Table cn, cz, de, es, fr, it, nl, 	
	 pl, ru

•	 Thumbnails

•	 Extensions

Common Tags
•	 kuid

•	 trainz-build

•	 category-class

•	 category-region

•	 category-era

•	 username cn, cz, de, es, fr, it, nl, 	
	 pl, ru

•	 kind

•	 description cn, cz, de, es, fr, it, nl, 	
	 pl, ru

•	 author

•	 organisation

•	 contact-email

•	 contact-website

•	 category-keywords

•	 license

Other Regularly Used Containers

Mesh Table
•	 anim

•	 auto-create

•	 animation-loop-speed

•	 critical-animation

•	 use-parent-bounds

•	 att

•	 att-parent

•	 opacity

•	 light

•	 test-collisions

•	 mesh

•	 night-mesh-base

•	 radius

•	 collision-parent

Effects
Name Effect

•	 name

•	 font

•	 fontsize

•	 fontcolor

Corona Effect

•	 kind

•	 att

•	 directional

•	 frequency

•	 max-distance

•	 object-size

•	 texture-kuid

•	 wave-shift

Texture Replacement Effect

•	 kind

•	 texture

•	 Attachment Effect

•	 kind

•	 att

•	 default-mesh

•	 surveyor-only

Animation Effect

•	 kind

•	 anim

•	 looped

•	 speed

Tracksound Container
•	 track-sound

•	 priority

•	 track

•	 track-parent

•	 bogey

Soundscript Container
•	 repeat-delay

•	 distance

•	 ambient

•	 attachment

•	 nostartdelay

•	 trigger

•	 value-range

Chapter 5 Contents

Across all kinds, a number of tags and containers are required as basic prerequisites (eg. kuid tags), while others
apply to all kinds though they aren’t mandatory (eg. author information tags).

This section details those tags and containers which are present in all kinds, as well as some of the more regularly
used containers\tags.

The following tags and containers are defined in this chapter. Additional notes on their usage are shown in Chapter 6
where relevant.

Version 3.0  1 04   Trainz Railroad Simulator - The Content Creator’s Guide

•	 volume

•	 sound

Queue Container
•	 size

•	 animated-mesh

•	 custom-attachments

•	 initial-count

•	 passenger-queue

•	 product-kuid

•	 allowed products

•	 conflicts-with-queues

•	 attachment-points

•	 allowed-categories

Smoke Container
•	 attachment

•	 mode

•	 color

•	 rate

•	 velocity

•	 lifetime

•	 minsize

•	 maxsize

•	 accel

•	 conesize

•	 direction

•	 enabled

•	 endcolor

•	 faces

•	 file

•	 inherit-velocity

•	 interpolate

•	 loop

•	 loopdelay

•	 maxrate

•	 maxspeedkph

•	 minrate

•	 period

•	 scale

•	 shift

•	 start

•	 texture

Other Regularly Used Tags
•	 alias

•	 autoname

•	 class

•	 dighole

•	 floating

•	 height

•	 height-range

•	 icon0, icon1, icon2, icon3

•	 icon-texture

•	 light

•	 preview-mesh-kuid

•	 preview-scale

•	 nightmode

•	 rgb

•	 rollstep

•	 rotate

•	 rotate-yz-range

•	 rotstep

•	 script

•	 snapgrid

•	 snapmode

•	 surveyor-name-label

•	 surveyor-only

•	 texture

Version 3.0  1 05   Trainz Railroad Simulator - The Content Creator’s Guide

Common Containers
The following containers are present in all kinds.

Kuid Table
A list of KUIDs required for this asset to function correctly.

A kuid-table must be included where the config.txt
references additional KUIDs, such as a bogey, or a
pantograph. The Download Station performs a search,
and those found are added to the download pack.

Obsolete Table
The obsolete-table describes the assets revision history.

This container was used extensively for pre-TRS2004
assets as each version required a unique Content ID.
In order to simplify this process the KUID2 format was
introduced, which now supersedes the obsolete-table
method. TC and the Download Station automatically
detect and use the most recent version of an asset
whether it be through the KUID2 system or through the
obsolete-table.

The obsolete-table container has been included to
maintain backwards compatibility with older assets and it
is recommended that the KUID2 system be used instead.

Privileges
As of TRS2006, limited content protection applied, but
only to built-in (JArchived) assets. The following tags
were used:

The permit tags grant or deny the user specific access
rights. By default, all permissions are granted on an
asset. Setting one of these tags to false (0) removed the
permission. Built in assets may deny you some options.

permit-commit - Allows the end-user to commit changes
to this asset.

permit-edit - Allows the end-user to open this asset for
editing.

permit-listing - Allows the end-user to view this object
in the surveyor pickers (if it is of an appropriate kind). It
does not affect the visibility of the asset within the CMP
asset list.

String Table cn, cz, de, es, fr, it, nl, pl, ru
Every asset can have a string table. A string table is a list
of text strings that are defined in the string-table section

of the asset’s config.txt file as follows:

On their own, these string tables are not used. The string
tables become useful for scripting, and are referenced in
the script.

To compliment the English String Table, a variety of
additional String Tables allow for equivalent strings to be
supported across other languages.

Thumbnails
Any asset may specify a thumbnail or preview image.
The exact usage of this image may vary depending on
the asset kind and the build of Trainz, but the following
usages are historically common:

32x32 - standard icon representation for display in lists.
128x64 - ‘kind traincar’ list icon in Surveyor.
512x512 - ‘kind traincar’ preview image in Surveyor.
240x180 - Download Station thumbnail image -
mandatory.

Note: The Art files directory in previous versions of Trainz
may now be replaced by the Thumbnails container.

To allow for the generic specification of thumbnail images,
the following format is adopted for TC.

Any number of thumbnail entries may be present,
however it is recommended that no more than 3 images
are used. The specified width and height must match the
actual width and height of the image file in pixels.

Supported image formats include:

•	 32-bit uncompressed targa (.tga) - this supports 		
	 an alpha channel
•	 24-bit windows bitmap (.bmp)
•	 Jpeg (.jpg)

When displaying an image, the closest-sized image
required by the function (in terms of pixel dimensions) will
generally be used in Trainz.

Extensions
Third parties may sometimes wish to include additional
config.txt tags in an asset’s config.txt file for the purposes

Version 3.0  1 06   Trainz Railroad Simulator - The Content Creator’s Guide

of providing asset-keyed data to custom scripts.

It is important that the following mechanism is used to
prevent potential conflict with future Auran tags or other
content creators.

All third-party tags must be embedded under an
extensions container which is placed at the top level in
the config.txt file.

Tags within the extensions container should have a
meaningful name and should end with a hypen and the
UserID of the content creator who is responsible for
the extension. The responsible content creator should
determine any rules and restrictions which apply to his
or her tag and should make an effort to provide this
information to other creators (outside the scope of the
asset itself).

While creators are permitted to make use of each
other’s extensions, it is not permissable to create a new
extension (or change the meaning of an extension) in the
namespace belonging to another creator.

Each tag in the extensions container may be either a
single value, or a subcontainer. If a subcontainer is used,
the contents of the subcontainer should be specified in
the extension’s documentation.

No restrictions are placed by Auran on the values within
a specific extension, beyond the normal config.txt file
format guidelines.

Common Tags
The following tags are present in all kinds.

kuid
The “unique identifier” number for the asset. When
creating new assets with Content Creator Plus, the asset
kuid will be automatically generated.

See Page 4 for more information on kuids.

Example value: “56113:1107:0”

trainz-build
The Trainz build number for which the asset was
created. TC assets will have a trainz-build number of 2.7,
automatically generated from CCP.

TC 2.7
TRS2006 SP1 2.6
TRS2006 2.5
TRS2004-SP4 2.4
TRS2004-SP3 2.3
TRS2004-SP2 2.2
TRS2004-SP1 2.1
TRS2004 2.0
UTC 1.5
Trainz SP3 1.3
Trainz 1.2 1.2
Trainz 1.1.1 1.11
Trainz 1.1 1.1
Trainz CE 1.0

Note: When editing an asset in Content Creator Plus,
the trainz-build will automatically be upgraded to 2.7 in
order to support newly added tags and functions. Note,
TRS2006 with the Service patch 1 shows a build of 2.6
however CCP will generate config.txt files with a build of
2.5. for that version.

Example Value: “2.5”

category-class
The class code for this asset. A full list of class codes is
provided in the Chapter 11 Category Class appendix.

The category-class has been in use since Trainz SP3.

Example Value: “LM - Monorail Vehicles”

category-region
The region code for this asset. A full list of region codes
is provided in the Chapter 11 Region Codes appendix.

This is similar in function to the category-region-XX tags
which have been in use since Trainz SP3, however
category-region has been reformatted to allow multiple
regions on a single line.

A semicolon is used to separate individual values.
Whitespace is not permitted.

Example Value: “AD;AE;AU”

category-era
The era code for this asset. A full list of era codes is
provided in the Chapter 11 Era Codes appendix.

This is similar in function to the category-era-XX tags
which have been in use since Trainz SP3, however
category-era has been reformatted to allow multiple eras
on a single line.

A semicolon is used to separate individual values.
Whitespace is not permitted.

Example Value: “1990s;2000s”

Version 3.0  1 07   Trainz Railroad Simulator - The Content Creator’s Guide

username cn, cz, de, es, fr, it, pl, ru
The human-readable name of the asset. The username
tag is mandatory. To compliment the English username,
a variety of additional optional tags allow for equivalent
usernames to be supported across other languages.
These are as follows:

username-cn - Chinese
username-cz - Czech
username-de - German
username-es - Spanish
username-fr - French
username-it - Italian
username-nl - Dutch
username-pl - Polish
username-ru - Russian

Example Value: “testActivity”

kind
The asset kind, chosen in CCP and must be one of the
Auran-supplied asset kinds. i.e. kind industry. Once you
have selected a Kind, it cannot be changed from within
the CCP editor.

For example, you are making a Kind Scenery asset and
have entered some data, and then realise you would
like to have trains pick up products at the model, and
this option is not available for Kind Scenery. You need to
scrap the asset and select Kind Buildable and re-enter
the data in this Kind.

See Chapter 2 for a complete list of kinds.

Example Value: “MOSignal”

description cn, cz, de, es, fr, it, pl, ru
The human readable description of the asset. This is an
optional tag. To compliment the English description, a
variety of additional tags allow for equivalent descriptions
to be supported across other languages. These are as
follows:

description-cn - Chinese
description-cz - Czech
description-de - German
description-es - Spanish
description-fr - French
description-it - Italian
description-pl - Polish
description-ru - Russian

Example Value: “This is a test activity written for the 2006
CCG.”

author
The human-readable author name text. This is an
optional tag.

Example Value: “Scott Cameron”

organisation
The organisation name as specified by the asset author.
This is an optional tag.

Example Value: “Auran”

contact-email
Email address specified by the asset author. This is an
optional tag.

Example Value: “helpdesk@auran.com”

contact-website
Website URL specified by the asset author. This is an
optional tag.

Example Value: “www.auran.com”

category-keywords
To improve the searchability of assets, generic search
keywords may be included in the config.txt file.

Each keyword should be a lowercase word with no
punctuation. Keywords should be English and as neutral
as possible.

Keywords are separated by a semicolon. Whitespace is
not permitted within the category-keywords tag.

Example Value: “scott;auran;example;ccg;test”

license
The asset’s license agreement as written by the author.
This is an optional tag.

Example Value “This is an example license.”

Other Regularly Used Containers
Some containers are not present in every single kind, but
appear across a number of different common kinds. The
most common of these are detailed in this section.

Mesh Table
This is the preferred method of asset mesh reference for
most mesh asset types. It gives good control over mesh
placement, usage and animations.

There are some asset types that cannot use a Mesh
Table. These include all Bridges, Tunnels, Rails,
Pantographs and other Spline Objects (eg. Fences or
Caternaries).

Important Note: Any asset that uses a mesh-table will
not be compatible with pre-TRS 2004 versions of Trainz
i.e. Ultimate Trainz Collection (UTC). TRS will of course
still read UTC assets. Just remember that as with most
major software releases, backwards compatibility is
usually achievable, while forwards compatibility is often
impossible.

Version 3.0  1 08   Trainz Railroad Simulator - The Content Creator’s Guide

Mesh tables allow you to specify main meshes (parent)
and submeshes that may be attached to the main mesh,
eg. night meshes. Attached meshes are placed at the
origin of the parent mesh by default unless you specify an
attachment point in the parent mesh, and reference it in
the sub mesh entries - see below.

Mesh Tables may contain the following tags and
subcontainers:

anim: The animation file (.kin) exported from 3dsmax or
gmax. This may include a sub-path. Refer to Chapter 8
for more information.

auto-create: The mesh is generated (shown in Trainz)
automatically when placed in a map or route. In some
instances you don’t want the mesh visible (as this may be
controlled through script). If auto-create is 0, or the tag is
missing, the mesh will not be visible when placed.

animation-loop-speed: This tag must be used if the
asset is to animate when placed. If this tag is not present
when placed the animation will not play by default,
but may play if controlled by script. Different speed
multiplyoing factors may be used, eg. 2, 0.5.

critical-animation: When enabled, this forces the
animation to continue playing when off screen. It impacts
on performance when enabled (can degrade frame rate).

use-parent-bounds: Specifies that the mesh should use
the bounds of the parent object for visibility culling. Use
with caution. Refer to Page 87 for more information.

att: The mesh (and animation if present) is inserted at a
mesh attachment point rather than the origin of the parent
mesh (default insertion point).

att-parent: The insertion attachment point is located
within the mesh specified by ‘name’ in this tag.

opacity: Controls the opacity of the mesh. Zero (0 =
invisible, not recommended) or one (1 = solid).

light: Sets lighting to be used for the object to be ambient
or directional. 0 sets ambient lighting and object is lit by
general light value, (uniformly lit). 1 sets directional light
which is affected by the position of the sun, and the asset
shows shaded faces, but not ground shadows.

test-collisions: This is an interior-specific mesh-table
tag. When disabled, it prevents the mesh from obstructing
the mouse (eg. if a mesh overlays a lever and should
not be tested when the user clicks on a lever mesh for
example). Enabled by default.

mesh: The ‘main’ mesh name. This may include a sub-
path (file within a subdirectory). i.e: mesh “nightwindows/
nightwindows.im”.

night-mesh-base: This night mesh is linked to the
default mesh and is visible only when the ‘default’ mesh
is visible.

radius: radius for notches display, used for levers.

collision-parent: For collision-proxy meshes in an
interior mesh-table, this specifies the parent object to be
proxied (a substitute mesh that is not visible, but reacts
to the mouse buttons to create an effect or animation -
firebox doors opening for example).

Effects (optional mesh variables)
The effects containers are a subset of the Mesh Table
Container. At the time of writing there are 4 distinct types
of effects which are:

Name Effect, Corona Effect, Attachment Effect, and
Animation Effect.

Name Effect

Some assets may have editable signs. When you set
or change an asset’s name in surveyor through the Edit
Properties icon (‘?’ icon) the signage used as part of the
model can be set-up to automatically update to the new
name. The variables can be set for each sign.

kind: The effect kind.

att: The Sign Text insertion point (part of the mesh). See
below for correct orientation of the point axis:

name: The default text when placed. If not used it will
default to the config.txt ‘block’ name and will not be
editable. When “name name” is specified in the tag, it
uses the asset’s changeable name functions. If “name
Coalmine” were used for instance, the name Coalmine
would appear on the model and be unchangeable.

font: The name of the font, default Arial. Other fonts are
not functional at this time.

fontsize: The size of the sign text.

fontcolor: The colour of the sign text in r.g.b.

Corona Effect

A corona is a ‘glow’ light effect. It is a simple texture
that is inserted at an attachment point within the mesh.
Corona’s can be added to any asset that uses a mesh-
table.

Examples of coronas used in-game can be seen on the
“Airport” and “Airport Basic” assets. The Jumbo Jet, the
Cessna and the Airport tower all use flashing corona’s.

kind: The effect kind.

att: The corona insertion point and centre (part of the

Version 3.0  1 09   Trainz Railroad Simulator - The Content Creator’s Guide

mesh), eg a.light0, a.light1 for example.

directional: The default for coronas is to be aligned to
the attachment point to face the NEGATIVE Z direction.
This is especially useful for Traincars. Directional causes
the effect to always face the user in Driver, and is
therefore always visible.

frequency: This variable specifies the frequency in Hz
(or ‘flashes’ per second), eg. 1 for once per second, 0.5
for once every 2 seconds, 2 for twice in a second.

max-distance: Maximum distance to which the effect is
visible.

object-size: Size of the corona on the object when
viewed up close. Defaults to 0.15 (ie . 0.15m).

texture-kuid: Add this tag only when you want to specify
your own texture for the corona. It specifies the KUID of
a kind texture asset. If the texture-kuid tag is not present
the corona will use the default yellow/orange texture
in TRS. Alternatively, specify one of the Auran corona
textures:

	 •  Yellow/orange corona	 Default (if no 		
	 texture-kuid specified)
	 •  Green corona	 <KUID:-3:10110>
	 •  White corona	 <KUID:-3:10111>
	 •  Red corona		 <KUID:-3:10112>

wave-shift: Affects the flashing intensity pattern on the
corona.

Texture Replacement Effect

This effect was created for rollingstock items to swap the
visible texture of bulk loads (such as coal or woodchips).

If a coal car is set up to take any bulk load (which
includes woodchips) the ‘coal’ texture on the load
mesh will update to a ‘woodchips’ texture when it loads
woodchips.

kind: The effect kind.

texture: The replacement texture, for example gravel.tga.

Attachment Effect

In TRS we have the ability to attach a mesh into another
mesh by referencing it’s kuid through a mesh table.

An example is the in-built fixed-track assets, where Red
arrows visible in Surveyor indicate the ends of the fixed
track segment. Rather than having an arrow mesh in
each fixed-track asset directory, a lot of memory space is
saved by making the fixed track asset reference the red
arrow mesh kuid, and it only needs to be cached once.
Using attached meshes should only be for kind scenery
or kind mesh.

WARNING: Never cross-reference a kind attachment
kuid with the assets own kuid, or an instant fatal
error will occur.

kind: The effect kind.

att: The insertion point of the attached mesh, by default,
the insertion point of the ‘default’ mesh, a.mesh0 for
example.

default-mesh: The KUID of the attached mesh.

surveyor-only: Adding this tag means the attached
mesh will be only visible in Surveyor and not Driver.

Animation Effect

This effect is used when a mesh has a variety of
animations. Usually the animations will be controlled by a
script related to the asset.

An example of the kind animation effect is the PB15
interior Coalman. The script for this ties in the animations
with the coal requirements of the steam locomotive.

kind: The effect kind.

anim: Reference to the animation file (name.kin).

looped: Use only if the animation is looping. Default 0
(i.e. not looped).

speed: Speed factor of the animation. Default 1. 2 =
Double speed.

Kinds that use the Mesh Table Container: bogey,
buildable, drivercharacter, fixedtrack, industry, interior,
mesh, mocrossing, mojunction, mosignal, mospeedboard,
pantograph, product, scenery-trackside, scenery, traincar,
turntable.

Tracksound Container

The tracksound container stores information regarding
custom tracksounds that can be attached to certain
assets. These will play when a traincar crosses the
specified track, or uses a specified bogey.

The tracksound container contains the following tags:

track-sound: The kuid of the tracksound object to be
used.

priority: The priority of the sound versus other sounds to
be played. Lower values indicate a higher priority.

track: The track type to which this sound will apply.

track-parent: The parent (eg. bridge/industry/tunnel) of
the track to which this sound will apply.

bogey: The bogey to which this sound will apply.

Kinds that use the Tracksound Container: bogey,
bridge, chunky-track, double-track, mesh-reducing-track,
track, tunnel.

Refer also to the traincar tag disable-extra-track-
sounds which disables the “click-clack” tracksounds,
Page 87.

Version 3.0  11 0   Trainz Railroad Simulator - The Content Creator’s Guide

Soundscript Container
Soundscripts give ambient or directional sounds to
objects. They cannot be used on track, bridge or spline
objects. Wav files should be located within the same
directory as the config.txt file.

The Soundscript Container contains the following tags
and sub-containers:

repeat-delay: 1 or 2 numbers (min, max, in seconds),
time to delay between the end of the sound playing,
and playing it again, randomised between (min .. max).
Default min = 0, default max = min distance value below.

distance: Two numbers (in meters). The first number is
the distance at which the sound is played at 100%. The
second number is the cut-off distance. It doesn’t affect
the volume of the sound. Default: 50m, 150m.

ambient: Ambient sounds have no 3d “position” and
may be stereo. Non-ambient (positional) sounds are
positioned on the object and must be mono.

attachment: Attachment point on the object to attach the
sound to, a.sound0 for example.

nostartdelay: If not set, the sound will have a short delay
before playing. This stops flanging (an objectionable
sound caused when several copies of the same sound
are played at once).

trigger: Currently used only for levers. The sound doesn’t
play until the trigger message happens.

value-range: Two numbers, currently used only for day/
night sound effects. Midnight is 0.5, midday = 0.0 or 1.0.
Where the numbers are not the same, this sets the start
and end times for the sound to play. Default 0,0 (off).

volume: Gain of the sound. Default 1.0 = 100%.

sound: Filename (.wav file) of the sound to be played.

Kinds that use the Soundscript Container: buildable,
fixedtrack, industry, interior, mocrossing, mojunction,
mosignal, mospeedboard, scenery-trackside, scenery,
traincar, turntable.

Queue Container
The queues container states which product or products
the industry can use. It contains the size of each
product, the initial count when placed, and can refer to
it’s visual load state whether through a load animation or
attachment.

Any load animations are set-up within the mesh-table.

The queue container contains the following tags:

size: Size of queue.

animated-mesh: Animated mesh which changes as the
queue becomes full.

custom-attachments: Not used.

initial-count: The initial number of items or quantity in
the queue.

passenger-queue: Not used.

product-kuid: The product type used to fill ‘initial-count’.

allowed products: The allowed products in this queue.

conflicts-with-queues: This queue and the conflicting
queue(s) cannot be used simultaneously.

attachment-points: List of attachment points for this
queue on which products are visualised, use this, OR
animated-mesh.

allowed-categories: The allowed product categories in
this queue.

Kinds that use the Queue Container: buildable,
fixedtrack, industry, mocrossing, mojunction, mosignal,
mospeedboard, scenery-trackside, scenery, traincar,
turntable.

Smoke Container
More information on smoke and particle effects can be
found in Chapter 10.

The Smoke Container allows the following tags:

attachment: The attachment point (stored in the mesh
file) to place the smoke effect, a.smoke0 for example.

mode: Describes the mode or type of this smoke effect.
This affects how start and period are interpreted. (time |
speed | anim | timeofday|stack|lowpressurevalve).

color: Four values, the R,G,B colour value, and opacity,
of the effect.

rate: The rate of emission in particles per second for
modes time, speed, and timeofday, or the number of
particles to emit over the animation period for anim mode.
Default is 4.

velocity: The initial speed of emitted smoke particles.
Default is 1.

lifetime: Time in seconds that smoke particles exist.
Default is 3.

minsize: Start size of smoke particles. Default is 0.

maxsize: End size of smoke particles. Default is 3.

accel: Acceleration. A vector pointing in the direction
of the sum of all forces affecting this smoke effect.
Essentially, <z> describes gravity, and <x>, <y> describe
the force of wind. Default is 0,0,0.

conesize: Conesize is a float array that can contain 1, 2
or 3 float values. It will define the size of the cone along
the x y z axis. Imagine if the cone fitted in a cube, if you
only use 1 float, it will assign that value to both x and y
axis. If you use 2 values, it will use the different values for

Version 3.0  111   Trainz Railroad Simulator - The Content Creator’s Guide

x and y and if you use 3 it will use them for the three axis,
x, y, z.

direction: The vector at which the smoke travels.

enabled: Specifies whether the effect is enabled or not.

endcolor: The final colour the smoke effect shifts to.

faces: The direction the smoke effect faces. (camera,
motion, down)

file: The twinkle file to be used (optional).

inherit-velocity: A float for a smoke cone or steam
emitter. This is to tell the particle that it will inherit the
velocity of the emitter.

interpolate: A bool which is used for the steam emitter
(refer to Chapter 3 for explanations of float and bool).

loop: Time in seconds to loop the smoke sequence.
Only valid if mode is set to time.

loopdelay: Delay (in seconds) before the effect is played
again.

maxrate: The maximum rate at which particles are
emitted.

maxspeedkph: For a cone emitter, this will set the
maximum velocity of the particles, in kph. When a particle
is generated, it is set to a random velocity between
minspeed and maxspeed or 0 and maxspeed.

minrate: The minimum rate at which particles are
emitted.

period: The usage of period depends on the value of the
mode tag.

If the mode is set to time, period is the duration of time
this effect will remain active.

If mode is set to anim, period is a value from 0.0 to 1.0
that describes the duration over which the effect is active.
Start + period must not exceed 1.0.

In all modes, period can be set to -1 (default) to imply the
phase is active until the next phase begins.

scale: For the emitter is the scale of the emitter or the
scale of the particle.

shift: Speeds up the age of the particle (how old they are
which makes them die/disappear faster).

start: The usage of start depends on the value of the
mode tag.

If the mode is set to time, start is a set of time values in
seconds after the creation of this effect’s parent object
when this phase of the effect will start.

If the mode is set to speed, start is a speed in meters
per second (m/s) and period is not used. (Note: 1 m/s =
3.6 km/hr.) All other sequence attributes (rate, velocity,

lifetime, minsize, maxsize) are interpolated so there are
smooth transitions between phases.

If the mode is set to anim, start is a value from 0.0 to 1.0
which describes the start time into the object’s animation
cycle.

If the mode is set to timeofday, start is a value from 0.0 to
1.0 which describes the time of day when this effect will
start.

Values range as follow:

0 - midnight, 0.25 - 6am, 0.5 - midday, 0.75 6pm, 1.0 -
midnight.

texture: Kuid of the texture to be used for the effect.

Kinds that use the Smoke Container: buildable,
fixedtrack, industry, mocrossing, mojunction, mosignal,
mospeedboard, scenery-trackside, scenery, traincar,
turntable.

Refer to Chapter 10 for further explanation and examples
of smoke container use.

Other Regularly Used Tags
Some tags are not present in every single kind, but
appear across a number of different common kinds. The
most common of these are detailed in this section.

alias

Kuid of the asset to be referenced as a basis for the
new asset. For example TRS Traincars can reference
archived locomotive mesh assets for use with custom
textures. This process is done by aliasing the KUID of the
archived traincars.

Kinds that use this tag: bogey, bridge, buildable,
chunky-track, double-track, drivercharacter, fixedtrack,
industry, interior, mesh-reducing-track, mesh, mocrossing,
mojunction, mosignal, mospeedboard, pantograph,
product, scenery-trackside, scenery, track, traincar,
tunnel, turntable.

autoname
When enabled, automatically assigns a unique name to
this object as it is placed.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

class

This refers to the name of the script file and the class of
asset it is (the class must match that stated within the
script file).

Kinds that use this tag: activity, behavior, bogey, bridge,
buildable, chunky, track, double-track, drivercharacter,
drivercommand, engine, enginesound, environment,

Version 3.0  11 2   Trainz Railroad Simulator - The Content Creator’s Guide

fixedtrack, groundtexture, hornsound, html-asset,
industry, interior, library, mesh-reducing-track, mesh,
mocrossing, mojunction, mospeedboard, paintshed-
skin, paintshed-template, pantograph, product-category,
product, profile, region, scenery-trackside, scenery,
steam-engine, texture-group, texture, track, tracksound,
traincar, tunnel, turntable, water2.

dighole

Specifies the number of grid segments (length, width) to
be removed from the surveyor grid to accommodate the
turntable pit. The grid divisions are 10 metres square.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

floating

Obsolete tag.

Kinds that used this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

height

Height from the track level to the base. Should be
negative for bridges and positive for tunnels.

Kinds that use this tag: bridge, buildable, double-track,
fixedtrack, industry, mocrossing, mojunction, mosignal,
mospeedboard, scenery-trackside, scenery, traincar,
tunnel, turntable.

height-range
min, max. eg: height-range –10, 100, where min and
max are values in meters. This allows you to specify
the minimum and maximum height ranges for adjusting
the height of this object with the “Adjust Height” tool in
Surveyor’s ‘Object Tools’ panel.

All scenery objects have a default min/max height range
of 0 and 0. i.e. they do not (by default) allow you to
adjust the height. Adding a height range is particularly
useful for ships/buoys (placed on water) and for Station
accessories.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

icon0, icon1, icon2, icon3

Small icon displayed over the vehicle preview in
Surveyor.

Kinds that use this tag: bogey, buildable,
drivercharacter, fixedtrack, industry, interior, mesh,
mocrossing, mojunction, mosignal, mospeedboard,
pantograph, product, scenery-trackside, scenery, traincar,
turntable.

icon-texture

May be used as a specific tag, or the icon-texture file may
be included in the tumbnails container instead.

The file for products can use an alpha channel (to cut out
the circular image) but it is recomended the file for the
industry drive to option does not need an alpha channel,
to reduce impact on Trainz frame rate.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
product, scenery-trackside, scenery, traincar, turntable.

light

Sets lighting to be used for the object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value, (uniformly lit). 1 sets directional light
which is affected by the position of the sun, and the asset
shows shaded faces, but not ground shadows.

Kinds that use this tag: bridge, buildable, chunky-track,
double-track, fixedtrack, industry, mesh-reducing-track,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, track, traincar, tunnel,
turntable.

preview-mesh-kuid

Only add this to reference a different mesh for the
Surveyor preview window. This is useful when an asset
has a large bounding box. i.e. the large “Airport” with it’s
jet animation, the detail would be too small in the window.
Some assets such as in-built fixed track assets do not
have a mesh, and require a preview mesh reference to
show a display in the Surveyor asset menu window.

Kinds that use this tag: bogey, buildable,
drivercharacter, fixedtrack, industry, interior, mesh,
mocrossing, mojunction, mosignal, mospeedboard,
pantograph, product, scenery-trackside, scenery, traincar,
turntable.

Preview-scale

Scale of the preview mesh.

Kinds that use this tag: bogey, buildable,
drivercharacter, fixedtrack, industry, interior, mesh,
mocrossing, mojunction, mosignal, mospeedboard,
pantograph, product, scenery-trackside, scenery, traincar,
turntable.

nightmode

Only add this tag if you reference a default-night mesh in
the mesh-table. It is mandatory if you want a night mesh
to show.

Values: home, lamp or constant.

Home - switches on night effects at dusk and off
sometime during the night.

Lamp - switches the night effects on from dusk to dawn.

Constant - lights are on day and night.

Version 3.0  11 3   Trainz Railroad Simulator - The Content Creator’s Guide

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

rgb

This value should be left as default.

Kinds that use this tag: bridge, buildable, chunky-track,
double-track, fixedtrack, industry, mesh-reducing-track,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, track, traincar, tunnel,
turntable.

rollstep

Used in conjunction with rotate-yz-range, rollstep lets
you specify the step size of roll angles (in degrees) for
this object. Other example values are 1, 5, 20 etc. The
default rollstep is 1.0.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

rotate

This lets you disable rotation on a scenery object, 0 to
disable 1 to enable (default).

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

rotate-yz-range

This tag lets you set the roll / yz rotation range (normal
object rotation is an xy rotation), where min and max are
values in degrees.

If you want your scenery object to support rolling then use
this tag to set the minimum and maximum roll range. By
default, objects have a min/max roll range of 0 to 0.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

rotstep

This lets you specify the step size of rotation angles (in
degrees) for this object. Other example values are 1, 10,
20, 90, 180 etc. The default rotstep is 1.0

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

script

The script file (gs or gse file).

Kinds that use this tag: activity, behavior, bogey, bridge,
buildable, chunky,track, double-track, drivercharacter,
drivercommand, engine, enginesound, environment,
fixedtrack, groundtexture, hornsound, html-asset,

industry, interior, library, mesh-reducing-track, mesh,
mocrossing, mojunction, mospeedboard, paintshed-
skin, paintshed-template, pantograph, product-category,
product, profile, region, scenery-trackside, scenery,
steam-engine, texture-group, texture, track, tracksound,
traincar, tunnel, turntable, water2.

snapgrid

This lets you specify the size of the grid (in meters) the
object snaps to.

We recommend factors/fractions of 720 as this is the size
of a base board and the positioning may do odd things
across section borders.

eg 1, 2, 5, 10, 20, 30, 40, 45, 60, 80, 90, 120, 180, 240,
360, 720.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

snapmode

Specifies the alignment of the turntable to the surveyor
grid.

1 = origin snaps to grid intersections (use when removing
even dighole values), 2 = origin snaps to the center of a
grid square (use when removing odd dighole values).

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

surveyor-name-label

Specifies if this item has a floating name label text.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

surveyor-only

Adding this means the attached mesh will only be visible
in Surveyor and not Driver.

Kinds that use this tag: buildable, fixedtrack, industry,
mocrossing, mojunction, mosignal, mospeedboard,
scenery-trackside, scenery, traincar, turntable.

texture

An image texture file.

Kinds that use this tag: buildable, drivercharacter,
fixedtrack, groundtexture, industry, mocrossing,
mojunction, mosignal, mospeedboard, product, scenery-
trackside, scenery, texture-group, texture, traincar,
turntable.

Version 2.0  114   Trainz Railroad Simulator 2006 - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 6
All Other Containers and Tags
Chapter 5 described the Containers and Tags that are common to all model assets. The purpose
of this chapter is to define and describe the remaining Containers and Tags used in TC, and to
show the structure of containers and tags entered in Content Creator Plus. The chapter should
also give a guide on particular containers and tags required to make a workable asset.

Please refer to Chapter 7 for example assets using the Container and Tags, and for the directory
structure of model assets.

Note: New tags and functions introduced in TC are covered in Appendix D.

Version 3.0  115   Trainz Railroad Simulator - The Content Creator’s Guide

•	 Activity

•	 Behavior

•	 Bogey

•	 Bridge

•	 Buildable

•	 Chunky-Track

•	 DriverCharacter

•	 DriverCommand

•	 Double-Track

•	 Engine

•	 EngineSound

•	 Environment

•	 Fixed Track

•	 GroundTexture

•	 Hornsound

•	 HTML-Asset

•	 Industry

•	 Interior

•	 Library

•	 Mesh

•	 Mesh-Reducing-Track

•	 MOCrossing

•	 MOJunction

•	 MOSignal

•	 MOSpeedboard

•	 Paintshed-Skin

•	 Paintshed-Template

•	 Pantograph

•	 Product

•	 Product-Category

•	 Profile

•	 Region

•	 Scenery

•	 Scenery-Trackside

•	 Steam-Engine

•	 Texture

•	 Texture-Group

•	 Track

•	 TrackSound

•	 TrainCar

•	 Tunnel

•	 Turntable

•	 Water2

•	 Displacements

INTRODUCTION

In each section, an example config.txt layout is shown illustrating which values would be present in a basic asset of
that KIND. These values are color coded to help represent their purpose:

	 RED - A default container. These containers only appear once in a config and cannot be renamed.

	 BLUE - A user defined container. These containers may appear multiple times as needed, and can often be
renamed.

	 ITALIC - Italic text represents a data value. Three distinctions are made:

		 kuid - The value is a kuid number, which may be used to reference another asset

		 data - The usable data value for the tag is stored within the file (may be multiple pieces of data)

		 file - The value is a filename (and the file is located within the asset)

The following KINDS are outlined in this Chapter:

Version 3.0  116   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: ACTIVITY
Description
An activity is a scripted scenario that details the
locomotives and rolling-stock used in a map, the driver
settings, commands and scripts.

A train driver can undertake a sequence of planned
moves – a scenario.

Container Structure
A well formed activity kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 activity

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 class			 data

	 script			 file

	 driver-settings

	 autopilotmode		 data

	 startingtime		 data

	 timerate		 data

	 deraillevel		 data

	 showhelp		 data

	 controlmethod		 data

	 weather			 data

	 changeability		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “YS - Scenario”.

See the “Maps & Scenarios” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “activity”.

class

The name of the scenario class within the script file.

script

The script file (gs or gse file).

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5, the Activity kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

driver-settings
Specify the settings of this scenario, similar to Driver’s
settings’ screen.

Version 3.0  11 7   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, Driver Settings
Container.

The driver settings container contains the following child
tags:

autopilotmode

AI driver setting. (off, on)

startingtime

Time of day. Range is from 0 to 1 (0.5 - midday).

timerate

Time progression. (1 - real-time, 2 - double speed etc.)

deraillevel

Derail setting. (none, arcade, realistic)

showhelp

Show Driver Help. (off, on)

controlmethod

Driver control setting. (dcc, cabin)

weather

Weather setting. (clear, cloudy, drizzle, rain, stormy, light
snow, medium snow, heavy snow)

changeability

Propensity for weather to change. (none, periodic,
extreme)

Additional Tags
username

Name of scenario displayed in TRS.

scriptlibrary

Obsolete. Now replaced with the “script” tag.

scriptclass

Obsolete. Replaced with the “class” tag.

Notes
Scripted scenarios are made available for backwards
compatibility reasons.

KIND: BEHAVIOR
Description
A configurable behavior module that forms part of a
session.

Container Structure
A well formed behavior kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 behavior

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 class			 data

	 script			 file

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
class, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-pl,
description-nl, description-ru, license, organisation, script,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru

Version 3.0  118   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
class, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-pl,
description-nl, description-ru, license, organisation, script,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “YR - Rule”.

See the “Maps & Scenarios” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “behavior”.

class

The name of the scenario class within the script file.

script

The script file (gs or gse file).

KIND: BOGEY
Description
Bogeys are locomotive or rolling stock wheel
mechanisms, sometimes known as ‘Trucks’. This asset is
for attachment to a “traincar” (locomotive or rolling-stock)
and can include animation and a shadow model.

Container Structure
A well formed bogey kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 bogey

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 username		 data

	 kind			 data

	 category-region		 data

	 category-era		 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

Version 3.0  119   Trainz Railroad Simulator - The Content Creator’s Guide

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZB - Bogie/Truck”.

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

kind

Must be “bogey”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Additional Tags

animdist

Leave this tag out if the bogey is not animated.

The distance traveled in meters by the bogeys in 1
second (30 frames) of animation.

Bogey animations (exported from Gmax or 3ds Max) are
called “anim.kin”.

direct-drive

When direct-drive is present, the bogey animation is
linked to the steam piston and physics system. If this tag
is not included the piston and steam sounds will not work!

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions, Track Sound.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, direct-drive, alias,
animdist, author, category-keyword, class, contact-email,
contact-website, description, description-cn, description-
cz, description-de, description-es, description-fr,
description-it, description-pl, description-nl, description-
ru, icon0, icon1, icon2, icon3, license, organisation,
preview-mesh-kuid, preview-scale, script, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

KIND: BRIDGE
Description
Road or rail bridges and similar assets, as variable length
splines. The bridge kind may include initiator, divider,
terminator segments, and shadows. The height and
gradient of the bridge spline may be varied in Surveyor.

Container Structure
A bridge kind has the following container Structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 bridge

	 bendy			 data

	 carrate			 data

	 casts_shadows		 data

	 endlength		 data

	 grounded		 data

	 isroad			 data

	 istrack			 data

	 length			 data

	 repeats			 data

	 rgb			 data

	 shadows		 data

	 upright			 data

	 visible-on-minimap	 data

	 width			 data

Version 3.0  1 20   Trainz Railroad Simulator - The Content Creator’s Guide

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 bridgetrack		 kuid

	 height			 data

	 trackoffsets		 data

	 initiator			 data

	 divider			 data

	 terminator		 data

	 kuid-table

	 0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data	

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TB - Bridge”.

See the “Track” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

height

Height from the track level to the base, must be a
negative value to raise the bridge above the ground.

kind

Must be “bridge”.

rgb

This value should be left as default.

bridgetrack

Kuid of the track type to be used.

istrack\isroad

Two boolean tags detailing the behavior of the bridge.
If the isroad is set to true, then cars are placed on the
bridge. Both values should not be set to true.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

Additional Tags
bendy

Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

carrate

Defines traffic density on road (minimum seconds
between each car generated). 0 = No traffic. Number
must be greater than 3 for traffic flow.

casts_shadows

Toggles whether the shadow model is displayed or not.

endlength

Length in meters of the initiator and terminator models.

grounded

Height in meters for the road to be offset from terrain.

length

Length of track segment in meters

repeats

The number of times the mesh is placed between spline
points

Version 3.0  1 21   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Track Sound, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

bendy, carrate, casts_shadows, endlength, grounded,
isroad, istrack, length, repeats, rgb, shadows, upright,
visible-on-minimap, width, kuid, trainz-build, category-
class, category-region, category-era, username, kind,
bridgetrack, height, trackoffsets, alias, author, category-
keyword, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-nl ,
description-pl, description-ru, divider, dont-flip-terminator,
hidden, initiator, invisible, license, light, organisation,
terminator, uncached_alphas, username-cn, username-
cz, username-de, username-es, username-fr, username-
it, username-nl, username-pl, username-ru.

shadows

Leave as default 0 (unticked box).

upright

Specifies whether the bridge “legs” point vertically, or
perpendicular to the spline.

visible-on-minimap

Specifies if the object\track is displayed on the minimap.

width

Width of track mesh in meters.

initiator

Name of model to use at start of bridge, placed in
subfolder with same name.

divider

Name of the model to use as the middle bridge section,
placed in subfolder with same name. No length is
specified, and the divider overlaps part of the spline.

terminator

Name of model to use at the end of bridge, placed in
subfolder with same name.

trackoffsets

Distance in meters the rail/s are placed relative to the
center of the spline. A single track must have a small
offset of 0.01 metres from the centreline. Any number of
tracks can be attached to the spline, only splines with the
same track offsets can be connected together.

KIND: BUILDABLE
Description
A variant of Kind Scenery, with similar attributes, but
allowing attached track to be used as part of the model.
Does not support processes, as used in a Kind Industry.

Container Structure
A well formed buildable kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 buildable

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 attached-track

	 track_0

	 track			 kuid

	 vertices

	 0			 data

	 1			 data

	 kuid-table

Version 3.0  1 22   Trainz Railroad Simulator - The Content Creator’s Guide

	 0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “BB - Buildable (Kind Buildable)”

See the “Buildings & Structures” section of the “Classes
and Codes” appendix located at the end of this
document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “buildable”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the buildable kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Attached Track Container
Auto-generated spline track. Generated through

attachment points located within the default mesh.
Attached-tracks update automatically to the spline track
connected to it in Surveyor. You may over-ride this auto-
update feature by adding useadjoiningtracktype 0 below.

Note: Correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
The Z axis must point ‘up’ - refer to Page 75.

The Attached Track Container has the following tags and
containers:

track	

Kuid of the track to be used.

useadjoiningtracktype	

Indicates whether the track type should change to match
that of the first track joined to the object.

vertex	

Attachment points at which to place track.

Attached Trigger Container
A Trigger is a point along an attached track with a
specified radius. When a compatible rollingstock
item enters this radius it triggers a set of commands,
controlled through its script. A trigger is setup in an
industries or buildable config.txt.

The Attached Trigger Container has the following tags:

att	

The attachment point (stored in the mesh file) to place the
trigger.

radius	

Radius (in meters) of the trigger.

track	

The track name which the train must be on to trigger.

Consists Container
The consists tag stores information on consists that can
be generated by the industry.

The Consists Container has the following Tags:

show-in-consist-menu	

Boolean flag that dictates whether the train appears in the
consist menu (0 - false, 1 - true). The consist menu was
along the bottom of the screen in the original Trainz and
UTC but is no longer present. It effectively stopped a user
from getting access to an AI train. Redundant for most
uses except for legacy/scenario usage.

coupling-mask	

Version 3.0  1 23   Trainz Railroad Simulator - The Content Creator’s Guide

Coupling mask that applies to the consist. 0 will block
off all coupling activity while “1” will mean you can couple
with a vehicle.

decoupling-mask	

Decoupling mask that applies to the consist. 0 will mean
you can’t decouple vehicles in the train while 1 means
you can decouple vehicles.

Consist Element (Consist subcontainer)
vehicle	

The kuid of the vehicle to be used.

facing	

Indicates the direction of the vehicle.

running-number

Running number of the vehicle.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

Additional Tags
passenger-height

Used when making a station. Indicates the height of the
platform on which the passengers stand.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Queues Container, Smoke Container, SoundScript
Container, Mesh Table, Attached Track Container,
Attached Trigger Container, String Table, Chinese String,
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions, Consists Container.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
category-keyword, class, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
nl , description-pl, description-ru, dighole, floating,
height-range, icon-texture, icon0, icon1, icon2, icon3,
license, light, nightmode, organisation, passenger-height,
preview-mesh-kuid, preview-scale, rgb, rollstep, rotate,
rotate-yz-range, rotstep, script, snapgrid, snapmode,
surveyor-name-label, surveyor-only, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

KIND: CHUNKY-TRACK
Description
Track and rails for Trains (the common flexi-track)
defining the cross section shape and properties of the
track. Chunky-track uses a texture file but does not
require a 3dsmax or gmax mesh model.

Container Structure
A well formed chunky-track kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

chunky-track

	 bendy			 data

	 carrate			 data

	 casts_shadows		 data

	 endlength		 data

	 grounded		 data

	 isroad			 data

	 istrack			 data

	 length			 data

	 repeats			 data

	 rgb			 data

	 shadows		 data

	 upright			 data

	 visible-on-minimap	 data

	 width			 data

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

Version 3.0  1 24   Trainz Railroad Simulator - The Content Creator’s Guide

	 chunky_mesh		 data

	 chunky_info		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TR - Rails”.

See the “Track” section of the “Classes and Codes”
appendix located at the end of this document for more
information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “track”.

rgb

This value should be left as default.

Additional Tags
Kind bridge is derived from kind track and shares most
of the same tags which are detailed in the KIND TRACK
section of this chapter.

grounded

Height in meters for the road to be offset from terrain.

chunky_mesh

Name of texture to apply to rail. The texture must be
within a directory of the same name (ie. “textureName\
textureName.texture.txt”). The chunky_mesh value will
simply be the name of this directory (ie. “textureName”).

Refer to Page 385 for details of the texture file used.

chunky_info

These values (in metres) define the shape of the mesh
created for the track. See drawing below:

chunky_info 0, 2, 1.2, 0.2, 0.85, 0.3, 0.7

chunky_info A, B, C, D, E, F, G

bendy

Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

carrate

Defines traffic density on road (minimum seconds
between each car generated). 0 = No traffic. Number
must be greater than 3 for traffic to flow.

casts_shadows

Toggles whether the shadow model is displayed or not.

endlength

Length in meters of the initiator and terminator models.

isroad

Specifies track is a road with cars, set to 1 for cars to
appear on road.

istrack

0 = This is not rail tracks.
1 = This is rail track

length

Length of track segment in meters

repeats

The number of times the mesh is placed between spline
points

shadows

A

D

F

B

G

E

0,0,0 (Origin)C

D
+0

.0
5m

Version 3.0  1 25   Trainz Railroad Simulator - The Content Creator’s Guide

Leave as default 0 (unticked box).

upright

Specifies whether the bridge “legs” point vertically or
perpendicular to the spline.

visible-on-minimap

Specifies whether the object\track is displayed on the
minimap.

width

Width of track mesh in meters.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Track Sound, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

bendy, carrate, casts_shadows, endlength, grounded,
isroad, istrack, length, repeats, rgb, shadows, upright,
visible-on-minimap, width, kuid, trainz-build, category-
class, category-region, category-era, username, kind,
chunky_mesh, chunky_info, alias, author, category-
keyword, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-nl ,
description-pl, description-ru, divider, dont-flip-terminator,
hidden, initiator, invisible, license, light, organisation,
terminator, uncached_alphas, username-cn, username-
cz, username-de, username-es, username-fr, username-
it, username-nl, username-pl, username-ru.

KIND: DRIVERCHARACTER
Description
The locomotive driver character. This specifies the
picture icon that appears in Driver as the engine driver.

Container Structure
A well formed drivercharacter kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

drivercharacter

	 kind			 data

	 face-texture		 file

	 kuid			 kuid

	 mesh			 kuid

	 username		 data

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 kuid-table

	 0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

	 1

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “OHD - Locomotive Driver”.

See the “Organism” section of the “Classes and Codes”
appendix located at the end of this document for more
information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

Version 3.0  1 26   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, face-texture, mesh, alias,
author, category-keyword, class, contact-email, contact-
website, description, description-cn, description-cz,
description-de, description-es, description-fr, description-
it, description-pl, description-nl, description-ru, icon0,
icon1, icon2, icon3, license, organisation, preview-
mesh-kuid, preview-scale, username-cn, username-cz,
username-de, username-es, username-fr, username-it,
username-nl, username-pl, username-ru.

KIND: DRIVERCOMMAND
Description
A command for the train driver to accomplish a specific
task.

Container Structure
A well formed drivercommand kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 drivercommand

	 kuid				 kuid

	 trainz-build			 data

	 category-class			 data

	 category-region			 data

	 category-era			 data

	 username			 data

	 kind				 data

	 supports-null-driver-character	 data

	 class				 data

	 script				 data

	 thumbnails

	 0

	 image				 file

	 width				 data

	 height				 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the text name of the driver.

kind

Must be “drivercharacter”.

Thumbnails
As well as the 240x180 image used as the assets
preview thumbnail, a 32x32 thumbnail should be included
as well. This is a half-size representation of the “face-
texture” image, and is used where the small driver image
is displayed. Not including this second thumbnail will
cause Trainz to use the larger one.

face-texture

This is the driver icon used in TRS. Must be 64x64
pixels.

mesh

This refers to the kuid of the mesh asset inserted into
the locomotive mesh at a.driver0 (when in the Driver
Module).

Kuid Table
The kuid of the driver mesh should be present in the kuid
table.

Version 3.0  1 27   Trainz Railroad Simulator - The Content Creator’s Guide

category-class

Should be “YD - Driver Command”.

See the “Maps & Scenarios” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the driver menu.

kind

Must be “drivercommand”.

class

The name of the scenario class within the script file.

script

The script file (gs or gse file).

Additional Tags
supports-null-driver-character

Command can be executed without a driver present in
the selected loco.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, supports-null-driver-
character, author, category-keyword, class, contact-email,
contact-website, description, description-cn, description-
cz, description-de, description-es, description-fr,
description-it, description-pl, description-nl, description-ru,
license, organisation, script, username-cn, username-cz,
username-de, username-es, username-fr, username-it,
username-nl, username-pl, username-ru.

KIND: DOUBLE-TRACK
Description
Track splines that may place two or more tracks as one
model, by specifying the track spacings to be used.

Container Structure
A well formed double-track kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 double-track

	 bendy			 data

	 carrate			 data

	 casts_shadows		 data

	 endlength		 data

	 grounded		 data

	 isroad			 data

	 istrack			 data

	 length			 data

	 repeats			 data

	 rgb			 data

	 shadows		 data

	 upright			 data

	 visible-on-minimap	 data

	 width			 data

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 bridgetrack		 kuid

Version 3.0  1 28   Trainz Railroad Simulator - The Content Creator’s Guide

	 height			 data

	 trackoffsets		 data

	 kuid-table

	 0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data	

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TR - Rails”.

See the “Track” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “bridge”.

rgb

This value should be left as default.

trackoffsets

Distance in meters the rail/s are placed relative to the
center of the spline. A single track must have a small
offset of 0.01 metres from the centreline. Any number
of tracks can be attached to the spline, only splines

with the same track offsets can be connected together.
Additional Tags
bendy

Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

carrate

Defines traffic density on road (minimum seconds
between each car generated). 0 = No traffic. Number
must be greater than 3 for traffic to flow.

casts_shadows

Toggles if the shadow model is displayed or not.

endlength

Length in meters of the initiator and terminator models.

grounded

Height in meters for the road to be offset from terrain.

isroad

Specifies track is a road with cars, set to 1 for cars to
appear on road.

istrack

0 = This is not rail tracks.
1 = This is rail track.

length

Length of track segment in meters

repeats

The number of times the mesh is placed between spline
points

shadows

Leave as default 0 (unticked box).

upright

Specifies whether the bridge “legs” point vertically, or
perpendicular to the spline.

visible-on-minimap

Specifies whether the object\track is displayed on the
minimap.

width

Width of track mesh in meters.

bridgetrack

Kuid for the type of rail or road used on bridge.

Version 3.0  1 29   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: ENGINE
Description
An engine specification for locomotives and rolling-stock
which defines the detailed performance requirements;
including throttle requirements and engine and braking
performance.

Container Structure
A well formed engine kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 engine

	 kuid					 kuid

	 trainz-build				 data

	 category-class				 data

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
class, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-pl,
description-nl, description-ru, license, organisation, script,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

height

Height from the track level to the base, should be
negative.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

	 category-region				 data

	 category-era				 data

	 username				 data

	 kind					 data

	 flowsize

	 trainbrakepipe				 data

	 epreservoirpipe			 	 data

	 no3pipe					 data

	 no4pipe					 data

	 auxreservoirvent			 data

	 auxreservoir_no3			 data

	 auxreservoir_trainbrakepipe		 data

	 autobrakecylindervent			 data

	 auxreservoir_autobrakecylinder		 data

	 equaliser_mainreservoir			 data

	 equaliservent				 data

	 equaliserventhandleoff			 data

	 equaliserventemergency		 data

	 no3pipevent				 data

	 no3pipe_mainreservoir			 data

	 compressor				 data

	 trainbrakepipe_reservoir			 data

	 trainbrakepipevent			 data

	 no3pipe_autobrakecylinder		 data

	 epreservoirpipe_autobrakecylinder	 data

	 mainreservoir_ep			 data

	 vacuumbrakepipe			 data

	 vacuumbrakepipereleasevent		 data

	 vacuumbrakepipevent			 data

	 vacuumbrakereservoir_vacuumbrakepipe data

	 vacuumbrakecylinder_vacuumbrakepipe	data

	 highspeedexhauster_vacuumbrakepipe	 data

	 volume

	 scale					 data

	 trainbrakepipe				 data

Version 3.0  1 30   Trainz Railroad Simulator - The Content Creator’s Guide

	 epreservoirpipe				 data

	 no3pipe					 data

	 no4pipe					 data

	 auxreservoir				 data

	 autobrakecylinder			 data

	 vacuumbrakepipe			 data

	 vacuumbrakereservoir			 data

	 vacuumbrakecylinder			 data

	 mainreservoir				 data

	 equaliser				 data

	 independantbrakecylinder		 data

	 pressure

	 scale					 data

	 compressor				 data

	 mainreservoir				 data

	 highspeedexhauster			 data

	 brakepipe				 data

	 brakeinitial				 data

	 brakefull				 data

	 indbrakefull				 data

	 trainbrakepipe_start			 data

	 epreservoirpipe_start			 data

	 no3pipe_start				 data

	 no4pipe_start				 data

	 auxreservoir_start			 data

	 autobrakecylinder_start			 data

	 vacuumbrakepipe_start			 data

	 vacuumbrakereservoir_start		 data

	 vacuumbrakecylinder_start		 data

	 mainreservoir_start			 data

	 equaliser_start				 data

	 independantbrakecylinder_start		 data

	 mass

	 scale					 data

	 fuel					 data

	 motor

	 resistance				 data

	 adhesion				 data

	 maxvoltage				 data

	 maxspeed				 data

	 brakeratio				 data

	 max-accel				 data

	 max-decel				 data

	 throttle-notches				 data

	 axle-count				 data

	 surface-area				 data

	 moving-friction-coefficient		 data

	 air-drag-coefficient			 data

	 throttle-power

*See Chapter 7 Examples for various Throttle-Power
values.

	 dynamic-brake

*See Chapter 7 Examples for various Dynamic Brake
values.

	 thumbnails

	 0

	 image					 file

	 width					 data

	 height					 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be one of the following:

“AA - Electric Multi-current”, “AC - AC Electric”, “AD -
DC Electric”, “AE - Experimental or Special”, “AG - Gas
Turbine”, “AH - Diesel Hydraulic”, “AL - Diesel & Diesel
Electric”, “AM - Mammal”, “AS - Steam Loco & Tender”,

Version 3.0  1 31   Trainz Railroad Simulator - The Content Creator’s Guide

“AT - Steam Tank”.

See the “Motive Power” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “engine”.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the engine kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Throttle-Power Container
Contains acceleration variables as used in cabin mode,
eg.

1

0	 30

5	 25 = At speed 5, acceleration = 25

10	 15

12	 0

See Chapter 7 for example Throttle-Power values.

Dynamic Brake Container
Contains deceleration variables for dynamic braking in
cabin mode, eg.

1

1.333	 0

2	 30

5	 25 = At speed 5, deceleration = 25

10	 15

12	 0

See Chapter 7 for example Dynamic Brake values.

Pressure Container
Stores brake system pressures.

The Pressure Container has the following tags:

scale	

Multiplies pressure by given value, generally leave this
setting.

compressor	

(120psi expressed in grams/m³) Compressor maximum
pressure.

mainreservoir	

Main reservoir maximum pressure

highspeedexhauster	

For vacuum braking - not currently in use, generally leave
this setting.

brakepipe	

(80psi expressed in grams/m³) Brake pipe pressure when
fully charged.

brakeinitial	

(72psi expressed in grams/m³) Brake pipe pressure after
initial service reduction (for self lapping brakes).

brakefull	

(57psi expressed in grams/m³) Brake pipe pressure after
full service reduction (for self lapping brakes).

indbrakefull	

Brake cylinder pressure for independant brake service.

trainbrakepipe_start	

Brake pipe pressure on loading Trainz.

epreservoirpipe_start	

For electro pneumatic braking - not currently in use,
generally leave this setting.

no3pipe_start	

Generally leave these settings.

no4pipe_start	

Generally leave these settings.

auxreservoir_start	

Auxiliary reservoir pressure on loading Trainz.

autobrakecylinder_start	

Train brake cylinder pressure on loading Trainz.

Version 3.0  1 32   Trainz Railroad Simulator - The Content Creator’s Guide

vacuumbrakepipe_start	

For vacuum braking - not currently in use, generally leave
this setting.

vacuumbrakereservoir_start	

For vacuum braking - not currently in use, generally leave
this setting.

vacuumbrakecylinder_start	

For vacuum braking - not currently in use, generally leave
this setting.

mainreservoir_start	

(100psi expressed in grams/m³) Main Reservoir pressure
on loading Trainz.

equaliser_start	

Equalising Reservoir pressure on loading Trainz.

independantbrakecylinder_start	

Locomotive brake cylinder pressure on loading Trainz.

Mass Container
The mass container stores information related to fuel
consumption. These tags aren’t in use and shouldn’t
generally be used.

The mass container has the following tags:

scale	

Multiplies fuel mass by given value, not currently in use,
generally leave this setting.

fuel	

Fuel level, not currently in use, generally leave this
setting.

Motor Container
The Motor Container stores an assortment of values
related to motor function, particularly that of DCC.

resistance	

Power figure for DCC, higher resistance value=less
power.

adhesion	

Adhesion parameter, higher value=greater adhesion.

maxvoltage	

Generally leave this setting.

maxspeed	

Maximum speed for DCC, expressed in metres per

second.

brakeratio	

Brake force for pressure reduction.

max-accel	

Parameters for DCC acceleration & deceleration.

max-decel	

Parameters for DCC acceleration & deceleration.

throttle-notches	

Number of throttle notches.

axle-count	

Resistance - Axle Count.

surface-area	

Resistance - Surface Area.

moving-friction-coefficient	

Resistance - Moving friction.

air-drag-coefficient	

Resistance - Air drag.

Flowsize Container
Flowsize settings specify the rate of flow through the
pipes. Generally these setting should be left unaltered.

The Flowsize Container has the following tags:

trainbrakepipe	

Flowsize of the brake pipe.

epreservoirpipe	

Flowsize of the electric pneumatic braking

no3pipe	

Flowsize of the independent brake pipe.

no4pipe	

Flowsize of the bail pipe.

auxreservoirvent	

Flowsize of the auxiliary reservoir vent.

auxreservoir_no3	

Flowsize of the auxiliary independent brake pipe.

auxreservoir_trainbrakepipe	

Flowsize of the auxiliary reservoir brake pipe.

Version 3.0  1 33   Trainz Railroad Simulator - The Content Creator’s Guide

autobrakecylindervent	

Flowsize of the automatic brake cylinder vent.

auxreservoir_autobrakecylinder	

Flowsize of the auxiliary reservoir automatic brake
cylinder.

equaliser_mainreservoir	

Flowsize of the equaliser main reservoir.

equaliservent	

Flowsize of the equaliser vent.

equaliserventhandleoff	

Flowsize of the equaliser to the atmosphere when in the
“handle off” position.

equaliserventemergency	

Flowsize of the emergency equaliser vent.

no3pipevent	

Flowsize of the independent brake pipe.

no3pipe_mainreservoir	

Flowsize of the independent brake main reservoir.

compressor	

Flowsize of the compressor.

trainbrakepipe_reservoir	

Flowsize of the brake pipe reservoir.

trainbrakepipevent	

Flowsize of the brake pipe vent.

no3pipe_autobrakecylinder	

Flowsize of the independent automatic brake pipe
cylinder.

epreservoirpipe-autobrakecylinder	

Flowsize of the electro pneumatic automatic brake
cylinder reservoir.

mainreservoir_ep	

Flowsize of the electro pneumatic main reservoir.

vacuumbrakepipe	

Flowsize of the vacuum brake pipe.

vacuumbrakepipereleasevent	

Flowsize of the vacuum brake pipe release vent.

vacuumbrakepipevent	

Flowsize of the vacuum brake pipe vent.

vacuumbrakereservoir_vacuumbrakepipe	

Flowsize of the vacuum brake pipe reservoir.

vacuumbrakecylinder_vacuumbrakepipe	

Flowsize of the vacuum brake pipe cylinder.

highspeedexhauster_vacuumbrakepipe	

Flowsize of the high speed exhauser vacuum brake pipe.

Volume Container
The volume container stores information regarding the
size of pipes and appliances. Generally these settings
should remain unaltered.

The Volume Container has the following tags:

scale	

Multiplies volume by given value, generally leave this
setting.

trainbrakepipe	

Brake pipe volume.

epreservoirpipe	

For electro pneumatic braking - not currently in use,
generally leave this setting.

no3pipe	

Independent brake pipe.

no4pipe	

Bail pipe - not currently in use, generally leave this
setting.

auxreservoir	

Auxiliary reservoir volume.

autobrakecylinder	

Brake cylinder volume.

vacuumbrakepipe	

For vacuum braking - not currently in use, generally leave
this setting.

vacuumbrakereservoir	

For vacuum braking - not currently in use, generally leave
this setting.

vacuumbrakecylinder	

For vacuum braking - not currently in use, generally leave
this setting.

Version 3.0  1 34   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, Throttle Power
Container, Dynamic Brake Container, Pressure Container,
Mass Container, Motor Container, Flowsize Container,
Volume Container.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
class, contact-email, contact-website, description,
description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

mainreservoir	

Main reservoir volume.

equaliser	

Equalising reservoir volume.

independantbrakecylinder	

Loco brake cylinder volume.

Notes
Equalisation of Pressures

There is a point at which no further brake pipe pressure
reduction will result in increased braking effort, this is
known as full application or equalisation of pressures.

Imagine you made a 26 psi reduction when operating a
loco with a 90psi brake pipe. 90psi in the train pipe minus
26psi reduction equals 64 psi in the pipe. Due to the
2.5:1 ratio of auxiliary reservoir volume to brake cylinder
volume, the 26 psi reduction puts 64 psi into the brake
cylinder.

As the pressure in the reservoir and the pressure in the
cylinder is now equal, no more air will flow into the brake
cylinder; and making a further reduction in brake pipe
pressure will have no effect on braking.

Equalisation occurs at different pressures, depending on
the train pipe feed pressure.

100 psi pipe (e.g. the UK locos - 7 bar) equalisation at 71
psi.

90 psi pipe (e.g. the US locos) equalisation at 64 psi.

72 psi pipe (e.g. French & Queensland locos)
equalisation at 49 psi.

The easiest way to set your custom content to the desired
brake pipe feed pressure is to copy the entire pressure
section from the config of a loco that uses the pressure
you desire.

*Note: Converting PSI to Grams /m cubed…

e.g. 90psi... (90+14.7)0.0000703

104.7 x 0.0000703=0.00736041

Version 3.0  1 35   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: ENGINESOUND
Description
An engine sound specification, detailing the locomotive
engine sound files referenced by the enginesound tag in
a traincar kind.

Container Structure
A well formed enginesound kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 enginesound

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 username		 data

	 kind			 data

	 category-region		 data

	 category-era		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data				

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZS - Enginesound”.

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “enginesound”.

Notes:
Though not mentioned in the config.txt itself,
enginesounds must be named in a specific way in order
to work correctly.

Diesel and Electric

“down 2 - 1.wav”, “down 3 - 2.wav”, “down 4 - 3.wav”,
“down 5 - 4.wav”, “down 6 - 5.wav”, “down 7 - 6.wav”,
“down 8 - 7.wav”

“idle 1.wav”, “idle 2.wav”, “idle 3.wav”, “idle 4.wav”, “idle
5.wav”, “idle 6.wav”, “idle 7.wav”, “idle 8.wav”

“stop.wav”

“up 1 - 2.wav”, “up 2 - 3.wav”, “up 3 - 4.wav”, “up 4 -
5.wav”, “up 5 - 6.wav”, “up 6 - 7.wav”, “up 7 - 8.wav”

Steam

These file are the steam engine idling sounds played
after the steam engine is stationary for 1, 2 and 3
minutes.

“loco-stationary.fast.wav” (1 minute)
“loco-stationary.med.wav” (2 minutes)
“loco-stationary.slow.wav” (3 minutes)

Piston stroke sounds, played every 180 degrees
revolution of the piston wheel played in sequence and
repeated up to about 40 kph.

“piston_stroke1.wav”, “piston_stroke2.wav”, “piston_
stroke3.wav”, “piston_stroke4.wav”

From 40 kph upwards, the following sound loop is cross-
faded as the piston sounds die off. The loop is pitched
shifted (through code) relative to the locomotive’s velocity.

“steam_loop.wav”

The general hiss from the smoke stack:

“smoke_stack_hiss.wav”

Version 3.0  1 36   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl, description-
nl, description-ru, license, organisation, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

KIND: ENVIRONMENT
Description
Additional sky textures, specifying the normal, night and
stormy sky images to be used in Trainz.

Container Structure
A well formed environment kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 environment

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 normal			 data

	 storm			 data

	 night			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ES - Sky”.

See the “Environment” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “environment”.

Additional Tags
normal

Name of image file for normal sky. File should be 256 x
256 pixel 24bit tga.

The file extension should be excluded here, ie “QLD_
Sky” and not “QLD_Sky.tga”.

storm

Name of image file for stormy sky. File should be 256 x
256 pixel 24bit tga.

The file extension should be excluded here, ie “QLD_

Version 3.0  1 37   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, normal, storm, night,
author, category-keyword, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

Sky-Storm” and not “QLD_Sky.tga”.

night

Name of image file for night sky. File should be 256 x
256 pixel 24bit tga.

The file extension should be excluded here, ie “QLD_
Sky-Night” and not “QLD_Sky.tga”.

KIND: FIXEDTRACK
Description
A fixedtrack asset can be likened to a model trains
sectional track system. The models may be straight or
curved and snap into position when moved on to another
track in Surveyor.

Container Structure
A well formed fixedtrack kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 fixedtrack

	 username		 data

	 kind			 data

	 kuid			 kuid

	 preview-mesh-kuid	 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 effects

	 arrow0

	 att			 data

	 default-mesh		 kuid

	 surveyor-only		 data

	 kind			 data

	 arrow1

	 att			 data

	 default-mesh		 kuid

	 surveyor-only		 data

	 kind			 data

	 attached-track

Version 3.0  1 38   Trainz Railroad Simulator - The Content Creator’s Guide

	 track0

	 track			 kuid

	 vertices

	 0			 data

	 1			 data

	 2			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TF - Fixed Track”.

See the “Track” section of the “Classes and Codes”
appendix located at the end of this document for more
information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “fixedtrack”.

preview-mesh-kuid

The mesh to be used in the surveyor preview area. This
is useful when an asset has a large bounding box, i.e. the
“Airport” with it’s jet animation - also see below.

Mesh Table
Default

Contains the default mesh.

Effects

arrow0, arrow1

These attachment effects place an arrow mesh at each
end of the Default Mesh according to the attachment
points stored in the mesh file (and referenced in the
vertices container). These arrows are used as guides
and only shown in surveyor.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the fixedtrack kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Attached Track Container
Auto-generated spline track. Generated through
attachment points located within the default mesh.
Attached-tracks update automatically to the spline track
connected to it. You may over-ride this auto-update
feature by adding useadjoiningtracktype 0

Note. Correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
The Z axis must point ‘up’ - see Page 75 .

The Attached Track Container has the following tags and
containers:

track	

Kuid of the track to be used.

useadjoiningtracktype	

Indicates whether the track type should change to match
that of the first track joined to the object or not.

vertex	

Attachment points at which to place track.

Junction-Vertices Container
The Junction-Vertices Container contains the tags
needed to handle the lever portions of a fixed track.

The Junction-Vertices Container has the following tags:

junction-lever-mesh	

The mesh (selected from the mesh table) to be used as a
junction lever.

junction-vertex	

The attachment point (located in mesh file) at which to
place the lever.

Version 3.0  1 39   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, Queues Container, Smoke Container,
SoundScript Container, Attached Track Container,
Attached Trigger Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions, Junction-Vertices Container.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
category-keyword, class, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-pl,
description-nl, description-ru, dighole, floating, height-
range, icon-texture, icon0, icon1, icon2, icon3, license,
light, nightmode, organisation, preview-mesh-kuid,
preview-scale, rgb, rollstep, rotate, rotate-yz-range,
rotstep, script, snapgrid, snapmode, surveyor-name-
label, surveyor-only, user-gradient-track, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

Additional Tags
preview-mesh-kuid

Each fixedtrack asset needs a preview-mesh as spline
tracks will not render in the Preview window.

A preview-mesh can simply be setup as a kind mesh.
This way the preview-mesh will never be selectable or
seen in Surveyor.

use-gradient-track

Uses the spline gradient rather than following the ground
height.

A fixedtrack comprises a mesh asset with an attached
track (or tracks) and surveyor only rendered arrows so
the user knows where the fixedtrack starts and ends.

The model has attachment points (using the a.name
naming convention) set-up accurately in Max or Gmax,
and a single invisible polygon to allow exporting, and for
in-game asset selection.

Note. Correct track end attachment orientation is
essential. For the end attachment points, the Y axis must
point ‘out’ at the correct angle. The Z axis must point ‘up’.
Mid points just need to be in the correct spline path. See
diagram below. TRS2004 released fixedtracks comprise
of only curved and straight sections.

Crossings and junctions are created in TC using
the attached-track set-up. For crossings, create two
attached-track fields. For junctions do the same but use
one of the attachments twice as shown below (where
a.track0b is used as the common connection point).

For example:

	 attached-track

	 track0

	 track 			 <KUID:-1:15>

	 useadjoiningtracktype 	 0

	 vertices

	 0			 a.track0a

	 1			 a.track0b

	 2			 a.track0c

	 3			 a.track0d

	 4			 a.track0e

	 track1

	 track			 <KUID:-1:15>

	 vertices

	 0			 a.track0b

a.track1a

Y

X a.track0e

a.track0a

a.track1b

a.track0d

a.track0b

X

X

Y

Y

Y

Y

X

X

Y

X

a.track0cX
Y

	 1			 a.track1a

	 2			 a.track1b

	 junction-vertices

	 0 	

	 junction-lever-mesh	 “lever0”

	 junction-vertex		 “a.track0b”

	 1

	 junction-lever-mesh	 “blades”

	 junction-vertex		 “a.track0b”

See additional information on Page 383.

Version 3.0  14 0   Trainz Railroad Simulator - The Content Creator’s Guide

See the “Ground” section of the “Classes and Codes”
appendix located at the end of this document for more
information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears as a
mouseover hint in the surveyor menu. Textures are also
sorted alphabetically by username.

kind

Must be “groundtexture”.

texture

The texture file. Should be a 128x128 pixel bitmap.

Additional Tags
clutter-mesh

Ground textures can now reference a mesh and insert the
mesh automatically as the ground is painted.

Painting over a clutter-mesh ground texture effectively
deletes clutter meshes and texture. The mesh it refers to
can be a standard scenery object kind mesh.

Clutter-meshes must have only one Max material
assigned to it.

Polycounts must be very low.

KIND: GROUNDTEXTURE
Description
A ground texture is tiled in Surveyor to color and cover
the base grid. It can optionally reference a low polygon
mesh and insert the mesh automatically as the ground is
painted.

Container Structure
A well formed groundtexture kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 groundtexture

	 kuid			 kuid

	 kind			 data

	 trainz-build		 data

	 category-class		 data

	 username		 data

	 category-region		 data

	 category-era		 data

	 texture			 file

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “G - Ground”, “GA - Arid, “GL - Lush”, “GS -
Seasonal”.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, texture, author, category-
keyword, clutter-mesh, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

Version 3.0  141   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: HORNSOUND
Description
A traincar horn sound, referenced by the hornsound tag in
a traincar config file. It references the various sound files
to be used.

Container Structure
A well formed hornsound kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 hornsound

	 kind			 data

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 three-part		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZH - Hornsound”.

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “hornsound”.

Additional Tags
two-part

Indicates that the Railyard and Driver hornsounds are
different. The Driver hornsound is looping. If this tag is
not present, the hornsound defauts to UTC equivalent
non-looping format.

See Chapter 7 for an example of a two-part hornsound.

three-part

Specifies that the hornsound has a beginning, middle and
ending sound.

See Chapter 7 for an example of a three-part hornsound.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl, description-nl,
description-ru, license, organisation, three-part, two-part,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

Version 3.0  14 2   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: HTML-ASSET
Description
An html-asset example is the ingame tutorial. The config.
txt file references one or more .html pages. The html-
asset can be referenced from the scripts and from some
of the Surveyor rules.

Container Structure
A well formed html-asset kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 html-asset

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should by “YH - HTML-Asset”

See the “Maps & Scenarios” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “html-asset”.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl, description-
nl, description-ru, license, organisation, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

Version 3.0  14 3   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: INDUSTRY
Description
A scenery asset with product processing functionality.
Industry assets interact with compatible rolling stock
assets through their script file and asset triggers. An
Industry asset supports product queues and attached
track.

Container Structure
A well formed industry kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 industry

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 script			 file

	 class			 data

	 preview-mesh-kuid	 kuid

	 icon0			 kuid

	 kuid-table

	 coal			 kuid

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 attached-track

	 out_track0

	 track			 kuid

	 vertices

	 0			 data

	 attached-trigger

	 trig0

	 att			 data

	 radius			 data

	 queues

	 20ft_cont_q

	 size			 data

	 initial-count		 data

	 product-kuid		 kuid

	 allowed-products

	 0			 kuid

	 processes

	 multi_consumer_producer

	 start-enabled		 data

	 duration		 data

	 inputs

	 0

	 amount			 data

	 queue			 data

	 outputs

	 0

Version 3.0  144   Trainz Railroad Simulator - The Content Creator’s Guide

	 amount			 data

	 queue			 data

	 string-table

	 multi_pickupdropoff	 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

	 1

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be one of the following:

“BIN - Industry asset with product processing
functionality”, “BPF - Passenger Station with passenger
processing functionality”, “BPN Passenger Station (non-
functional)”, “BB Buildable (Kind Buildable)”

See the “Buildings & Structures” section of the “Classes
and Codes” appendix located at the end of this
document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “industry”.

class

The name of the scenario class within the script file.

script

The script file (gs or gse file).

icon0

Kuid of the preview icon. Should be a 32x32 tga.

preview-mesh-kuid

The mesh to be used in the surveyor preview area. This
is useful when an asset has a large bounding box. i.e. the
“Airport” with it’s jet animation.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

String Table
The string table stores a list of text strings to be used by
the industry script.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the industry kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Attached Track Container
Auto-generated spline track. Generated through
attachment points located within the default mesh.
Attached-tracks update automatically to the spline track
connected to it. You may over-ride this auto-update
feature by adding useadjoiningtracktype 0

Note. Correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
The Z axis must point ‘up’ see Page 75.

The Attached Track Container has the following tags and
containers:

track	

Kuid of the track to be used.

useadjoiningtracktype	

Version 3.0  145   Trainz Railroad Simulator - The Content Creator’s Guide

Indicates whether the track type should change to match
that of the first track joined to the object.

vertex	

Attachment points at which to place track.

Attached Trigger Container
A Trigger is a point along an attached track with a
specified radius. When a compatible rollingstock
item enters this radius it triggers a set of commands,
controlled through its script. A trigger is setup in an
industries config.txt.

The Attached Trigger Container has the following tags:

att	

The attachment point (stored in the mesh file) to place the
trigger.

radius	

Radius (in meters) of the trigger.

track	

The track name which the train must be on to trigger.

Consists Container
The consists tag stores information on consists that can
be generated by the industry.

The Consists Container has the following Tags:

show-in-consist-menu	

Boolean flag that dictates whether this train appears in
the consist menu (0 - false, 1 - true). The consist menu
was along the bottom of the screen in the original Trainz
and UTC but is no longer present. It effectively stopped
a user from getting access to an AI train. Redundant for
most uses except for legacy/scenario usage.

coupling-mask	

Coupling mask that applies to the consist. 0 will block
off all coupling activity while “1” will mean you can couple
with a vehicle.

decoupling-mask	

Decoupling mask that applies to the consist. 0 will mean
you can’t decouple vehicles in the train while 1 means
you can decouple vehicles.

Consist Element(Consist subcontainer)
vehicle	

The kuid of the vehicle to be used.

facing	

Indicates the direction of the vehicle.

running-number

Running number of the vehicle.

Processes Container
Processes - The input and output settings of the industry.
You can specify the amount of input and output for each
queue referenced product as well as the duration (or rate)
in seconds for that process to take place.

All queues and processes are linked through the industry
asset’s script file.

The Processes Container has the following tags and
containers:

start-enabled

Specifies whether the process starts enabled.

duration

Length of time (in seconds) that the process runs for.

Inputs Container (Processes subcontainer)
amount	

Amount required as input.

queue

Queue from which to take input.

Outputs Container(Processes subcontainer)
amount	

Amount to output.

queue	

Queue in which to place output.

Queue Container
size

Size of queue.

animated-mesh

Animated mesh which changes as the queue becomes
full.

custom-attachments

Not used.

initial-count

The initial number of items in the queue.

product-kuid

The product type used to fill ‘initial-count’

Version 3.0  146   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Queues Container, Smoke Container, SoundScript
Container, Mesh Table, Attached Track Container,
Attached Trigger Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions, Processes Container, Consists
Container.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
category-keyword, class, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, dighole, floating,
height-range, icon-texture, icon0, icon1, icon2, icon3,
license, light, nightmode, organisation, passenger-height,
preview-mesh-kuid, preview-scale, rgb, rollstep, rotate,
rotate-yz-range, rotstep, script, snapgrid, snapmode,
surveyor-name-label, surveyor-only, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

allowed products

The allowed products in this queue.

conflicts-with-queues

This queue and the conflicting queue(s) cannot be used
simultaneously.

attachment-points

List of attachment points for this queue on which products
are visualised. (Use this, OR animated-mesh)

allowed-categories

The allowed product categories in this queue.

Notes
Perhaps the simplest examples of industry functionality
are the TRS released Coalmine and the Powerstation
assets.

When the coal hopper enters the trigger radius of the
coalmine loading bay, it’s script interacts with the hoppers
own script. Particle effects (pfx) from the coalmine
visually display the coal entering the hopper and the
hopper animated load rises to show it’s full state. The
coalmine’s own animated load pile reduces as does it’s
commodity level.

Similarly, when the full hopper enters the Powerstation
trigger radius, the hopper’s animated load lowers, the
side doors open and the pfx on the hopper itself initiate.
The animated load on the Powerstation increases and it’s
commodity level increases.

The hopper pfx, and the animated doors are both
controlled by the hopper.gs script file.

Sounds events and generic events can be linked to
animation key-frame to give great control over sound and
script timing for industry and scenery assets.

The increasing use of scripts in TRS adds flexibility and
control to assets and their functionality.

Version 3.0  14 7   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: INTERIOR
Description
A traincar interior asset. It allows the interior mesh model
to be defined, and has attached levers and controls to
operate a locomotive in cab model. It also creates an
interior for rolling stock.

Container Structure
A well formed interior kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 interior

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 cameradefault		 data

	 cameralist

	 camera0		 data

	 camera1		 data

	 camera2		 data

	 camera3		 data

	 camera4		 data

	 camera5		 data

	 mesh-table

	 ampmeter_needle

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 att-parent		 data

	 flow_needle

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 att-parent		 data

	 bploco_equaliser

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 att-parent		 data

	 bplocomain_needle

	 kind			 data

Version 3.0  148   Trainz Railroad Simulator - The Content Creator’s Guide

	 mesh			 file

	 att			 data

	 limits			 data

	 att-parent		 data

	 bptrainbrakecylinder_needle

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 att-parent		 data

	 bptrainbrakepipe_needle

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 att-parent		 data

	 speedo_needle

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 att-parent		 data

	 dynamicbrake_lever

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 att-parent		 data

	 independantbrake_lever

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 mousespeed		 data

	 att-parent		 data

	 reverser_lever

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 att-parent		 data

	 throttle_lever

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 mousespeed		 data

	 att-parent		 data

	 trainbrakelap_lever

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 mousespeed		 data

	 att-parent		 data

Version 3.0  149   Trainz Railroad Simulator - The Content Creator’s Guide

	 horn

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 mousespeed		 data

	 att-parent		 data

	 light_switch

	 kind			 data

	 mesh			 file

	 att			 data

	 limits			 data

	 angles			 data

	 notches			 data

	 notchheight		 data

	 mousespeed		 data

	 radius			 data

	 att-parent		 data

	 ampmeter

	 mesh			 file

	 bploco

	 mesh			 file

	 bptrain

	 mesh			 file

	 brakepressure

	 mesh			 file

	 chair

	 mesh			 file

	 controlstand

	 mesh			 file

	 horizblinds

	 mesh			 file

	 interior_main

	 mesh			 file

	 speedo

	 mesh			 file

	 westinghouse

	 mesh		 	 file

	 windows

	 mesh			 file

	 opacity			 data

	 wheelslip_light

	 kind			 data

	 mesh			 file

	 att			 data

	 att-parent		 data

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZI - Interior”.

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

Version 3.0  15 0   Trainz Railroad Simulator - The Content Creator’s Guide

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

kind

Must be “interior”.

Mesh Table
kind

The type of interior object the particular mesh defines. It
affects the behavior of the mesh in Trainz.

Kinds

	 lever

	 Levers, switches, dials etc.

	 animated-lever

	 Animated Levers etc Eg. in steam cabs.

	 collision-proxy

	 Mouse collisions for animated levers.

	 needle

	 Gauge needles (i.e. Speedo, brake pres.).

	 pullrope

	 Pull rope horn as in the F7.

	 light

	 Wheelslip light.

limits

Mathematical boundaries Trainz uses to determine the
objects function. These values vary as different objects
use different mathematical units.

angles

Rotational boundaries in radians relative to its attachment
point. Refer to the radian/degree circle diagram below:

notches

The position of notches within the angle boundaries.
These are represented as decimal points between and
including 0 and 1.

notchheight

The size of the notches specified.

radius

The notch position relative to the attachment point.

mousespeed

This controls the use of the mouse on screen. Use this
to control the mouse speed and push/pull direction for
levers and dials.

• mousespeed -1 Inverts mouse direction.

• mousespeed 2 Doubles mouse speed in default
direction.

• mousespeed -0.5 Inverts mouse direction and halves
the speed.

test-collisions

Mouse cannot be used for this mesh, collision mesh used
instead. i.e. animated-levers.

opacity

Usually used for the window mesh to give transparency
(and the impression of reflection).

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the interior kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

CameraList Container
Contains a list of camera coordinates for the interior
cameras relative to a.cabfront.

camera

A camera contains 5 numeric coordinates that determine
the placement and orientation of the camera. These are:

0,0,0,0,0 =left/right, front/back, up/down, yaw, pitch

To determine these variables add -freeintcam to the
trainzclassicoptions.txt file. Pan around the interior using
arrow keys and mouse. See Page 386 for information.

Co-ordinates are displayed at bottom-left of screen.

Additional Tags
cameradefault

Version 3.0  151   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, CameraList,
SoundScript Container, Mesh Table.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, cameradefault, alias,
author, category-keyword, class, contact-email, contact-
website, description, description-cn, description-cz,
description-de, description-es, description-fr, description-
it, description-pl, description-nl, description-ru, icon0,
icon1, icon2, icon3, license, organisation, preview-mesh-
kuid, preview-scale, script, username-cn, username-cz,
username-de, username-es, username-fr, username-it,
username-nl, username-pl, username-ru.

The in-cab camera view Trainz defaults to when entering
the cab.

Extra notes on modelling interiors can be found on Page
358.

Interior Attachment types

These values should be used as the name of your mesh
table entries when constructing an interior (ie a throttle
should be called “throttle_lever”).

pantograph_lever

Pantograph lever/switch. For raising and lowering
pantographs on electric locos.

horn

Locomotive’s horn.

independantbrake_lever

Independent (Loco) brake lever.

reverser_lever

Reverser lever (Forward/Neutral/Reverse).

throttle_lever

Throttle / power handle.

trainbrake_lever

Train brake lever - self lapping.

trainbrakelap_lever

Train brake lever with lap position.

dynamicbrake_lever

For selecting dynamic brake.

bplocomain_needle

Main reservoir pressure needle

bploco_equalizer

Equalising reservoir pressure needle.

bptrainbrakepipe_needle

Brake pipe pressure needle.

bptrainbrakecylinder_needle

Brake cylinder pressure needle.

speedo_needle

Speedometer needle.

ampmeter_needle

Power meter needle.

flow_needle

Flow gauge needle.

windows

Textured mesh with low opacity (semi-transparent) to
give impression of reflection. This mesh has the same
3D origin point as the main .im mesh, therefore does not
require an attachment point.

wheelslip_light

A warning light mesh that is only visible when the
locomotive loses traction. This mesh has the same 3D
origin point as the main .im model, therefore does not
require an attachment point

switch0, switch1 etc

Switches.

light_switch

Headlight switch.

Version 3.0  15 2   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
class, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-pl,
description-nl, description-ru, license, organisation, script,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

KIND: LIBRARY
Description
Coded modules that interact with other coded modules.

Container Structure
A well formed library kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 library

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 class			 data

	 script			 file

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “YR - Rule”.

See the “Maps & Scenarios” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “library”.

script

The script file (gs or gse file).

class

The name of the scenario class within the script file.

Version 3.0  15 3   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MESH
Description
A mesh that is never referenced through Surveyor
panels but is referenced from another asset. It could be
referenced through the preview-mesh-kuid tag or as a
kind attachment effect, like the red arrows used on fixed
track assets.

Container Structure
A well formed mesh kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 mesh

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “HM - Mesh”.

See the “Mesh” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “mesh”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, category-
keyword, class, contact-email, contact-website,
description, description-cn, description-cz, description-de
, description-es, description-fr, description-it, description-
pl, description-nl, description-ru, icon0, icon1, icon2,
icon3, license, organisation, preview-mesh-kuid, preview-
scale, script, username-cn, username-cz, username-de,
username-es, username-fr, username-it, username-nl,
username-pl, username-ru.

Version 3.0  154   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MESH-REDUCING-TRACK
Description
Mesh-Reducing-Track is used to create poly efficient
splines. The asset consists of a short high detailed mesh
and a longer less detailed mesh based on the same
object. The short mesh is displayed when the camera is
close to the asset whilst the long mesh is shown when
less detail is required, and the camera is further from the
asset.

Container Structure
A well formed mesh-reducing-track kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 mesh-reducing-track

	 carrate			 data

	 casts_shadows		 data

	 endlength		 data

	 grounded		 data

	 isroad			 data

	 istrack			 data

	 length			 data

	 repeats			 data

	 rgb			 data

	 shadows		 data

	 upright			 data

	 visible-on-minimap	 data

	 width			 data

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 unit_mesh		 data

	 bendy			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TR - Rails”.

See the “Rails” section of the Classes and Codes”
appendix located at the end of this document for more
information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “Track”.

rgb

This value should be left as default.

grounded

Height in meters for the road to be offset from terrain, eg.
0.4.

length

Length of track segment in meters, eg. 4.

Version 3.0  155   Trainz Railroad Simulator - The Content Creator’s Guide

repeats

The number of times the mesh is placed between spline
points, eg. 4.

width

Width of track mesh in meters, eg. 0.5.

Additional Tags
Kind mesh-reducing-track is derived from kind track and
shares most of the same tags which are detailed in the
KIND TRACK section of this chapter.

unit_mesh

The filename of the long mesh, which must be placed in a
subdirectory of the same name as the mesh.

Only the file name is entered, not the directory name nor
the file extension. For example, if the full pathname and
extension is “rockwall/rockwall.im”. Enter only “rockwall”
in the text input box.

bendy

Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

carrate

Defines traffic density on road (minimum seconds
between each car generated). 0 = No traffic. Number
must be greater than 3, for traffic to flow.

casts_shadows

Toggles whether the shadow model is displayed or not.

endlength

Length in meters of the initiator and terminator models.

isroad

Specifies track is a road with cars, set to 1 for cars to
appear on road.

istrack

0 = This is not rail tracks.

shadows

Leave as default 0 (unticked box).

upright

Specifies whether the bridge “legs” point vertically, or
perpendicular to the spline.

visible-on-minimap

Specifies whether the object\track is displayed on the
minimap.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Track Sound, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

bendy, carrate, casts_shadows, endlength, grounded,
isroad, istrack, length, repeats, rgb, shadows, upright,
visible-on-minimap, width, kuid, trainz-build, category-
class, category-region, category-era, username, kind,
unit_mesh, alias, author, category-keyword, contact-
email, contact-website, description, description-cn,
description-cz, description-de, description-es, description-
fr, description-it, description-pl, description-nl, description-
ru, divider, dont-flip-terminator, hidden, initiator, invisible,
license, light, organisation, terminator, uncached_alphas,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

Version 3.0  156   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MOCROSSING
Description
Combined rail and road crossings that react to trains
or script control. This allows animation, special lighting
effects and attachment points for rail track and roads.

Container Structure
A well formed mocrossing kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 mocrossing

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 soundscript

	 dayloop

	 repeat-delay		 data

	 distance		 data

	 sound

	 0			 file

	 mesh-table

	 default

	 mesh			 file

	 anim			 file

	 auto-create		 data

	 attached-track

	 road1

	 track			 kuid

	 useadjoiningtracktype	 data

	 vertices

	 0	 		 data

	 1			 data

	 track1

	 track			 kuid

	 useadjoiningtracktype	 data

	 vertices

	 0			 data

	 1			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “WX - Accessories”

See the “Wayside” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

Version 3.0  15 7   Trainz Railroad Simulator - The Content Creator’s Guide

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “mocrossing”.

Additional Containers

Soundscript Container
Controls the looping sound made by the object.

Attached Track Container
Auto-generated spline track. Generated through
attachment points located within the default mesh.
Attached-tracks update automatically to the spline track
connected to it. You may over-ride this auto-update
feature by adding useadjoiningtracktype 0

Note. Correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
The Z axis must point ‘up’ - see Page 75.

The Attached Track Container has the following tags and
containers:

track	

Kuid of the track to be used.

useadjoiningtracktype	

Indicates whether the track type should change to match
that of the first track joined to the object.

vertex	

Attachment points at which to place track.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Queues Container, Smoke Container, SoundScript
Container, Mesh Table, Attached Track Container,
Attached Trigger Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
category-keyword, class, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-

pl, description-nl, description-ru, dighole, floating,
height-range, icon-texture, icon0, icon1, icon2, icon3,
license, light, nightmode, organisation, passenger-height,
preview-mesh-kuid, preview-scale, rgb, rollstep, rotate,
rotate-yz-range, rotstep, script, snapgrid, snapmode,
surveyor-name-label, surveyor-only, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

KIND: MOJUNCTION
Description
Junction control levers, which are attached to track
junctions, include sound, and may be offset a specified
distance from the track. They can be used to replace the
default junction lever.

Container Structure
A well formed mojunction kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 mojunction

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 trackside		 data

	 mesh-table

	 lever1

	 mesh			 file

	 auto-create		 data

	 lever2

Version 3.0  158   Trainz Railroad Simulator - The Content Creator’s Guide

	 mesh			 file

	 soundscript

	 toggle

	 trigger			 data

	 distance		 data

	 nostartdelay		 data

	 repeat-delay		 data

	 sound

	 0			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “WX - Accessories”

See the “Wayside” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “mojunction”.

trackside

This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will appear on the right.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true (1) in order to make the mesh visible.

Lever 1, Lever 2

These are the alternate mesh positions of the lever model
for the junctions. The object toggles between the two
meshes.

Addition Containers

Soundscript Container
Controls the looping sound made by the object.

Notes
Repeat-delay now has two values rather than one. When
upgrading old assets, make sure there is a repeat delay
for both values or the sound will loop endlessly when
triggered.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Queues Container, Smoke Container, SoundScript
Container, Mesh Table, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
buffer-speed, category-keyword, class, contact-email,
contact-website, description, description-cn, description-
cz, description-de, description-es, description-fr,
description-it, description-pl, description-nl, description-ru,
dighole, floating, height-range, icon-texture, icon0, icon1,
icon2, icon3, license, light, nightmode, organisation,
passenger-height, preview-mesh-kuid, preview-scale,
rgb, rollstep, rotate, rotate-yz-range, rotstep, script,
snapgrid, snapmode, speedlimit, surveyor-name-label,
surveyor-only, trackmark, trackside, trigger, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

Version 3.0  159   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MOSIGNAL
Description
A train signal with lights (coronas). It specifies the aspects
the signal is capable of displaying, the light points
activated when each state is displayed, and the corona
details. The signal may be offset a specified distance
from the track.

Container Structure
A well formed mosignal kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 mosignal

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 function			 data

	 trackside		 data

	 signals

	 0

	 light			 data

	 lights

	 0

	 corona			 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “WX - Accessories”

See the “Wayside” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

Version 3.0  16 0   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, Queues Container, Smoke Container,
SoundScript Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions, Signals, Lights.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, function, alias, author,
autoname, buffer-speed, category-keyword, class,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl,

description-ru, dighole, floating, height-range, icon-
texture, icon0, icon1, icon2, icon3, license, light,
nightmode, organisation, passenger-height, preview-
mesh-kuid, preview-scale, rgb, rollstep, rotate, rotate-yz-
range, rotstep, script, snapgrid, snapmode, speedlimit,
surveyor-name-label, surveyor-only, trackmark, trackside,
trigger, username-cn, username-cz, username-de,
username-es, username-fr, username-it, username-nl,
username-pl, username-ru.

trackside

This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will appear on the right.

kind

Must be “mosignal”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the mosignal kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Signal Container
When adding a signal, the user is presented with a choice
of 12 separate signal containers:

Signal 1, Signal 2, Signal 3, Signal 4, Signal 5, Signal 6,
Signal 7, Signal 8, Signal 9, Signal 10, Signal 11, Signal
12

The numbering of these is meaningful in that each
numeric is assigned to a particular signalling state. The
states are as follows:

0 STOP

1 STOP THEN PROCEED

2 CAUTION AND LEFT DIVERGE

3 CAUTION AND RIGHT DIVERGE

4 CAUTION

5 PROCEED AND LEFT DIVERGE

6 PROCEED AND RIGHT DIVERGE

7 ADVANCED CAUTION

8 PROCEED

The following two aspects are only used for scenarios….

9 SLOW

10 MEDIUM SPEED

light	

Sets lighting to be used for object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value, (uniformly lit). 1 sets directional light

which is affected by the position of the sun, and the asset
shows shaded faces, but not ground shadows.

Lights Container
Each light point needs to have a corona associated with
it. Coronas are stored in each signal object’s directory
alongside it’s textures.

Corona	

A corona is a ‘glow’ light effect.

Additional Tags
function

Must be set to TrackSignal.

Version 3.0  161   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: MOSPEEDBOARD
Description
A speed limit sign for Trains. It displays the maximum
limit (sign texture made by the creator) and the sign may
be offset a specified distance from the track. The limit to
control train speed is specified in the asset in metres per
second.

Container Structure
A well formed mospeedboard kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 mospeedboard

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 username		 data

	 kind			 data

	 category-region		 data

	 category-era		 data

	 trackside		 data

	 speedlimit		 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, Queues Container, Smoke Container,
SoundScript Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “WS - Trackside signage”

See the “Wayside” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

speedlimit

This value is the maximum speed allowed in meters per
seconds.

trackside

This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will appear on the right.

kind

Must be “mospeedboard”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Version 3.0  16 2   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: PAINTSHED-SKIN
Description
A reskin texture for a locomotive or rolling stock asset.

Container Structure
A well formed paintshed-skin kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 paintshed-reskin

	 origin				 data

	 category-class			 data

	 product-id			 data

	 product-version			 data

	 product-type			 data

	 engine				 data

	 interior				 kuid

	 fonts				 data

	 mass				 data

	 kind				 data

	 enginespec			 kuid

	 enginesound			 kuid

	 hornsound			 kuid

	 username			 data

	 description			 data

	 alias				 kuid

	 kuid				 kuid

	 paintshed-template-used	 kuid

	 paintshed-skin-used		 kuid

	 category-region			 data

	 category-era			 data

	 trainz-build			 data

	 mesh-table

	 default

	 mesh				 file

	 auto-create			 data

	 shadow

	 mesh				 file

	 auto-create			 data

	 bogeys

	 0

	 bogey				 kuid

	 reversed			 data

	 thumbnails

	 0

	 image				 file

	 width				 data

	 height				 data

	 kuid-table

	 0				 kuid

	 1				 kuid

	 2	 			 kuid

	 3				 kuid

	 4				 kuid

	 5				 kuid

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
buffer-speed, category-keyword, class, contact-email,
contact-website, description, description-cn, description-
cz, description-de, description-es, description-fr,
description-it, description-pl, description-nl, description-ru,
dighole, floating, height-range, icon-texture, icon0, icon1,
icon2, icon3, license, light, nightmode, organisation,
passenger-height, preview-mesh-kuid, preview-scale,
rgb, rollstep, rotate, rotate-yz-range, rotstep, script,
search-limit, snapgrid, snapmode, speedlimit, surveyor-
name-label, surveyor-only, trackmark, trackside, trigger,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

Version 3.0  16 3   Trainz Railroad Simulator - The Content Creator’s Guide

	 6				 kuid

	 7				 kuid

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZX - PaintShed-Template”.

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

description

Description of model which is used for the ‘Railyard’
information.

kind

Must be “traincar”.

alias

The kuid of the paintshed template the paintshed reskin
is based on.

origin

The Country Abbreviation.

product-id

For paintshed support.

product-type

For paintshed support.

product-version

For paintshed support.

engine

Specifies whether the traincar is a locomotive or
rollingstock item. A loco or B-unit will have the engine tag
set to true.

mass

Mass in Kilograms, ie “7000”.

interior

Kuid number of the interior, inserted at a.cabfront. This
tag should only be used when required (an interior is
needed when the traincar is a locomotive).

enginesound

References the kuid number for the traincar’s sound
asset.

enginespec

References the engine kuid number. This specifies the
driver physics boundaries for the traincar.

hornsound

References the kuid number for the traincar horn sound
asset.

paintshed-skin-used

Kuid of the paintshed skin used. (if applicable)

paintshed-template-used

Kuid of the paintshed template used. (if applicable)

fonts

Indicates how many types of numbering fonts are used,
eg.

0 = no fonts used

1 = one font

Digit textures (digit_1.tga to digit_6.tga) replaced
automatically with alphanumber textures (alphanumber_0
to alphanumber_9) as numbers are changed via the
Surveyor Trains tab - ‘Edit Properties’ icon (the ‘?’ icon).

2 = two fonts

Digit textures (digit_1a.tga to digit_6a.tga and digit_1b.tga
to digit_6b.tga) replaced automatically with alphanumber
textures (alphanumber_0a to alphanumber_9a and
alphanumber_0b to alphanumber_9b) as numbers are
changed via the Surveyor Trains tab - ‘Edit Properties’
icon (the ‘?’ icon).

Mesh Table
default

Version 3.0  164   Trainz Railroad Simulator - The Content Creator’s Guide

The main traincar mesh.

auto-create

Specifies that this mesh is automatically created (visible
without needing to resort to a script).

shadow

The mesh model to be used as a shadow.

Bogey Container
The bogey container lists the bogeys used for the loco\
rollingstock item.

The functionality of a bogey can be determined by
naming it as follows:

bogey: The bogey kuid number (default for a.bog0 and
a.bog1)

bogey-1: The bogey kuid number for a.bog1 (Used only if
different from a.bog0)

A Bogey container has the following tags:

reversed Ticking this box in CCP will make the bogey
have a reversed orientation. Note: This will cause bogey
animation to play in reverse, unless attachment points are
rotated 180 degrees.

Affects the direction of the bogey, relative to the traincar.

bogey	

The KUID of the bogey asset.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl, description-
nl, description-ru, license, organisation, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

KIND: PAINTSHED-TEMPLATE
Description
A template for particular locomotives and rolling-stock
that may be used in the integrated Paintshed utility. The
template may be painted with different color schemes.

Container Structure
A well formed paintshed-template kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 paintshed-template

	 kind			 data

	 paintshed-skin		 kuid

	 kuid			 kuid

	 username		 data

	 category-class		 data

	 category-era		 data

	 trainz-build		 data

	 category-region		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZX - PaintShed-Template”.

Version 3.0  165   Trainz Railroad Simulator - The Content Creator’s Guide

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “paintshed-template”.

Additional Tags
paintshed-skin

Kuid of the paintshed skin to be used for this template.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, paintshed-skin, author,
category-keyword, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

KIND: PANTOGRAPH
Description
The animated mechanisms on the roof of electric
locomotives that conduct electricity from the catenary’s
(wires) above. It is referenced by the pantograph tag in a
traincar config file.

Container Structure
A well formed pantograph kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 pantograph

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 anim			 file		

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Version 3.0  166   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, Mesh Table.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, category-
keyword, contact-email, contact-website, description,
description-cn, description-cz, description-de, description-
es, description-fr, description-it, description-pl,
description-nl, description-ru, icon0, icon1, icon2, icon3,
license, organisation, preview-mesh-kuid, preview-scale,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “ZP - Pantographs”.

See the “Train Parts” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “pantograph”.

Mesh Table
anim

The “anim.kin” animation file for the pantograph
animation.

Refer to Page 380 for more details of pantographs.

KIND: PRODUCT
Description
An individual product (commodity) that Trainz compatible
rolling stock and industry assets are able to process. It
specifies the type, unit of measurement and the picture
icon that displays the product in the simulator. Produce
and materials are product examples.

Container Structure
A well formed product kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 product

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 allows-mixing		 data

	 instance-type		 data

	 mass			 data

	 product-category	 kuid

	 icon-texture		 file

	 product-texture		 file

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

Version 3.0  16 7   Trainz Railroad Simulator - The Content Creator’s Guide

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

“I - Product”, “IC - Container Category”, “IP - Passenger
Category”, “IB - Bulkload Category”, “IL - Liquid Category”

See the “Products” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “product”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Additional Tags
allows-mixing

Products with this tag may be combined in a single queue
along with other products of the same category.

mass

The physical mass of the product.

For Containers and Passengers this is calculated in
kilograms/unit, while for Liquid and Bulk loads this is
calculated in kilograms/litre.

icon-texture

The in-game representation of the product when
specifying the load type for a compatible rollingstock item
(driver) Should be a 64x64 .tga file.

product-texture

The texture to be used with load ‘texture-replacement’,
i.e. When a hopper loads woodchips instead of it’s default
load of coal.

See the texture replacement section on Page 372 for
more information.

product-category

kuid of applicable category for this product.

instance-type

resource = Used when there is no mesh, or one only
mesh is referenced in the mesh table (Ie Liquids, Bulk
loads etc).

instance = Used when more than one mesh is in the
mesh table Ie: Passengers, General Goods. 200
max.‘size’ per Asset.

unique = not used.

Notes
IN-GAME VISUALISATION OF PRODUCTS.

In TRS, products can be displayed a few ways:

1) An animated load representation.

This technique is used for bulk-category loads such
as coal or woodchip products both in industry and
rollingstock assets and for liquid loads through indicators
adjacent to storage tanks. The animation is non-looping.
Say we have an industry bulk load animation with the
frames running from 0 to 30. Empty will be at frame 0 and
full will be at frame 30. Texture swapping is possible for
some rollingstock bulk loading assets.

Details of how to load texture replacement is shown on
Page 372

2) Mesh attachment representation.

This technique is used for container-category loads such.
20ft and 40ft Containers, General Goods, Lumber and
Logs all use this technique. If a piece of rollingstock has
the potential to carry several product types (such as a
flat car), it is possible to set up the loads to be mutually
exclusive through it’s config. That is if it has capacity of
one load, it cannot load any other product types.

3) ‘View details’ Driver information window display.

This (of course) can be used for all rollingstock items, but
specifically, it is the means to see the load of rollingstock
that cannot otherwise visually display it’s load, i.e. Tank
Cars and enclosed Box Cars.

Version 3.0  168   Trainz Railroad Simulator - The Content Creator’s Guide

Box cars can be set up to take General Goods but
without load attachments.

Note: Tank cars and tenders may use a separate
animated ‘loader’ mesh to visualise the loading of liquids.
This is set up through the industry asset’s script and the
rollingstock item’s config. For script reference please
refer to the API Programmer’s Reference Manual:

http://www.auran.com/TRS2004/trssp4dl/dfile.
php?FileID=10

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, allows-mixing, instance-
type, mass, product-category, alias, author, category-
keyword, contact-email, contact-website, description,
description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-pl,
description-nl, description-ru, icon-texture, icon0, icon1,
icon2, icon3, license, organisation, preview-mesh-kuid,
preview-scale, product-texture, username-cn, username-
cz, username-de, username-es, username-fr, username-
it, username-nl, username-pl, username-ru.

KIND: PRODUCT-CATEGORY
Description
A category class of products (commodities) that Trainz
compatible rolling-stock and industry assets are able to
process. It specifies the type, unit of measurement and
the picture icon that displays the category on Surveyor
or Driver. Bulk, liquid, passengers and containers are
product category examples.

Container Structure
A well formed product-category kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 product-category

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be one of the following:

“I - Product”, “IC - Container Category”, “IP - Passenger
Category”, “IB - Bulkload Category”, “IL - Liquid Category”

See the “Product” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “Product-Category”.

http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10
http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10

Version 3.0  169   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl, description-
nl, description-ru, license, organisation, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

KIND: PROFILE
Description
A Profile is known as a Session in Trainz. This kind
creates a session defining a single route with different
consists, starting points, and industry outputs. Different
sets of trains may be used in each different session.

Container Structure
A well formed profile kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 profile

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 map-kuid		 kuid

	 info-page		 file

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should by “YP - Profile/Session”.

See the “Maps & Scenarios” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor and driver menus.

kind

Must be “profile”.

Additional Tags
map-kuid

Kuid of the map attached to this session.

info-page

Filename of the HTML information page for the session.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete

Version 3.0  1 70   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: REGION
Description
A region is chosen in Surveyor to create a new map or
route. This Kind creates a new region in addition to the
in-built regions such as Australia or USA for example. The
region can define geographical location, road traffic and
weather conditions.

Container Structure
A well formed region kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 region

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 watercolor		 data

	 defaultjunction		 data

	 ontheright		 data

	 longitude		 data

	 latitude			 data

	 altitude			 data

	 car0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “YM - Map”.

See the “Maps and Scenarios” section of the “Classes
and Codes” appendix located at the end of this
document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “Traincar”.

Additional Tags
watercolor

RGB colour value of the water for the region.

defaultjunction

Default type of junction in this region.

ontheright

Cars drive on the right side of the road.

longitude

Longitude of this region, in degrees and minutes, the third

Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, map-kuid, author,
category-keyword, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, info-page, license,
organisation, username-cn, username-cz, username-de,
username-es, username-fr, username-it, username-nl,
username-pl, username-ru.

Version 3.0  1 71   Trainz Railroad Simulator - The Content Creator’s Guide

data entry is 1 or -1 indicating East or West of Greenwich.

latitude

Latitude of this region, in degrees and minutes, the third
data entry is 1 or -1 indicating North or South of the
equator.

altitude

Altitude of this region.

car0, car1, car2, car3, car4, car5, car6, car7, car8,
car9,car10, car11, car12, car13, car14, car15

Each of these tags store as the kuid of a car to be used
on the roads.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, watercolor, defaultjunction,
ontheright, longitude, latitude, altitude, author, car0, car1,
car10, car11, car12, car13, car14, car15, car2, car3, car4,
car5, car6, car7, car8, car9, category-keyword, contact-
email, contact-website, description, description-cn,
description-cz, description-de, description-es, description-
fr, description-it, description-pl, description-nl, description-
ru, license, organisation, username-cn, username-cz,
username-de, username-es, username-fr, username-it,
username-nl, username-pl, username-ru.

KIND: SCENERY
Description
A basic scenery asset that supports night lighting, smoke
(particle) effects, sound and animation. It is height
adjustable and forms the majority of map objects used.

Container Structure
A well formed scenery kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 scenery

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

See the “Classes and Codes” appendix located at the
end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Version 3.0  1 72   Trainz Railroad Simulator - The Content Creator’s Guide

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “scenery”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Additional Tags
backdrop

Specifies whether the object is treated as a backdrop or
not (stays visible even when far from the camera).

random-color-high-hsb

For clutter-mesh objects, specifies a color range for
tinting purposes. Hue, Saturation, Brightness (HSB) color
space.

random-color-low-hsb

For clutter-mesh objects, specifies a color range for
tinting purposes. Hue, Saturation, Brightness (HSB) color
space.

Note that there are other containers and tags that apply
to a scenery asset, such as sound, smoke, animation,
that are not shown here. See example file in Chapter 7.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, Queues Container, Smoke Container,
Soundscript Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, alias, author, autoname,
backdrop, category-keyword, contact-email, contact-
website, description, description-cn, description-cz,
description-de, description-es, description-fr, description-
it, description-pl, description-nl, description-ru, dighole,
floating, height-range, icon-texture, icon0, icon1, icon2,
icon3, license, light, nightmode, organisation, preview-
mesh-kuid, preview-scale, random-color-high-hsb,
random-color-low-hsb, rgb, rollstep, rotate, rotate-yz-
range, rotstep, script, snapgrid, snapmode, surveyor-
name-label, surveyor-only, username-cn, username-cz,
username-de, username-es, username-fr, username-it,
username-nl, username-pl, username-ru.

KIND: SCENERY-TRACKSIDE
Description
A special scenery asset attached to rail track with the
offset distance from the track specified in the asset.
Examples could include a signal box, or dummy track
sign or track object.

Container Structure
A well formed scenery-trackside kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 scenery-trackside

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 trackside		 data

	 preview-mesh-kuid	 kuid

	 kuid-table

	 0			 kuid

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

Version 3.0  1 73   Trainz Railroad Simulator - The Content Creator’s Guide

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

See the “Classes and Codes” appendix located at the
end of this document to select an appropriate class.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “scenery”.

Mesh Table
Default

Contains the default mesh. Auto-create should be set to
true in order to make the mesh visible.

Additional Tags
collate-meshes

Enables clutter-mesh support (eg. fast trees)

buffer-speed

Used for buffers; specifies the maximum speed up to
which the buffer will stop a train.

speedlimit

This value is the maximum speed allowed in meters per
seconds.

preview-mesh-kuid

The mesh to be used in the surveyor preview area. This
is useful when an asset has a large bounding box, i.e the
“Airport” with it’s aircraft animation.

trackmark

Specifies that the object is a trackmark.

trackside

This is a value that is the distance in meters the object is
placed relative to the center of the track. Negative values
will put the object on the left side of the track, and positive
values will appear on the right.

trigger

Specifies that the object is a trigger.

search-limit

Not required. For internal use only.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, Queues Container, Smoke Container,
Soundscript Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, trackside, alias, author,
autoname, backdrop, buffer-speed, category-keyword,
class, collate-meshes, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-pl,
description-nl, description-ru, dighole, floating, height-
range, icon-texture, icon0, icon1, icon2, icon3, license,
light, nightmode, organisation, preview-mesh-kuid,
preview-scale, random-color-high-hsb, random-color-
low-hsb, rgb, rollstep, rotate, rotate-yz-range, rotstep,
script, search-limit, snapgrid, snapmode, speedlimit,
surveyor-name-label, surveyor-only, trackmark, trigger,
username-cn, username-cz, username-de, username-
es, username-fr, username-it, username-nl, username-pl,
username-ru.

Version 3.0  1 74   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: STEAM-ENGINE
Description
The special engine specification for steam locomotives
which defines the detailed performance requirements
such as throttle requirements, engine and braking
performance, boiler capacity and steam attributes.

Container Structure
A well formed steam-engine kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

steam-engine

kuid						 kuid

trainz-build					 data

category-class					 data

category-region					 data

category-era					 data

username					 data

kind						 data

flowsize

trainbrakepipe					 data

epreservoirpipe					 data

no3pipe						 data

no4pipe						 data

auxreservoirvent				 data

auxreservoir_no3				 data

auxreservoir_trainbrakepipe			 data

autobrakecylindervent				 data

auxreservoir_autobrakecylinder			 data

equaliser_mainreservoir				 data

equaliservent					 data

equaliserventhandleoff				 data

equaliserventemergency			 data

no3pipevent					 data

no3pipe_mainreservoir				 data

compressor					 data

trainbrakepipe_reservoir				 data

trainbrakepipevent				 data

no3pipe_autobrakecylinder			 data

epreservoirpipe_autobrakecylinder		 data

mainreservoir_ep				 data

vacuumbrakepipe				 data

vacuumbrakepipereleasevent			 data

vacuumbrakepipevent				 data

vacuumbrakereservoir_vacuumbrakepipe	 data

vacuumbrakecylinder_vacuumbrakepipe		 data

highspeedexhauster_vacuumbrakepipe		 data

volume

scale						 data

trainbrakepipe					 data

epreservoirpipe					 data

no3pipe						 data

no4pipe						 data

auxreservoir					 data

autobrakecylinder				 data

vacuumbrakepipe				 data

vacuumbrakereservoir				 data

vacuumbrakecylinder				 data

mainreservoir					 data

equaliser					 data

independantbrakecylinder			 data

pressure

scale						 data

Version 3.0  1 75   Trainz Railroad Simulator - The Content Creator’s Guide

compressor				 data

mainreservoir				 data

highspeedexhauster			 data

brakepipe				 data

brakeinitial				 data

brakefull				 data

indbrakefull				 data

trainbrakepipe_start			 data

epreservoirpipe_start			 data

no3pipe_start				 data

no4pipe_start				 data

auxreservoir_start			 data

autobrakecylinder_start			 data

vacuumbrakepipe_start			 data

vacuumbrakereservoir_start		 data

vacuumbrakecylinder_start		 data

mainreservoir_start			 data

equaliser_start				 data

independantbrakecylinder_start		 data

mass

scale					 data

fuel					 data

motor

resistance				 data

adhesion				 data

maxvoltage				 data

maxspeed				 data

brakeratio				 data

max-accel				 data

max-decel				 data

axle-count				 data

surface-area				 data

moving-friction-coefficient		 data

air-drag-coefficient			 data

throttle-notches				 data

steam

firebox-to-boiler-heat-flow		 data

firebox-efficiency			 data

boiler-volume				 data

minimum-volume			 data

maximum-volume			 data

initial-boiler-temperature			 data

water-injector-rate			 data

piston-volume-min			 data

piston-volume-max			 data

piston-area				 data

piston-angular-offsets			 data

firebox-to-boiler-heat-flow-idle		 data

burn-rate-idle				 data

boiler-to-piston-flow			 data

piston-to-atmosphere-flow		 data

safety-valve-low-pressure		 data

safety-valve-low-flow			 data

safety-valve-high-pressure		 data

safety-valve-high-flow			 data

max-fire-coal-mass			 data

max-fire-temperature			 data

shovel-coal-mass			 data

burn-rate				 data

fuel-energy				 data

firebox-volume				 data

main-reservoir-volume			 data

westinghouse-volume			 data

thumbnails

0

image					 file

width					 data

height					 data

TAGS AND CONTAINERS

Version 3.0  1 76   Trainz Railroad Simulator - The Content Creator’s Guide

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be one of the following:

“AS - Steam Loco & Tender”;
“AT - Steam Tank”.

See the “Motive Power” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “steam-engine”.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the steam-engine kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Steam Container
The Steam Container stores specialised variables related
to steam engines.

The Steam Containers has the following tags:

boiler-to-piston-flow

Relative energy.

boiler-volume

Physical volume of boiler in Litres.

burn-rate

Coal consumption rate.

burn-rate-idle

Coal consumption rate when idle.

firebox-efficiency

Atmosphere leakage. 1.0 = No leakage.

firebox-to-boiler-heat-flow

Rate of heat flow from firebox to boiler and viseversa.

firebox-to-boiler-heat-flow-idle

Rate of heat flow from firebox to boiler when idle.

firebox-volume	

Physical volume of firebox in Litres.

fuel-energy	

Relative energy in kilojoules per kilogram of coal.

main-reservoir-volume	

Main reservoir volume in litres.

max-fire-coal-mass	

The maximum mass of coal the firebox can take in
kilograms.

max-fire-temperature	

Maximum heat obtainable in degrees K. (Kelvin scale
temperature).

piston-angular-offsets	

Leave this setting.

piston-volume-min	

The volume of the space in the cylinder ahead of the
piston at the end of a full stroke.

piston-volume-max	

The volume of the space in the cylinder ahead of the
piston at the end of a full stroke.

piston-area	

The cross section of one piston in m2. It is assumed there
is one piston only on each side of the locomotive.

piston-to-atmosphere-flow	

Atmospheric leakage from piston. Nominal hole size.

safety-valve-low-pressure	

When boiler pressure hits this value in kPa the safety-
valve-low-flow release is initiated.

safety-valve-low-flow	

Lower pressure valve release. Nominal hole size.

Version 3.0  1 77   Trainz Railroad Simulator - The Content Creator’s Guide

safety-valve-high-pressure	

When boiler pressure hits this value in kPa the safety-
valve-low-flow release is initiated.

safety-valve-high-flow	

Higher pressure valve release. Nominal hole size.

shovel-coal-mass

Amount of coal in one shovel load in kg.

water-injector-rate	

Water injection rate into boiler in Litres/second.

westinghouse-volume	

Westinghouse volume in Litres.

initial-boiler-temperature	

Boiler temperature on loading Trainz.

max-coal-mass	

Maximum volume of coal.

maximum-volume	

The maximum volume of the piston(in litres).

minimum-volume	

The minimum volume of the piston(in litres).

Mass Container
The mass container stores information related to fuel
consumption. These tags aren’t in use and shouldn’t
generally be used.

The mass container has the following tags:

scale	

Multiplies fuel mass by given value, not currently in use,
generally leave this setting.

fuel	

Fuel level, not currently in use, generally leave this
setting.

Motor Container
The Motor Container stores an assortment of values
related to motor function, particularly that of DCC.

resistance	

Power figure for DCC, higher resistance value=less
power.

adhesion	

Adhesion parameter, higher value=greater adhesion.

maxvoltage	

Generally leave this setting.maxspeed.

maxspeed	

Maximum speed for DCC, expressed in metres per
second.

brakeratio	

Brake force for pressure reduction.

max-accel	

Parameters for DCC acceleration & deceleration.

max-decel	

Parameters for DCC acceleration & deceleration.

throttle-notches	

Number of throttle notches.

axle-count	

Resistance - Axle Count.

surface-area	

Resistance - Surface Area.

moving-friction-coefficient	

Resistance - Moving friction.

air-drag-coefficient	

Resistance - Air drag.

Flowsize Container
Flowsize settings specify the rate of flow through the
pipes. Generally these setting should be left unaltered.

The Flowsize Container has the following tags:

trainbrakepipe	

Flowsize of the brake pipe.

epreservoirpipe	

Flowsize of the electric pneumatic braking.

no3pipe	

Flowsize of the independent brake pipe.

no4pipe	

Flowsize of the bail pipe.

auxreservoirvent	

Flowsize of the auxiliary reservoir vent.

Version 3.0  1 78   Trainz Railroad Simulator - The Content Creator’s Guide

auxreservoir_no3	

Flowsize of the auxiliary independent brake pipe.

auxreservoir_trainbrakepipe	

Flowsize of the auxiliary reservoir brake pipe.

autobrakecylindervent	

Flowsize of the automatic brake cylinder vent.

auxreservoir_autobrakecylinder	

Flowsize of the auxiliary reservoir automatic brake
cylinder.

equaliser_mainreservoir	

Flowsize of the equaliser main reservoir.

equaliservent	

Flowsize of the equaliser vent.

equaliserventhandleoff	

Flowsize of the equaliser to the atmosphere when in the
“handle off” position.

equaliserventemergency	

Flowsize of the emergency equaliser vent.

no3pipevent	

Flowsize of the independent brake pipe.

no3pipe_mainreservoir	

Flowsize of the independent brake main reservoir.

compressor	

Flowsize of the compressor.

trainbrakepipe_reservoir	

Flowsize of the brake pipe reservoir.

trainbrakepipevent	

Flowsize of the brake pipe vent.

no3pipe_autobrakecylinder	

Flowsize of the independent automatic brake pipe
cylinder.

epreservoirpipe-autobrakecylinder	

Flowsize of the electro pneumatic automatic brake
cylinder reservoir.

mainreservoir_ep	

Flowsize of the electro pneumatic main reservoir.

vacuumbrakepipe	

Flowsize of the vacuum brake pipe.

vacuumbrakepipereleasevent	

Flowsize of the vacuum brake pipe release vent.

vacuumbrakepipevent	

Flowsize of the vacuum brake pipe vent.

vacuumbrakereservoir_vacuumbrakepipe	

Flowsize of the vacuum brake pipe reservoir.

vacuumbrakecylinder_vacuumbrakepipe	

Flowsize of the vacuum brake pipe cylinder.

highspeedexhauster_vacuumbrakepipe	

Flowsize of the high speed exhauser vacuum brake pipe.

Volume Container
The volume container stores information regarding the
size of pipes and appliances. Generally these settings
should remain unaltered.

The Volume Container has the following tags:

scale	

Multiplies volume by given value, generally leave this
setting.

trainbrakepipe	

Brake pipe volume.

epreservoirpipe	

For electro pneumatic braking - not currently in use,
generally leave this setting.

no3pipe	

Independent brake pipe.

no4pipe	

Bail pipe - not currently in use, generally leave this
setting.

auxreservoir	

Auxiliary reservoir volume.

autobrakecylinder	

Brake cylinder volume.

vacuumbrakepipe	

For vacuum braking - not currently in use, generally leave
this setting.

vacuumbrakereservoir	

Version 3.0  1 79   Trainz Railroad Simulator - The Content Creator’s Guide

For vacuum braking - not currently in use, generally leave
this setting.

vacuumbrakecylinder	

For vacuum braking - not currently in use, generally leave
this setting.

mainreservoir	

Main reservoir volume.

equaliser	

Equalising reservoir volume.

independantbrakecylinder	

Loco brake cylinder volume.

Steam-Power Coordinate Container
This container is a graph, similar to the throttle and
dynamic-brake graphs for Velocity incoming, Power
multiplier outgoing.

Coordinate Element

The steam-power graph provides a speed (m/s) vs power
(multiplier) modifier which controls the power output of
the pistons on a steam train. This is intended to allow
fine adjustments to a working steam engine, and should
not be used for large adjustments to the performance
characteristics, eg.

0	 1.0
20	 1.1

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, Throttle Power
Container, Dynamic Brake Container, Pressure Container,
Mass Container, Motor Container, Flowsize Container,
Volume Container, Steam container, Steam-Power.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
class, contact-email, contact-website, description,
description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

KIND: TEXTURE
Description
A simple texture asset that can be referenced from
another asset (for example a custom corona) by
referencing its kuid.

Container Structure
A well formed texture kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 texture

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 texture			 file

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be one of the following values: “J - Texture” , “JC
- Corona”, “JI - Icon”, “JP - Particle Effect Texture”, “JO

Version 3.0  18 0   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, texture, author, category-
keyword, contact-email, contact-website, description,
description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

- Other Texture”.

See the “Texture” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “texture”.

texture

The texture file to be used.

KIND: TEXTURE-GROUP
Description
Defines a group of textures as an asset that can be
referenced from another asset or via scripting.

Container Structure
A well formed texture-group kind has the following
container structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 texture-group

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 textures

	 0			 file

	 1			 file

	 2			 file

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

Version 3.0  181   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, Textures
Container.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, texture, author, category-
keyword, contact-email, contact-website, description,

category-class

Should be one of the following values: “J - Texture” , “JC
- Corona”, “JI - Icon”, “JP - Particle Effect Texture”, “JO
- Other Texture”.

See the “Texture” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “texture-group”.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the texture-group kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Textures Container
The textures container stores a list of additional textures
to be used in the texture group.

Texture	

Texture path.

Notes
The ONLY use for this asset is for reference by the script
function “SetFXTextureReplacement”.

KIND: TRACK
Description
Variable length spline based track, roads, and other
scenery items. Tracks may include initiator and
terminator segments, and are height adjustable. Other
uses for this kind include fences, power lines and hedges.

Container Structure
A well formed track kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 track

	 bendy			 data

	 carrate			 data

	 casts_shadows		 data

	 endlength		 data

	 grounded		 data

	 isroad			 data

	 istrack			 data

	 length			 data

	 repeats			 data

	 rgb			 data

	 shadows		 data

	 upright			 data

	 visible-on-minimap	 data

	 invisible			 data

	 width			 data

	 kuid			 kuid

description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-
pl, description-nl, description-ru, license, organisation,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

Version 3.0  18 2   Trainz Railroad Simulator - The Content Creator’s Guide

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 bridgetrack		 kuid

	 height			 data

	 trackoffsets		 data

	 kuid-table

	 0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data	

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TR - Rails”.

See the “Track” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “track”.

rgb

This value should be left as default.

Additional Containers
As well as containing all of the common tags and
containers detailed in Chapter 5 , the track kind also
contains additional containers and tags that are
specialised to the requirements of the kind.

Additional Tags
bendy

Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

carrate

Defines traffic density on road (minimum seconds
between each car generated). 0 = No traffic. Number
must be greater than 3, for raffic to flow.

casts_shadows

Toggles whether the shadow model is displayed.

endlength

Length in meters of the initiator and terminator models.

grounded

Height in meters for the road to be offset from terrain.

isroad

Specifies track is a road with cars, set to 1 for cars to
appear on road.

istrack

0 = This is not rail tracks.

length

Length of track segment in meters.

repeats

The number of times the mesh is placed between spline
points

shadows

Leave as default 0 (unticked box).

upright

Specifies whether the bridge “legs” point vertically, or
perpendicular to the spline.

visible-on-minimap

Version 3.0  18 3   Trainz Railroad Simulator - The Content Creator’s Guide

Specifies if the object\track is displayed on the minimap.

width

Width of track mesh in meters.

bridgetrack

Kuid for the type of rail or road used on bridge.

height

Height from the track level to the base, should be
negative.

trackoffsets

Distance in meters the rail/s are attached to the center of
the spline. Any number of tracks can be attached to the
spline, only splines with the same track offsets can be
connected together.

divider

Name of the model to use as the middle bridge section.
Placed in a subfolder with same name.

dont-flip-terminator

Terminator model isn’t mirrored on one side.

hidden

Prevents the spline from being rendered.

initiator

Name of model to use at start of bridge, placed in
subfolder with same name.

invisible

Specifies if the object is invisible in driver or not (invisible
track for planes, ships).

terminator

Name of model to use at end of bridge, placed in
subfolder with same name.

uncached_alphas

This is used in certain situations to improve alpha sorting.
This should only be set to 1 for tracks that use an alpha
texture and are always placed flat near the ground.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Track Sound, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

bendy, carrate, casts_shadows, endlength, grounded,
isroad, istrack, length, repeats, rgb, shadows, upright,
visible-on-minimap, width, kuid, trainz-build, category-
class, category-region, category-era, username, kind,
alias, author, category-keyword, contact-email, contact-
website, description, description-cn, description-cz,
description-de, description-es, description-fr, description-
it, description-pl, description-nl, description-ru, divider,
dont-flip-terminator, hidden, initiator, invisible, license,
light, organisation, terminator, uncached_alphas,
username-cn, username-cz, username-de, username-es,
username-fr, username-it, username-nl, username-pl,
username-ru.

KIND: TRACKSOUND
Description
A sound asset that is referenced by track or bogeys to
play a different sound from the default track/train sound
(for example when a train travels over a bridge or through
a tunnel).

Container Structure
A well formed tracksound kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 tracksound

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

Version 3.0  184   Trainz Railroad Simulator - The Content Creator’s Guide

	 username		 data

	 kind			 data

	 min-distance		 data

	 max-distance		 data

	 levels

	 0	 		 data

	 1			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Value should be “XSE - Unclassified”.

See the “Special” section of the Classes and Codes”
appendix located at the end of this document for more
information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. Though this asset doesn’t appear in
the Surveyor menu, the username is used to identify
the asset in the “Content Manager Plus” and “Content
Creator Plus” programs.

kind

Must be “tracksound”.

Additional Containers
As well as containing all of the common tags and

containers detailed in Chapter 5 , the tracksound kind
also contains additional containers and tags that are
specialised to the requirements of the kind.

Levels Container
Relative sound levels. The sound is silent until 0.1 m/s,
ramping up in volume until 10.0 m/s, constant maximum
after that. Note, a value below 0.1 will not play a sound.

An example Levels setting would be:

	 0	 0.1

	 1	 10

Multiple sound files may be used, idle 1.wav, idle 2.wav

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions, Levels
Container.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, min-distance, max-
distance, author, category-keyword, contact-email,
contact-website, description, description-cn, description-
cz, description-de, description-es, description-fr,
description-it, description-pl, description-nl, description-
ru, license, organisation, username-cn, username-cz,
username-de, username-es, username-fr, username-it,
username-nl, username-pl, username-ru.

Version 3.0  185   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TRAINCAR
Description
A locomotive or rolling stock item. A traincar specifies
the dependant assets (bogey, engine sound, engine
specification, pantograph and interior), to make a
complete asset.

Container Structure
A well formed traincar kind has the following container
structure:

A TYPICAL TRAINCAR KIND MAY HAVE THE
FOLLOWING TAGS:

	 traincar

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 engine			 kuid

	 mass			 data

	 description		 data

	 enginesound		 kuid

	 hornsound		 kuid

	 enginespec		 kuid

	 pantograph		 kuid

	 company		 data

	 interior			 kuid

	 mesh-table

	 default

	 mesh			 file

	 auto-create		 data

	 shadow

	 mesh			 data

	 bogeys

	 bogey

	 reversed		 data

	 bogey			 kuid

	 thumbnails

	 0

	 image 			 file

	 width 			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

 Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

See the “Motive Power” section of the “Classes and
Codes” appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “Traincar”.

engine

Specifies whether the traincar is a locomotive or
rollingstock item. A loco or B-unit will have the engine tag
set to true.

Version 3.0  186   Trainz Railroad Simulator - The Content Creator’s Guide

mass

Mass in Kilograms, ie “7000”.

description

Description of model which is used for the ‘Railyard’
information.

enginesound

References the kuid number for the traincar’s sound
asset.

hornsound

References the kuid number for the traincar horn sound
asset.

enginespec

References the engine kuid number. This specifies the
driver physics boundaries for the traincar.

pantograph

The pantograph kuid number inserted at a.pant0, a.pant1,
etc. Use this tag only when needed.

company

The Locomotive or car owner, eg “QR”.

interior

Kuid number of the interior, inserted at a.cabfront. This
tag should only be used when required (an interior is
needed when the traincar is a locomotive).

Mesh Table
default

The main traincar mesh.

auto-create

Specifies that this mesh is automatically created (visible
without needing to resort to a script).

shadow

The mesh model to be used as a shadow.

Bogey Container
The bogey container stores the bogeys used for the loco\
rollingstock item.

The functionality of a bogey can be determined by
naming it as follows:

bogey

The bogey kuid number (default for a.bog0 and a.bog1)

bogey-1

The bogey kuid number for a.bog1 (Used only if different
to a.bog0)

A Bogey container has the following tags:

reversed Ticking this box in CCP will make the bogey
have a reversed orientation. Note: This will cause bogey
animation to play in reverse, unless attachment points are
rotated 180 degrees.

Affects the direction of the bogey, relative to the traincar.

bogey	

The KUID of the bogey asset.

See Chapter 7 for an example asset of this kind.

Additional Tags
cabinsway

Cabin sway multiplier eg. -2.

backlength

Obsolete.

backpivot

Obsolete.

disable-extra-track-sounds

Disables the “click-clack” tracksounds. (0, 1)

ditch_color

RGB ditch light colour. Eg. 255,255,255.

fonts

Indicates how many types of numbering fonts used eg.

0 = no fonts used

1 = one font

Digit textures (digit_1.tga to digit_6.tga) replaced
automatically with alphanumber textures (alphanumber_0
to alphanumber_9) as numbers are changed via the
Surveyor Trains tab - ‘Edit Properties’ icon (the ‘?’ icon).

2 = two fonts

Digit textures (digit_1a.tga to digit_6a.tga and digit_1b.tga
to digit_6b.tga) replaced automatically with alphanumber
textures (alphanumber_0a to alphanumber_9a and
alphanumber_0b to alphanumber_9b) as numbers are
changed via the Surveyor Trains tab - ‘Edit Properties’
icon (the ‘?’ icon).

fonts-path

Replaces asset-filename usage for ‘fonts’.

frontlength

Version 3.0  18 7   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Queues Container, Smoke Container, SoundScript
Container, Mesh Table, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions, Bogeys.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, engine, mass, alias,
author, autoname, backlength, backpivot, buffer-speed,
cabinsway, category-keyword, class, company, contact-
email, contact-website, description, description-cn,
description-cz, description-de, description-es, description-
fr, description-it, description-pl, description-nl, description-
ru, dighole, disable-extra-track-sounds, ditch_color,
enginesound, enginespec, floating, fonts, fonts-path,
frontlength, frontpivot, height-range, hornsound, icon-
texture, icon0, icon1, icon2, icon3, interior, license, light,
light_color, max-coupler-gap, nightmode, organisation,
origin, paintshed-skin-used, paintshed-template-used,
pantograph, preview-mesh-kuid, preview-scale, product-
id, product-type, product-version, rgb, rollstep, rotate,
rotate-yz-range, rotstep, script, search-limit, smoke_
fastlife, smoke_fastspeed, smoke_height, smoke_
random, smoke_shade, smoke_slowlife, snapgrid,
snapmode, speedlimit, surveyor-name-label, surveyor-
only, tender, trackmark, trackside, trigger, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

Obsolete.

frontpivot

Obsolete.

light_color

RGB headlight colour. Eg. 255,255,255.

max-coupler-gap

Maximum gap expected between couplers of this type
(meters).

origin

The Country Abbreviation.

paintshed-skin-used

Kuid of the paintshed skin used, (if applicable).

paintshed-template-used

Kuid of the paintshed template used, (if applicable).

product-id

For paintshed support.

product-type

For paintshed support.

product-version

For paintshed support.

smoke_fastlife

Longevity of smoke particles at normal speed.

smoke_height

How hard particles are pushed out of the stack.

smoke_random

Level of particle excitation.

smoke_shade

Smoke opacity. (0 - 1)

smoke_slowlife

Longevity of smoke particles at low speed.

tender

Specifies that the traincar is a tender.

Version 3.0  188   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TUNNEL
Description
Road and rail tunnel variable length splines. These allow
the spline to be placed below ground and usually require
an integrated initiator and termination mesh as a tunnel
entrance.

Container Structure
A well formed tunnel kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 tunnel

	 bendy			 data

	 carrate			 data

	 casts_shadows		 data

	 endlength		 data

	 grounded		 data

	 isroad			 data

	 istrack			 data

	 length			 data

	 repeats			 data

	 rgb			 data

	 shadows		 data

	 upright			 data

	 visible-on-minimap	 data

	 width			 data

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 bridgetrack		 kuid

	 height			 data

	 trackoffsets		 data

	 initiator			 data

	 divider			 data

	 terminator		 data

	 kuid-table

	 0			 kuid

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data	

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “TT - Tunnel”.

See the “Track” section of the “Classes and Codes”
appendix located at the end of this document.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “bridge”.

rgb

Version 3.0  189   Trainz Railroad Simulator - The Content Creator’s Guide

This value should be left as default.

height

Height from the track level to the base. Must be a
positive value in order to place the tunnel under the
ground.

bridgetrack

Kuid of the track type to be used.

Kuid Table
The kuid of the track\road used in the asset should be
present here, as should those of any other referenced
assets.

Additional Tags
bendy

Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

carrate

Defines traffic density on road (minimum seconds
between each car generated). 0 = No traffic. Number
must be greater than 3.

casts_shadows

Toggles whether the shadow model is displayed.

endlength

Length in meters of the initiator and terminator models.

grounded

Height in meters for the road to be offset from terrain.

isroad

Specifies track is a road with cars, set to 1 for cars to
appear on road.

istrack

0 = This is not rail tracks.
1 = This is rail track.

length

Length of track segment in meters

repeats

The number of times the mesh is placed between spline
points

shadows

Leave as default 0 (unticked box).

upright

Specifies whether the bridge “legs” point vertically, or
perpendicular to the spline.

visible-on-minimap

Specifies whether the object\track is displayed on the
minimap.

width

Width of track mesh in meters.

bridgetrack

Kuid for the type of rail or road used on bridge.

height

Height from the track level to the base, should be
negative.

trackoffsets

Distance in meters the rail/s are attached to the center of
the spline. Any number of tracks can be attached to the
spline, only splines with the same track offsets can be
connected together.

divider

Name of the model to use as the middle bridge section.
Placed in subfolder with same name.

dont-flip-terminator

Terminator model isn’t mirrored on one side.

hidden

Prevents the spline from being rendered.

initiator

Name of model to use at start of bridge, placed in
subfolder with same name.

invisible

Specifies whether the object is invisible in driver.

terminator

Name of model to use at end of bridge, placed in
subfolder with same name.

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Track Sound, String Table, Chinese String Table, Czech
String Table, Dutch String Table, French String Table,
German String Table, Italian String Table, Polish String
Table, Russian String Table, Spanish String Table,
KUID Table, Obsolete Table, Thumbnails, Privileges,
Extensions.

TAGS:

Version 3.0  19 0   Trainz Railroad Simulator - The Content Creator’s Guide

KIND: TURNTABLE
Description
A turntable asset for moving or rotating traincars,
specifying the static and moving part of the turntable.
Animated rotation (turntable) and lateral translation
(transfer table) assets are supported.

Container Structure
A well formed turntable kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 turntable

	 kuid				 kuid

	 trainz-build			 data

	 category-class			 data

	 category-region			 data

	 category-era			 data

	 username			 data

	 kind				 data

	 snapmode			 data

	 dighole				 data

	 light				 data

	 angle				 data

	 looping				 data

	 mesh-table

	 default

	 mesh				 file

	 auto-create			 data

	 turntable

	 mesh				 file

	 auto-create			 data

	 attached-track

	 track_turntable

	 track				 kuid

	 useadjoiningtracktype		 data

	 vertices

	 0	 			 data

	 1				 data

	 track0_base

	 track				 kuid

	 useadjoiningtracktype		 data

	 vertices

	 0				 data

	 1				 data

	 track1_base

	 track				 data

	 useadjoiningtracktype		 data

	 vertices

	 0				 data

	 1				 data

	 track2_base

	 track				 kuid

	 useadjoiningtracktype		 data

	 vertices

	 0		 		 data

	 1				 data

	 track3_base

	 track				 kuid

	 useadjoiningtracktype		 data

	 vertices

	 0				 data

	 1				 data

bendy, carrate, casts_shadows, endlength, grounded,
isroad, istrack, length, repeats, rgb, shadows, upright,
visible-on-minimap, width, kuid, trainz-build, category-
class, category-region, category-era, username,
kind, bridgetrack, height, trackoffsets, alias, author,
category-keyword, contact-email, contact-website,
description, description-cn, description-cz, description-de,
description-es, description-fr, description-it, description-pl,
description-nl, description-ru, divider, dont-flip-terminator,
hidden, initiator, invisible, license, light, organisation,
terminator, uncached_alphas, username-cn, username-
cz, username-de, username-es, username-fr, username-
it, username-nl, username-pl, username-ru.

Version 3.0  191   Trainz Railroad Simulator - The Content Creator’s Guide

	 track4_base

	 track				 kuid

	 useadjoiningtracktype		 data

	 vertices

	 0				 data

	 1				 data

	 track10_base

	 track				 kuid

	 useadjoiningtracktype		 data

	 vertices

	 0				 data

	 1				 data

	 kuid-table

	 0				 kuid

	 thumbnails

	 0

	 image				 file

	 width				 data

	 height				 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “BR - Railway (scenery non-functional)”.

See the “Building and Structures” section of the Classes
and Codes” appendix located at the end of this document
for more information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “turntable”.

Additional Tags
angle

Specifies the angles at which the turntable stops. Not
used if the turntable is set up as animation.

frame-rate

Generally make this 30 (frames per second)

keyframes

Specifies where on the animation the turntable is to stop.

looping

Specifies that the turntable can go all the way around,
rather than stopping at a certain point.

snapmode

Specifies the alignment of the turntable to the surveyor
grid. 1 = origin snaps to grid intersections (use for
removing even dighole values), 2 = origin snaps to the
center of a grid square (use for odd dighole values).

dighole

Specifies the number of grid segments (length, width) to
be removed from the surveyor grid to accommodate the
turntable pit.

light

Sets lighting to be used for object to be ambient or
directional. 0 sets ambient lighting and object is lit by
general light value (uniform colouring), 1 sets directional
light which is affected by the position of the sun (shows
shadows on the object surfaces).

Notes
ANIMATED TURNTABLES

Turntables can be set up with creator defined animation.

Keyframes can be specified as the stopping points much
like ‘angles’ above. Use attached-tracks at keyframe
points. A TRS2004 test asset is available for download, it
does have mesh files but is not complete with all scripts
required to fully function - for information only:

http://www.auran.com/TRS2004/downloads/
contentcreation/TransporterTestAsset.zip

and also the example in Chapter 7 and the additional
notes on modelling on Page 381.

http://www.auran.com/TRS2004/downloads/contentcreation/TransporterTestAsset.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TransporterTestAsset.zip

Version 3.0  19 2   Trainz Railroad Simulator - The Content Creator’s Guide

THIS KIND HAS THE FOLLOWING:

CONTAINERS:

Mesh Table, Queues Container, Smoke Container,
Soundscript Container, Attached Track Container,
Attached Trigger Container, String Table, Chinese String
Table, Czech String Table, Dutch String Table, French
String Table, German String Table, Italian String Table,
Polish String Table, Russian String Table, Spanish
String Table, KUID Table, Obsolete Table, Thumbnails,
Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, snapmode, alias, angle,
author, autoname, category-keyword, class, contact-
email, contact-website, description, description-cn,
description-cz, description-de, description-es, description-
fr, description-it, description-pl, description-nl, description-
ru, dighole, floating, frame-rate, height-range, icon-
texture, icon0, icon1, icon2, icon3, keyframes, license,
light, looping, nightmode, organisation, preview-mesh-
kuid, preview-scale, rgb, rollstep, rotate, rotate-yz-
range, rotstep, script, snapgrid, surveyor-name-label,
surveyor-only, username-cn, username-cz, username-de,
username-es, username-fr, username-it, username-nl,
username-pl, username-ru.

KIND: WATER2
Description
Animated water texture assets.

Container Structure
A well formed water2 kind has the following container
structure:

See Chapter 7 for an example asset of this kind.

A TYPICAL ASSET OF THIS KIND MAY HAVE THE
FOLLOWING TAGS:

	 water2

	 kuid			 kuid

	 trainz-build		 data

	 category-class		 data

	 category-region		 data

	 category-era		 data

	 username		 data

	 kind			 data

	 thumbnails

	 0

	 image			 file

	 width			 data

	 height			 data

TAGS AND CONTAINERS

The following tags are further defined in Chapter 5:

kuid

Generated automatically.

trainz-build

Automatically set to 2.5 for 2006 assets.

category-class

Should be “EW - Water”.

See the “Environment” section of the “Classes and
Codes” appendix located at the end of this document for
more information.

category-region

See the “Region Codes” appendix located at the end of
this document for a list of valid category-region values.

category-era

See the “Era Codes” appendix located at the end of this
document for a list of valid category-era values.

username

Asset username. This will be the name that appears in
the surveyor menu.

kind

Must be “water2”.
THIS KIND HAS THE FOLLOWING:

CONTAINERS:

String Table, Chinese String Table, Czech String Table,
Dutch String Table, French String Table, German String
Table, Italian String Table, Polish String Table, Russian
String Table, Spanish String Table, KUID Table, Obsolete
Table, Thumbnails, Privileges, Extensions.

TAGS:

kuid, trainz-build, category-class, category-region,
category-era, username, kind, author, category-keyword,
contact-email, contact-website, description, description-
cn, description-cz, description-de, description-es,
description-fr, description-it, description-pl, description-
nl, description-ru, license, organisation, username-cn,
username-cz, username-de, username-es, username-fr,
username-it, username-nl, username-pl, username-ru.

Version 2.0  19 3   Trainz Railroad Simulator 2006 - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 7
Kind Examples
The purpose of this chapter is to define all the Kinds that are included in TC, and to describe the Container
and Tags that are applicable to each Kind, with examples. Please refer to Chapter 6 for a complete
description of the Containers and Tags used, and new functions in Appendix D.

Examples:

The test examples are taken from the models built into TC, primarily those developed by Auran, not
supplied by Third Party Creators. As such, many are older models, and the config.txt files have been
updated by Content Creator Plus. The example files are available for download, and they include the
config.txt files and the textures, but not the 3dsmax or gmax meshes, as these were not available in many
instances.

Some of the models are relatively simple, and do not show or use all of the container and tag options
available for that particular Kind. The config.txt file is displayed in this chapter to show the typical containers
used and the type of data that is entered for the tags.

Please Note: The actual working config,txt file requires and includes brackets to separate containers and
tags. These are not shown in the config.txt in this chapter for clarity and brevity. Please refer to the actual
example config.txt file for full working files.

Additional Examples:

Additional examples are available for download, please refer to the earlier Content Creation Guide for
TRS2004, for the download links. Many of these files include the mesh files. Examples are included on the
Content Creation Art Source CD’s available for purchase from the Auran website. All these earlier assets
were developed for Trainz versions prior to the use of Content Creation Plus.

Models in TC:

Most model asset files may be opened in Content Creator Plus using the option “Open in Explorer”, or an
asset may be cloned to make a new model. Some files provided by Third Party Creators are not available
for modification or viewing, the privileges tag options have been used to prevent access, to protect the
creators’ assets. This option was only available for supplied assets built in to TC. It is not available for new
creations uploaded to the Download Station.

For those accessible assets, the config.txt and texture files are then available. The texture files however are
compiled with the texture.txt file and are not directly available for modification. For example, a file may be
called black.texture without a.txt extension and is know as a Trainz file. It is not a plain text file.

A cloned asset will use the compiled texture files correctly, as specified in the original exported asset mesh
files, however if you wish to modify the texture, the original graphics file needs to be recovered. The file
may be extracted using the program TgaTools2 available for download from:

file:///C:/CCG%20Project/Downloads/mwgfx.htm

file:///C:/CCG%20Project/Downloads/mwgfx.htm

Version 3.0  194   Trainz Railroad Simulator - The Content Creator’s Guide

Modifying Texture Files:

After installing the program, configure it to refer to an external graphic editor, such as Paint Shop Pro or
Photoshop, using the Preferences Select Editing Program option.

Open the asset in Explorer in Content Creator Plus so the texture files may be accessed. In TgaTools2,
Load the appropriate map.texture file, as a “Trainz” file. It will display the original graphic file, and also any
Alpha channel or opacity map in a panel to the right of the editor. The original text included in the file is
unrecoverable.

Save the file as black.tga for example, and the saved file will include any Alpha channel for transparency or
opacity, as used in the original asset.

If you wish to make the Alpha channel a separate .bmp file, use the program option Image Send Alpha
Channel to Editor (PSP or Photoshop you configured earlier). This allows you to save the Alpha channel as
a separate .bmp file, from your editor.

Modify the graphic texture files (.tga or .bmp) as required. Note that any separate opacity .bmp file must be
the same pixel sizes as the main texture .tga file.

In your cloned or modified asset, type a new black.texture.txt file to refer to the extracted image or images.
Make sure you delete the original .texture file when you have made a new .texture.txt file.

Consider the original .texture filename, the name indicates if the texture was a simple .tga file, a .tga file
with an Alpha channel, or a .tga file the also uses a separate Alpha or opacity .bmp file, for example:

1. black.texture - this is a texture using only a black.tga file for the asset. Create a new text file with the
following entries, and save it with the name black.texture.txt

Primary=black.tga
Tile=none

2. black-black.texture - this is a texture using a black.tga file and either includes an alpha channel in the
same file, or refers to a separate black.bmp file for the Alpha channel or opacity map. Because the names
are the same, it is impossible to determine which option was used by the original creator. Either of the
following options will work in the cloned asset:

If you have saved the original file as a .tga file with the included alpha channel in that file, create a new text
file with the following entries, and save it with the name black-black.texture.txt

Primary=black.tga
Alpha=black.tga
Tile=none

If you have saved the original file as a .tga file with the alpha channel as a separate .bmp file, from your
graphic editor, create a new text file with the following entries, and save it with the name black-black.
texture.txt

Primary=black.tga
Alpha=black.bmp
Tile=none

3. black-black_op.texture - this is a texture using a black.tga file and refers to a separate black_op.bmp
file for the Alpha channel or opacity map. Create a new text file with the following entries, and save it with
the name black-black_op.texture.txt

Primary=black.tga
Alpha=black_op.bmp
Tile=none

Note: Do not change the name of the texture file from the original, for example make black.texture become
blacknew.texture.txt. The exported .im files have the material name “black” encapsulated in the file, and will
look for a matching black.texture or black.texture.txt file in the asset. You can however change the actual

Version 3.0  195   Trainz Railroad Simulator - The Content Creator’s Guide

•	 Activity

•	 Behavior

•	 Bogey

•	 Bogey (Animated Bogey)

•	 Bogey (Steam Bogey)

•	 Bridge

•	 Buildable

•	 Chunky-Track

•	 Double-Track

•	 DriverCharacter

•	 DriverCommand

•	 Engine (Diesel)

•	 Engine (Electric)

•	 EngineSound

•	 Engine (Diesel\Electric)

•	 Engine (Steam)

•	 Environment

•	 Fixed Track (Simple)

•	 Fixed Track (Junction)

•	 GroundTexture (Normal)

•	 Groundtexture (Clutter Mesh)

•	 HornSound (1 Part)

•	 HornSound (2 Part)

•	 HornSound (3 Part)

•	 Html-Asset

•	 Industry (Multiple Industry)

•	 Industry(Coal Mine)

•	 Interior (Diesel)

•	 Interior (Electric)

•	 Interior (Steam)

•	 Library

•	 Map

•	 Mesh

•	 Mesh-Reducing-Track

•	 MOCrossing

•	 MOJunction

•	 MOSignal

•	 MOSpeedBoard

•	 Pantograph

•	 Paintshed-Template

•	 Paintshed-Skin

•	 Product (Coal Product)

•	 Product (General Goods Product)

•	 Product (Diesel Fuel Product)

•	 Product (40Ft Container Product)

•	 Product (Lumber Product)

•	 Product (Passenger Product)

•	 Product-Category

•	 Profile

•	 Scenery

•	 Scenery-Trackside

•	 Steam-Engine

•	 Texture	

•	 Texture-Group

•	 Track

•	 TrackSound

•	 TrainCar (Coal Hopper)

•	 TrainCar (Diesel Engine)

•	 TrainCar (Electric Engine)

•	 TrainCar (Rollingstock)

•	 TrainCar (Passenger Car)

•	 TrainCar (Steam Engine)

•	 Tunnel

•	 TurnTable (Animated)

•	 TurnTable (Not animated)

•	 Water2

graphic file names and refer to them correctly in the text of the .texture.txt file.

Requirements:

There are some conditions of use of modified or cloned in-built assets.

You may freely use the files from TC to make new models, or modify textures for your own purposes, for
personal use, on your own computer.

If you wish to share the new or modified models with others, the following conditions apply -

for all assets, they are to be uploaded to, and made available from, the Auran Download Station, as
a condition of use. This was a condition of use for the original Content Creation Art Source files.

additionally, for assets using or based on in-built assets provided by a Third Party Creator, you
must have permission from the creator of the original asset, before sharing or uploading any files.

Examples for the following Kinds are included in this chapter:

Version 3.0  196   Trainz Railroad Simulator - The Content Creator’s Guide

Activity
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

info.tga - The icon graphic file to be displayed.

jt02.gse - The script file for the asset.

various.tga, various.jpg - Various graphic files used by
the asset.

various.wav - Various sound files used by the asset.

kuid			 <kuid:171456:100064>

trainz-build		 2.5

category-class		 “YS”

category-region		 “00”

category-era		 “2000s”

username		 “testActivity”

kind			 “activity”

script			 “jt02.gse”

class			 “MyJT02”

description		 “RBR Demo 3 Shunting 101
v1.2

A test Activity based on the included RBR Demo 3
Shunting 101 by Razorback Railway.”

kuid-table

xptloco		 <kuid:-1:100039>

xptcar1		 <kuid:-1:100058>

qrpass1		 <kuid:-12:500>

qrguard		 <kuid:-12:504>

qrlouvre	 <kuid:-1:101154>

coalmine	 <kuid:117140:10050>

coalminebasic	 <kuid:117140:22999>

container	 <kuid:117140:10086>

stationsmall	 <kuid:117140:10075>

ipl3		 <kuid:117140:20006>

	 etc

thumbnails

0

image			 “info.tga”

width			 32

height			 32

File Listings

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

Note: The examples show a pictorial of a typical directory
structure for the asset, and list the graphic files required,
the config.txt file, and any relevant script file.

Where there are too many graphic files to list
convienently, the list will be reduced to “various .tga and
texture.txt” files for example, meaning there are a large
number of various files used by the asset.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0  19 7   Trainz Railroad Simulator - The Content Creator’s Guide

Behavior
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

html_type.tga - The icon graphic file to be displayed.

behaviour.gs - The script file for the asset.

File Listings

display-name-page	 “HTML page name”

display-desc-page	 “Name of HTML page without
the .html extension”

display-name-asset	 “HTML asset”

display-desc-asset	 “HTML asset where the page
can be found”

click_to_select		 “<i>click to select</i>”

kuid-table

thumbnails

0

image			 “thumb.jpg”

width			 64

height			 64

config.txt

username	 “testBehaviour”

kind		 “behavior”

kuid		 <kuid:171456:100035>

script		 “behaviour”

class		 “DisplayHTMLRule”

trainz-build	 2.5

category-class	 “YH”

category-region	“00”

category-era	 “2000s”

description	 “Test Behaviour asset, displays an Html
file.”

icon-texture	 “html_type.tga”

string-table

html_description	 “Display page <a href=live://
property/page>$0 of html asset <a href=live://
property/asset>$1 in a new in-game window.”

description	 “Display a page from a HTML asset in a
browser window.”

description_info	“Display page <i>’’$0’’</i> of html asset
<i>’’$1’’</i> in a new in-game window.”

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0  198   Trainz Railroad Simulator - The Content Creator’s Guide

Bogey
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

37_bogey.lm.txt - Level of Detail (or ‘LOD’) file. See
the section on LOD meshes on Page 371 for more
information.

37_bogey_vlow.im - Lowest quality LOD mesh.

37_bogey_low.im - Low quality LOD mesh.

37_bogey_med.im - Medium quality LOD mesh

37_bogey.im - The bogey mesh file.

anim.kin - The bogey animation file - not listed in the
config.txt, a kind bogey knows to reference this file.

37bogie2.tga, 37bogie4.tga, 37bogie.tga, envmap1.tga
- Various texture files.

37bogie2.texture.txt, 37bogie4.texture.txt, 37bogie.
texture.txt, envmap1.texture.txt - Various texture.txt
files. See the section on Texture.txt files on Page 96 for
more information.

 File Listings

kind			 “bogey”

direct-drive		 0

category-region		 “00”

category-era		 “2000s;2010s”

description		 “Test Bogey. This bogey is
based on the Class 37 Green bogey and is oriented to
be used on that particular vehicle.”

mesh-table

default

mesh			 “37_bogey.lm”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

37_bogey.lm.txt

version 1.0

 offset = 0.01;

 calcPoint = center;

 multiplier = 1.0;

 animationCutOff = 0.00;

 mesh(“0.1”) {

 name=”37_bogey_vlow.im”;

 }

 mesh(“0.2”)

 {

 name=”37_bogey_low.im”;

 }

 mesh(“0.3”)

37_bogey.lm.txt cont.

config.txt

kuid			 <kuid:56113:1228>

trainz-build		 2.5

category-class		 “ZB”

username		 “testBogey”

LOD lm.txt File

This file is created in a text editor outside of CCP. It is
important to use the correct capitalisation and brackets in
this file.

Version 3.0  199   Trainz Railroad Simulator - The Content Creator’s Guide

 {

 name=”37_bogey_med.im”;

 }

 mesh(“1.0”)

 {

 name=”37_bogey.im”;

 }

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   200   Trainz Railroad Simulator - The Content Creator’s Guide

Bogey (Animated Bogey)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

bogey.pm - The bogey mesh file, an older .pm version.

anim.kin - The bogey animation file - not listed in the
config.txt, a kind bogey knows to reference this file.

bogey_map.tga, black.tga - Various texture files.

bogie_map.texture.txt, black.texture.txt - Various
texture.txt files. See the section on Texture.txt files on
Page 96 for more information.

File Listings

default

mesh		 “bogey.pm”

auto-create	 1

shadow

mesh	 “bogey_shadow/bogey_shadow.pm”

thumbnails

0

image	 “thumb.jpg”

width	 240

height	 180

config.txt

kuid		 <kuid:171456:100001>

trainz-build		 2.5

category-class		 “ZB”

category-region		 “00”

category-era		 “2000s;2010s”

username		 “Animated Test Bogey”

kind			 “bogey”

direct-drive		 0

animdist		 3.45

description	 “An animated test bogey example, with
rotating wheels and shadow model.”

mesh-table

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   201   Trainz Railroad Simulator - The Content Creator’s Guide

Bogey (Steam Bogey)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

PB_15_bogey0.pm - The bogey mesh file, an older .pm
version.

anim.kin - The bogey animation file - not listed in the
config.txt, a kind bogey knows to reference this file.

wheel_small.tga, black.tga - Various texture files.

bogie_wheel_small.texture.txt, black.texture.txt -
Various texture.txt files. See the section on Texture.txt
files on Page 96 for more information.

File Listings

auto-create			 1

shadow

mesh				 PB_15_bogey0_
shadow/PB_15_bogey0.pm

auto-create			 0

config.txt

kind				 bogey

animdist			 2.064

category-class			 AS

kuid				 <kuid:171456:100022>

username			 PB_15_bogey0

category-region			 AU

category-era			 1920s;1930s;1940s;195
0s;1960s;1970s;1980s

trainz-build			 2.5

direct-drive			 0

mesh-table

default

mesh				 PB_15_bogey0.pm

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   202   Trainz Railroad Simulator - The Content Creator’s Guide

Bridge
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

default.im - The middle section of the tunnel asset. This
mesh is also used as the preview image. Must be named
“default.im” and placed in the base directory.

rustypanel.texture.txt, rustypanel.tga, steelbraces.
bmp, steelbraces.texture.txt, steelbraces.tga,
steelbraves-steelbraces.texture.txt, black.texture.txt,
black.tga - Texture files used by the indexed meshes of
this bridge asset. See the section on Texture.txt files on
Page 96 for more information.

us_bridge_steel_shadow.im - The indexed mesh file of
the bridge shadow.

File Listings

shadows		 0

upright			 0

visible-on-minimap	 1

width			 7.9

kuid			 <kuid:171456:100031>

trainz-build		 2.5

category-class		 “TB”

category-region		 “US”

category-era		 “1830s”

username		 “testBridge”

kind			 “bridge”

bridgetrack		 <kuid:-3:10049>

height			 -15

trackoffsets		 2.5,0

description		 “Test Bridge asset.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

bendy			 0

carrate			 0

casts_shadows		 1

endlength		 0

grounded		 0

isroad			 0

istrack			 1

length			 20

repeats			 1

rgb			 200,100,0

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   203   Trainz Railroad Simulator - The Content Creator’s Guide

Buildable
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

carriageshed2.texture.txt, carriageshed.texture.txt
- Various texture.txt files. See the section on Texture.txt
files on Page 96 for more information.

carriageshed2.tga, carriageshed.tga -Various texture
files.

carriageshed.im -The buildable mesh file.

carriageshed.lm.txt -Level of Detail (or ‘LOD’) file.
See the section on LOD meshes on Page 370 for more
information.

carriageshedlow.im - The low quality LOD mesh.
Referenced in the carriageshed.lm.txt file.

File Listings

mesh			 “carriageshed.lm”

auto-create		 1

attached-track

track_0

track			 <kuid:61119:38114>

vertices

0			 “a.track0a”

1			 “a.track0b”

track_1

track			 <kuid:61119:38114>

vertices

0			 “a.track0a”

1			 “a.track0b”

kuid-table

0			 <kuid:61119:38114>

thumbnails

0

width			 240

height			 180

image			 “thumb.jpg”

config.txt

kuid			 <kuid:56113:1007>

trainz-build		 2.5

category-class		 “BB”

category-region		 “AU”

category-era		 “2010s”

username		 “testBuildable”

kind			 “buildable”

light			 1

description		 “This is a test Buildable asset.”

mesh-table

default

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   204   Trainz Railroad Simulator - The Content Creator’s Guide

Chunky-Track
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

default.im - The indexed mesh file used for the Chunky
Track asset.

railsection_nogravel_sleepers.tga, rail_oz.texture.
txt, rail_oz.tga - The texture files of the preview window
asset.

railsection_nogravel_sleepers_alpha.bmp,
railsection_nogravel_sleepers-railsection_alpha.
texture.txt - The alpha texture files of the preview
window asset.

mstand_tex_text.texture.txt, mstand_tex.tga - The
texture files of the in-game Chunky Track asset. See
the section on Texture.txt files on Page 96 for more
information.

File Listings

rgb			 255,200,0

shadows		 0

upright			 0

visible-on-minimap	 1

width			 4

kuid			 <kuid:56113:1004>

trainz-build		 2.5

category-class		 “TF”

category-region		 “AU”

category-era		 “2000s”

username		 “testChunky-Track”

kind			 “track”

chunky_mesh		 “mstand_tex_test”

chunky_info		 0,2,1.2,0.2,0.85,0.3,0.7

description		 “Test Chunky Track.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

bendy			 1

carrate			 0

casts_shadows		 0

endlength		 0

grounded		 0.4

isroad			 0

istrack			 1

length			 4

repeats			 1

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   205   Trainz Railroad Simulator - The Content Creator’s Guide

Double-Track
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

default.im - Though the double track references a “single
track” asset to be used as the track in-game, an actual
double track model must be present to be used as the
preview mesh in the surveyor panel.

This indexed mesh is not referenced in the config.txt of
the asset. In order to be used, the indexed mesh MUST
be named “default.im”.

rail_oz.texture.txt, rail_oz.tga, railsection_oz_
sleepers.tga, railsection_oz_sleepers_alpha.bmp,
railsection_oz_sleepers-railsection_oz_sleepers_
alpha.texture.txt - The texture files used for the “default.
im” indexed mesh. See the section on Texture.txt files on
Page 96 for more information.

File Listings

visible-on-minimap	 1

width			 7.9

kuid			 <kuid:171456:100032>

trainz-build		 2.5

category-class		 “TR”

username		 “testDoubleTrack”

kind			 “bridge”

bridgetrack		 <kuid:-1:100396>

height			 0

trackoffsets		 -2.5,2.5

category-region		 “00”

category-era		 “1840s”

description		 “Test double track asset.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

bendy			 1

carrate			 0

casts_shadows		 0

endlength		 0

grounded		 0.4

isroad			 0

istrack			 1

length			 20

repeats			 1

rgb			 0,0,0

shadows		 0

upright			 0

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   206   Trainz Railroad Simulator - The Content Creator’s Guide

DriverCharacter
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

cafe64.texture.txt - The texture file which references
cafe64.tga. See the section on Texture.txt files on Page
96 for more information.

cafe64.tga - 64x64 Targa Image file.

cafe32.bmp - The 32x32 thumbnail image used for the
small driver portraits (in the “Driver Settings” menu, or the
train properties in driver).

File Listings

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

1

image			 “cafe32.bmp”

width			 32

height			 32

config.txt

kuid			 <kuid:56113:1236>

trainz-build		 2.5

category-class		 “OHD”

category-region		 “AU”

category-era		 “1930s;1940s;1950s;1960s;197
0s;1980s;1990s;2000s;2010s”

username		 “testHenk”

kind			 “drivercharacter”

face-texture		 “Cafe64.texture”

mesh			 <kuid:-3:10128>

description		 “This is Henk.”

thumbnails		

0

image			 “thumb.jpg”

width			 240

height			 180

cafe64.texture.txt

Primary=Cafe64.tga

Alpha=Cafe64.tga

Tile=none

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   207   Trainz Railroad Simulator - The Content Creator’s Guide

Driver-Command
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

driveto.texture.txt - The texture.txt file. See the section
on Texture.txt files on Page 96 for more information.

driveto.tga - The texture file for the drivercommand icon.

drivetocommand.gs - The trainz script file referenced in
the config.txt.

drivetoschedulecommand.gs - A trainz script file which
is a dependency of “drivercommand.gs”.

File Listings

driver_command_drive_to		 “Drive To “

kuid-table

command-sounds			 <kuid:-
3:10219>

thumbnails

0

image				 “thumb.jpg”

width				 240

height				 180

1

image				 “driveto.tga”

width				 64

height				 64

config.txt

kuid				 <kuid:56113:1268>

trainz-build			 2.5

category-class			 “YD”

category-region			 “00”

category-era			 “1800s;1810s;1820s;18
30s;1840s”

username			 “testDriverCommand”

kind				 “drivercommand”

supports-null-driver-character	 1

script				 “DriveToCommand.gs”

class				 “DriveToCommand”

description			 “Test command. This
does the same thing as ‘Drive To’.”

string-table

description			 “Allows a driver
character to take a train either to a destination industry
or a specific track in a destination industry.”

DriverCommand.gs

//

// DriverToCommand.gs

//

// Copyright (C) 2003 Auran Developments Pty Ltd

// All Rights Reserved.

//

include “DriverCommand.gs”

include “World.gs”

include “Browser.gs”

include “KUID.gs”

include “Industry.gs”

include “DriveToScheduleCommand.gs”

//

// Driver command that allows a driver character to take a train
either to a destination industry

// or a specific track in a destination industry.

//

class DriveToCommand isclass DriverCommand

Version 3.0   208   Trainz Railroad Simulator - The Content Creator’s Guide

{

 //

 // Initialize parent object and add handlers to process
messages for this driver command object.

 //

 public void Init(Asset asset)

 {

 inherited(asset);

 AddHandler(me, “DriveToIndustry”, null, “DriveTo”);

 AddHandler(me, “DriveToIndustryTrack”, null,
“DriveToTrack”);

 }

 //

 // Adds industry destination menu items for all industries to
the given menu along with submenus of

 // destination tracks for all industries added.

 //

 public void AddCommandMenuItem(DriverCharacter driver,
Menu menu)

 {

 Train train;

 if (driver)

 {

 train = driver.GetTrain();

 if (!train)

 return;

 }

 StringTable strTable = GetAsset().GetStringTable();

 Menu industriesMenu = Constructors.NewMenu();

 GameObject[] industryList = World.GetIndustryList();

 int i, industryCount = industryList.size();

 if (!industryCount)

 // we dont bother with a ‘Drive To’ command if there are
no industries

 return;

 for (i = 0; i < industryCount; i++)

 {

 Industry industry = cast<Industry>(industryList[i]);

 string localisedName = industry.GetLocalisedName();

 string[] locationNames = new string[0];

 string[] locationTracks = new string[0];

 industry.AppendDriverDestinations(locationNames,
locationTracks);

 if (localisedName.size())

 if (locationNames.size())

 {

 Menu submenu = Constructors.NewMenu();

 int j;

 for (j = 0; j < locationNames.size(); j++)

						
	 if (locationNames[j] and locationNames[j].size() and
locationTracks[j] and locationTracks[j].size())

						
		 submenu.AddItem(locationNames[j]
, me, “DriveToIndustryTrack”, industry.GetId() + “ “ +
locationTracks[j]);

							
else if (train)

							
	 train.Exception(“Error in ‘track names’ of industry ‘”
+ localisedName + “’”);

 industriesMenu.AddSubmenu(localisedName + “ >”,
submenu);

 }

 else

 industriesMenu.AddItem(localisedName, me,
“DriveToIndustry”, industry.GetName());

 }

 industriesMenu.SubdivideItems();

 menu.AddSubmenu(strTable.GetString(“driver_
command_drive_to”) + “ >”, industriesMenu);

 }

 //

 // Called by either DriveTo() or DriveToTrack() to play one
of 4 random driver acknowledgments.

Version 3.0   209   Trainz Railroad Simulator - The Content Creator’s Guide

 //

 void PlayConfirmation(void)

 {

 KUID kuid = GetAsset().LookupKUIDTable(“command-
sounds”);

 Library libCommandSounds = World.GetLibrary(kuid);

 if (libCommandSounds)

 {

 libCommandSounds.LibraryCall(“PlayConfirmation”,
null, null);

 }

 }

 DriverScheduleCommand CreateScheduleCommand(Driver
Character driver, Soup soup)

 {

 DriveToScheduleCommand cmd = new
DriveToScheduleCommand();

 cmd.Init(driver, me);

 cmd.SetParent(me);

 cmd.SetProperties(soup);

 return cast<DriverScheduleCommand>cmd;

 }

 //

 // Handler method to drive a train to an industry (no specific
destination track though).

 //

 void DriveTo(Message msg)

 {

		 DriverCommands commands =
GetDriverCommands(msg);

 DriverCharacter driver = cast<DriverCharacter>(msg.src);

 string industryName = msg.minor;

 // schedule our command

 Soup soup = Constructors.NewSoup();

 soup.SetNamedTag(“industryName”, industryName);

 DriveToScheduleCommand cmd = cast<DriveToScheduleC
ommand>CreateScheduleCommand(driver, soup);

 commands.AddDriverScheduleCommand(cmd);		

		 if (driver)

			 PlayConfirmation();

 }

 //

 // Handler method to drive a train to a specific track in an
industry.

 //

 void DriveToTrack(Message msg)

 {

		 DriverCommands commands =
GetDriverCommands(msg);

 DriverCharacter driver = cast<DriverCharacter>(msg.src);

 string msgData = msg.minor;

 int industryId = Str.UnpackInt(msgData);

 string trackName = Str.UnpackString(msgData);

 GameObject industry = Router.GetGameObject(industryId);

 if (!industry)

 return;

 // schedule our command

 Soup soup = Constructors.NewSoup();

 soup.SetNamedTag(“industryName”, industry.GetName());

 soup.SetNamedTag(“trackName”, trackName);

 DriveToScheduleCommand cmd = cast<DriveToScheduleC
ommand>CreateScheduleCommand(driver, soup);

 commands.AddDriverScheduleCommand(cmd);		

		 if (driver)

			 PlayConfirmation();

 }

};

Version 3.0   210   Trainz Railroad Simulator - The Content Creator’s Guide

DriveToScheduleCommand.gs

//

// DriveToScheduleCommand.gs

//

// Copyright (C) 2003 Auran Developments Pty Ltd

// All Rights Reserved.

//

include “DriverCommand.gs”

include “World.gs”

include “Browser.gs”

include “KUID.gs”

include “Industry.gs”

include “DriveToCommand.gs”

include “Schedule.gs”

//

// Driver schedule command used by DriveToCommand to get
a driver character to take a train to

// a specific track on an industry.

//

class DriveToScheduleCommand isclass
DriverScheduleCommand

{

 public string industryName; // Name of the industry to drive
to.

 public string trackName; // Name of the track in the
industry to drive to.

 DriveToCommand parent;

 public void SetParent(DriveToCommand newParent)

 {

 parent = newParent;

 }

 //

 // Starts executing this schedule command on the given driver
character.

 //

 public bool BeginExecute(DriverCharacter driver)

 {

 Train train = driver.GetTrain();

 if (!train)

 // cant drive if we dont have a train

 return false;

 Industry industry = cast<Industry>(Router.GetGameObject(
industryName));

 if (!industry)

 // cant drive to an industry which doesn’t exist

 return false;

 return driver.NavigateToIndustry(industry, trackName);

 }

 // we should really implement EndExecute() to allow the
game to determine the success of this command

 //

 // Provides an icon for this command so it can be seen on the
driver’s schedule. Uses the industry

 // icon to indicate the destination.

 //

 public object GetIcon(void)

 {

 Industry industry = cast<Industry>(Router.GetGameObject(
industryName));

 return cast<object>industry;

 }

 public string GetTooltip(void)

 {

 StringTable strTable = GetAsset().GetStringTable();

 string userTrackName = trackName;

 Industry industry = cast<Industry>(Router.GetGameObject(
industryName));

 if (industry)

 {

 string[] destNames = new string[0];

 string[] destTracks = new string[0];

 industry.AppendDriverDestinations(destNames,
destTracks);

 int i;

Version 3.0   211   Trainz Railroad Simulator - The Content Creator’s Guide

 for (i = 0; i < destNames.size(); i++)

 {

 if (destTracks[i] == trackName)

 {

 userTrackName = destNames[i];

 break;

 }

 }

 }

 return strTable.GetString(“driver_command_drive_to”) +
industryName + “ (“ + userTrackName + “)”;

 }

 public Soup GetProperties(void)

 {

 Soup soup = Constructors.NewSoup();

 // Save support

 // Save the properties to the soup, then return the soup

 soup.SetNamedTag(“industryName”, industryName);

 soup.SetNamedTag(“trackName”, trackName);

 return soup;

 }

 public void SetProperties(Soup soup)

 {

 // Load support

 // Setup the properties from the passed in soup

 industryName = soup.GetNamedTag(“industryName”);

 trackName = soup.GetNamedTag(“trackName”);

 }

};

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   212   Trainz Railroad Simulator - The Content Creator’s Guide

Engine (Diesel)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

File Listings

config.txt cont.

no3pipe_mainreservoir				 0.1

compressor					 5

trainbrakepipe_reservoir				 1

trainbrakepipevent				 0.06

no3pipe_autobrakecylinder			 0.1

epreservoirpipe_autobrakecylinder		 0.1

mainreservoir_ep				 0.1

vacuumbrakepipe				 0.1

vacuumbrakepipereleasevent			 0.1

vacuumbrakepipevent				 0.1

vacuumbrakereservoir_vacuumbrakepipe	 0.1

vacuumbrakecylinder_vacuumbrakepipe		 0.1

highspeedexhauster_vacuumbrakepipe		 0.1

volume

scale						 1

trainbrakepipe					 0.2

epreservoirpipe					 0.2

no3pipe						 0.2

no4pipe						 0.2

auxreservoir				 0.0384678

autobrakecylinder			 0.00969387

vacuumbrakepipe				 0

vacuumbrakereservoir				 0

vacuumbrakecylinder				 0

mainreservoir					 2

equaliser					 0.5

independantbrakecylinder		 0.0103239

pressure

scale						 1

compressor				 0.011248

mainreservoir				 0.0081548

highspeedexhauster				 0

brakepipe				 0.00736041

config.txt

kuid				 <kuid:56113:1230>

trainz-build				 2.5

category-class				 “ZE”

category-region				 “ES”

category-era				 “2000s;2010s”

username				 “testEngine
(Diesel)”

kind					 “engine”

description			 “Test EngineSpec.”

flowsize

trainbrakepipe					 170000

epreservoirpipe					 0.1

no3pipe						 0.1

no4pipe						 0.1

auxreservoirvent				 0.1

auxreservoir_no3				 0.1

auxreservoir_trainbrakepipe			 0.1

autobrakecylindervent				 0.1

auxreservoir_autobrakecylinder			 0.1

equaliser_mainreservoir				 0.06

equaliservent					 0.06

equaliserventhandleoff				 0.1

equaliserventemergency			 0.1

no3pipevent					 1.5

Version 3.0   213   Trainz Railroad Simulator - The Content Creator’s Guide

brakeinitial				 0.00665741

config.txt cont.

brakefull				 0.00553261

indbrakefull				 0.00553261

trainbrakepipe_start			 0.00553261

epreservoirpipe_start				 0

no3pipe_start					 0

no4pipe_start					 0

auxreservoir_start			 0.00553261

autobrakecylinder_start			 0.00560291

vacuumbrakepipe_start				 0

vacuumbrakereservoir_start			 0

vacuumbrakecylinder_start			 0

mainreservoir_start			 0.00946941

equaliser_start				 0.00553261

independantbrakecylinder_start		 0.00560291

mass

scale						 1

fuel					 6.2156e+006

motor

resistance					 1

adhesion					 5

maxvoltage					 600

maxspeed					 33.33

brakeratio					 55000

max-accel					 3000

max-decel					 8500

throttle-notches					 32

axle-count					 4

surface-area					 150

moving-friction-coefficient			 0.03

air-drag-coefficient				 0.0025

throttle-power

0

0						 “0”

1

config.txt cont.

0						 “30”

5						 “25”

10						 “15”

12						 “0”

2

0						 “55”

5						 “48”

10						 “40”

15						 “30”

30						 “0”

3

0						 “90”

5						 “60”

10						 “45”

15						 “40”

30						 “0”

4

2						 “120”

5						 “70”

10						 “60”

15						 “55”

30						 “0”

5

0						 “180”

5						 “140”

10						 “70”

15						 “55”

30						 “0”

6

0						 “220”

5						 “170”

10						 “110”

15						 “80”

Version 3.0   214   Trainz Railroad Simulator - The Content Creator’s Guide

30						 “0”

7

0						 “230”

5						 “220”

10						 “200”

15						 “100”

30						 “0”

8

0						 “250”

3.5						 “200”

5						 “160”

10						 “130”

15						 “100”

30						 “90”

32						 “60”

34						 “0”

dynamic-brake

0 	

0						 “0”

1

1.333						 “0”

2						 “30”

5						 “25”

10						 “15”

12						 “0”

2

1.333						 “0”

3						 “50”

10						 “35”

14						 “20”

15						 “0”

3

1.333						 “0”

3						 “60”

10						 “40”

17						 “20”

22						 “0”

4

1.333						 “0”

4						 “80”

10						 “60”

20						 “20”

25						 “0”

5

1.333						 “0”

5						 “90”

10						 “70”

25						 “25”

29						 “0”

6

1.333						 “0”

5						 “150”

10						 “80”

29						 “70”

32						 “0”

7

1.333						 “0”

5						 “150”

10						 “100”

32						 “60”

36						 “0”

8

1.33						 “0”

5						 “150”

10						 “100”

36						 “50”

40						 “0”

thumbnails

0

image					 “thumb.jpg”

Version 3.0   215   Trainz Railroad Simulator - The Content Creator’s Guide

width						 240

height						 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   216   Trainz Railroad Simulator - The Content Creator’s Guide

Engine (Electric)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

File Listings

equaliserventemergency			 0.1

no3pipevent					 1.5

no3pipe_mainreservoir				 0.1

compressor					 10

trainbrakepipe_reservoir				 1

trainbrakepipevent				 0.06

no3pipe_autobrakecylinder			 0.1

epreservoirpipe_autobrakecylinder		 0.1

mainreservoir_ep				 0.1

vacuumbrakepipe				 0.1

vacuumbrakepipereleasevent			 0.1

vacuumbrakepipevent				 0.1

vacuumbrakereservoir_vacuumbrakepipe	 0.1

vacuumbrakecylinder_vacuumbrakepipe		 0.1

highspeedexhauster_vacuumbrakepipe		 0.1

volume

scale						 1

trainbrakepipe					 0.2

epreservoirpipe					 0.2

no3pipe						 0.2

no4pipe						 0.2

auxreservoir				 0.0384678

autobrakecylinder			 0.00969387

vacuumbrakepipe				 0

vacuumbrakereservoir				 0

vacuumbrakecylinder				 0

mainreservoir					 0.9

equaliser					 0.5

independantbrakecylinder		 0.0103239

pressure

scale						 1

compressor				 0.011248

mainreservoir				 0.0081548

highspeedexhauster				 0

config.txt.

kuid				 <kuid:56113:1234>

trainz-build					 2.5

category-class					 “ZE”

category-region					 “CZ”

category-era		 “1980s;1990s;2000s;201
0s”

username			 “testEngine (Electric)”

kind						
“engine”

description			 “Test electric engine
asset. 	Based on the TGV.”

flowsize

trainbrakepipe				 170000

epreservoirpipe					 0.1

no3pipe						 0.1

no4pipe						 0.1

auxreservoirvent				 0.1

auxreservoir_no3				 0.1

auxreservoir_trainbrakepipe			 0.1

autobrakecylindervent				 0.1

auxreservoir_autobrakecylinder			 0.1

equaliser_mainreservoir				 0.06

equaliservent					 0.06

equaliserventhandleoff				 0.1

Version 3.0   217   Trainz Railroad Simulator - The Content Creator’s Guide

brakepipe				 0.00609501

brakeinitial				 0.00560291

brakefull				 0.00447811

indbrakefull				 0.00447811

trainbrakepipe_start			 0.00447811

epreservoirpipe_start				 0

no3pipe_start					 0

no4pipe_start					 0

auxreservoir_start			 0.00447811

autobrakecylinder_start			 0.00507566

vacuumbrakepipe_start				 0

vacuumbrakereservoir_start			 0

vacuumbrakecylinder_start			 0

mainreservoir_start			 0.00876641

equaliser_start				 0.00447811

independantbrakecylinder_start		 0.00507566

mass

scale						 1

fuel					 “6.2156e+006”

motor

resistance					 1

adhesion					 3

maxvoltage					 600

maxspeed					 90

brakeratio					 50000

max-accel					 12500

max-decel					 175000

throttle-notches					 32

axle-count					 4

surface-area					 80

moving-friction-coefficient			 0.03

air-drag-coefficient				 0.00017

throttle-power

0

0						 “0”

1

0						 “20”

1.5						 “16”

3						 “10”

10						 “1”

2

0						 “40”

1.5						 “28”

3						 “20”

5						 “10”

10						 “1”

3

0						 “52”

1.5						 “36”

3						 “30”

10						 “20”

18						 “10”

25						 “1”

4

0						 “92”

1.5						 “76”

3						 “58”

5						 “50”

15						 “40”

30						 “24”

40						 “1”

5

0						 “132”

1.5						 “116”

3						 “98”

15						 “92”

40						 “60”

50						 “30”

60						 “1”

6

Version 3.0   218   Trainz Railroad Simulator - The Content Creator’s Guide

0						 “172”

1.5						 “156”

3						 “136”

50						 “106”

60						 “52”

70						 “36”

80						 “1”

7

0						 “160”

1.5						 “150”

30						 “140”

50						 “130”

70						 “70”

80						 “50”

90						 “1”

8

0						 “160”

1.5						 “140”

5						 “134”

8						 “120”

50						 “114”

60						 “110”

70						 “100”

90						 “0”

dynamic-brake

0

0						 “0”

1

0						 “100”

5						 “75”

10						 “30”

30						 “0”

2

0						 “150”

5						 “120”

10						 “110”

25						 “90”

35						 “50”

3

0						 “200”

5						 “180”

10						 “150”

25						 “110”

50						 “60”

4

0						 “270”

3.5						 “230”

5						 “190”

10						 “150”

40						 “110”

70						 “60”

5

0						 “350”

3.5						 “320”

5						 “270”

10						 “190”

40						 “150”

70						 “80”

6	

0						 “400”

10						 “360”

15						 “300”

30						 “220”

60						 “100”

90						 “80”

7

0						 “500”

10						 “470”

15						 “420”

30						 “360”

Version 3.0   219   Trainz Railroad Simulator - The Content Creator’s Guide

60						 “250”

90						 “130”

105						 “80”

8

0						 “600”

10						 “550”

15						 “460”

30						 “350”

60						 “220”

90						 “100”

105						 “90”

135						 “20”

thumbnails

0

image					 “thumb.jpg”

width						 240

height						 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   220   Trainz Railroad Simulator - The Content Creator’s Guide

Enginesound (Diesel\Electric)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

down 2 - 1.wav, down 3 - 2.wav, down 4 - 3.wav, down
5 - 4.wav, down 6 - 5.wav, down 7 - 6.wav, down 8 -
7.wav - The various sound files used for “slowing down”
sounds relative to each of the 8 notches.

idle 1.wav, idle 2.wav, idle 3.wav, idle 4.wav, idle
5.wav, idle 6.wav, idle 7.wav, idle 8.wav - The various
sound files used for “idle” sounds relative to each of the 8
notches.

up 1 - 2.wav, up 2 - 3.wav, up 3 - 4.wav, up 4 - 5.wav,
up 5 - 6.wav, up 6 - 7.wav, up 7 - 8.wav - The various
sound files used for “speeding up” sounds relative to
each of the 8 notches.

config.txt

kuid			 <kuid:171456:100016>

trainz-build		 2.5

category-class		 “ZS”

category-region		 “UK”

category-era		 “1960s;1970s;1980s;1990s;200
0s”

username		 “testEngineSound (Diesel or
Electric)”

kind			 “enginesound”

description		 “Test Enginesound based on
the BR Class 37 Sounds.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

File Listings

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   221   Trainz Railroad Simulator - The Content Creator’s Guide

Enginesound (Steam)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

loco_stationary_fast.wav, loco_stationary_med.wav,
loco_stationary_slow.wav - These file are the steam
engine idling sounds played after the steam engine is
stationary for 1, 2 and 3 minutes.

piston_stroke1.wav, piston_stroke2.wav, piston_
stroke3.wav, piston_stroke4.wav - Piston stoke sounds,
played every 180 degrees revolution of the piston wheel
played in sequence and repeated up to about 40 kph.

smoke_stack_hiss.wav - The general hiss from the
smoke stack.

steam_loop.wav - From 40 kph upwards, the following
sound loop is cross-faded as the piston sounds die off.
The loop is pitched shifted (through code) relative to the
locomotive’s velocity.

Refer to the use of the tag direct-drive used on animated
steam bogeys to synchronise the sounds with the
animation, Page 33.

config.txt

kuid			 <kuid:171456:100015>

trainz-build		 2.5

category-class		 “ZS”

category-region		 “US”

category-era		 “1960s;1970s;1980s;1990s;200
0s”

username		 “testEngineSound (Steam)”

kind			 “enginesound”

description		 “Test Steam Engine Sounds.
Based on the PB15.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

File Listings

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   222   Trainz Railroad Simulator - The Content Creator’s Guide

Environment
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

night.texture.txt, night.tga - The image files used for the
environment when it’s night time.

norm.texture.txt, norm.tga - The image files used for
the environment when it’s day time.

storm.texture.txt, storm.tga - The image files used for
the environment when the conditions are stormy.

See the section on Texture.txt files on Page 96 for more
information.

File Listings

config.txt

kuid			 <kuid:56113:1227>

trainz-build		 2.5

category-class		 “ES”

category-region		 “00”

category-era		 “2010s”

username		 “testEnvironment”

kind			 “environment”

normal			 “norm”

storm			 “storm”

night			 “night”

thumbnails

0

image			 “thumb.jpg”

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

width			 240

height			 180

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   223   Trainz Railroad Simulator - The Content Creator’s Guide

Fixed Track (Simple)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

checkrail.texture.txt, checkrail.tga, rail_oz.texture.txt,
rail_oz.tga, rail_oz_bump.texture.txt, rail_oz_bump.
tga, railsection_ger_sleepersa.tga, railsection_ger_
sleepersa_railsection_ger_sleepersa.texture.txt - The
texture files used in the indexed mesh of this asset.
See the section on Texture.txt files on Page 96 for more
information.

turnoutdiamond.im - The indexed mesh for this Fixed
Track asset.

File Listings

default

mesh			 “turnoutdiamond.im”

auto-create		 1

effects

arrow0

kind			 “attachment”

att			 “a.track0a”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

arrow1

kind			 “attachment”

att			 “a.track0b”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

arrow2

kind			 “attachment”

att			 “a.track1a”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1			

arrow3

kind			 “attachment”

att			 “a.track1b”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

attached-track

track0

track			 <kuid:67598:38001>

useadjoiningtracktype	 0

vertices

0			 “a.track0a”

1			 “a.track0b”

track1

track			 <kuid:67598:38001>

useadjoiningtracktype	 0

config.txt

kuid			 <kuid:171456:100017>

trainz-build		 2.5

category-class		 “TF”

category-region		 “00”

category-era		 “1980s;1990s;2000s;2010s”

username		 “testFixedTrack(Diamond)”

kind			 “fixedtrack”

description		 “Test Fixed Track asset.”

height-range		 -50,50

preview-mesh-kuid	 <kuid:171456:60520>

use-gradient-track	 1

mesh-table

Version 3.0   224   Trainz Railroad Simulator - The Content Creator’s Guide

vertices

0			 “a.track1a”

1			 “a.track1b”

kuid-table

0			 <kuid:-3:10092>

1	 		 <kuid:67598:38001>

2			 <kuid:171456:60520>

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   225   Trainz Railroad Simulator - The Content Creator’s Guide

Fixed Track (Junction)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

rail_oz.texture.txt, rail-oz.tga, railsection_ger_
sleepersa.tga, railsection_ger_sleepersa-railsection_
ger_sleepersa.texture.txt, arrows.tga, arrows-arrows.
texture.txt, switch_lever.texture.txt, switch_lever.tga
- The texture files used in the indexed meshes of this
asset. See the section on Texture.txt files on Page 96 for
more information.

turnout8l, blades.im, lever.im - The indexed meshes
used to build this asset.

anim.kin - The animation files used for both the moving
track blades, and the animating lever.

File Listings

username		 “testFixedTrack (Junction)”

kind			 “fixedtrack”

description		 “Test fixed track asset
(Junction).”

height-range		 -50,50

preview-mesh-kuid	 <kuid:171456:60563>

use-gradient-track	 1

mesh-table

default

mesh			 “turnout8l.im”

auto-create		 1

effects

arrow0

kind			 “attachment”

att			 “a.track0a”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

arrow1

kind			 “attachment”

att			 “a.track0e”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

arrow2

kind			 “attachment”

att			 “a.track1b”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

blades

mesh			 “Blades/blades.im”

anim			 “Blades/anim.kin”

auto-create		 1

lever1

mesh			 “Lever/lever.im”

anim			 “Lever/anim.kin”

auto-create		 1

config.txt

kuid			 <kuid:56113:1018>

trainz-build		 2.5

category-class		 “TF”

category-region		 “AU”

category-era		 “1950s;1970s;1980s;1990s;200
0s;2010s”

Version 3.0   226   Trainz Railroad Simulator - The Content Creator’s Guide

att-parent		 “default”

att			 “a.lever1”

attached-track

track0

track			 <kuid:67598:38001>

useadjoiningtracktype	 0

vertices

0			 “a.track0a”

1			 “a.track0b”

2			 “a.track0c”

3	 		 “a.track0d”

4			 “a.track0e”

track1

track			 <kuid:67598:38001>

useadjoiningtracktype	 0

vertices

0	 		 “a.track0b”

1			 “a.track1a”

2			 “a.track1b”

junction-vertices

0

junction-lever-mesh	 “lever0”

junction-vertex		 “a.track0b”

1

junction-lever-mesh	 “lever1”

junction-vertex		 “a.track0b”

2

junction-lever-mesh	 “blades”

junction-vertex		 “a.track0b”

kuid-table

0			 <kuid:-3:10092>

1			 <kuid:67598:38001>

2	 		 <kuid:171456:60563>

thumbnails

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

0

image			 “thumb.jpg”

width			 240

height			 180

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   227   Trainz Railroad Simulator - The Content Creator’s Guide

Groundtexture (Normal)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

ugly.bmp - The 128x128 bitmap image used as a ground
texture.

File Listings

config.txt

kuid			 <kuid:56113:1246>

trainz-build		 2.5

category-class		 “GL”

category-region		 “AU”

category-era		 “1980s;1990s;2000s;2010s”

username		 “testGroundTexture”

kind			 “groundtexture”

texture			 “ugly.bmp”

description		 “A very ugly ground texture
example.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   228   Trainz Railroad Simulator - The Content Creator’s Guide

Groundtexture (Clutter Mesh)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

ugly.bmp - The 128x128 bitmap image used as a ground
texture.

File Listings

config.txt

kuid			 <kuid:56113:1247>

trainz-build		 2.5

category-class		 “GL”

category-region		 “AF”

category-era		 “1980s;1990s;2000s”

username		 “testGroundTexture (Clutter-
Mesh)”

kind			 “groundtexture”

texture			 “ugly.bmp”

clutter-mesh		 <kuid:-3:10128>

description		 “A very ugly Ground Texture
with a whole bunch of Alaistair’s running around as the
clutter mesh.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   229   Trainz Railroad Simulator - The Content Creator’s Guide

Hornsound (1 Part)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

horn.wav - Railyard hornsound (non looping).

idle1.wav - Generally used for the bell sound (bell
keystroke = b).

File Listings

config.txt

kuid			 <kuid:56113:1269>

trainz-build		 2.5

category-class		 “ZH”

category-region		 “AN”

category-era		 “1990s;2000s;2010s”

username		 “testHornsound (1 Part)”

kind			 “hornsound”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   230   Trainz Railroad Simulator - The Content Creator’s Guide

Hornsound (2 Part)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

horn.wav - ‘Railyard’ hornsound (non-looping).

horn_loop.wav - The looping hornsound used in ‘Driver’.

horn_start.wav - The starting sound played before the
looping hornsound above.

idle 1.wav - Generally used for the bell sound (bell
keystroke = b).

File Listings

config.txt

kuid			 <kuid:56113:1273>

trainz-build		 2.5

category-class		 “ZH”

category-region		 “AN”

category-era		 “1840s;1860s;1870s;1880s”

username		 “testHornsound (2 Part)”

kind			 “hornsound”

two-part		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   231   Trainz Railroad Simulator - The Content Creator’s Guide

Hornsound (3 Part)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

idle 1.wav - The looping sound played while the horn is
held down.

start.wav - The sound played when the horn is first
sounded.

stop.wav - The sound played when the horn is released.

File Listings

config.txt

kind			 “hornsound”

kuid			 <kuid:56113:1013>

trainz-build		 2.5

category-class		 “ZH”

category-region		 “00”

category-era		 “1800s”

username		 “testHornsound (3 Part)”

three-part		 1

description		 “A 3 part horn sound.”

thumbnails

0

image			 “thumb.JPG”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   232   Trainz Railroad Simulator - The Content Creator’s Guide

HTML-Asset
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files

config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

maglev-1.html, maglev-3.html - The HTML pages to be
used in-game.

various button.....tga - Image file used in the index.html
HTML pages.

File Listings
config.txt

username		 “testHTML Asset”

kind			 “html-asset”

kuid			 <kuid:171456:100036>

trainz-build		 2.5

category-class		 “YH”

category-region		 “00”

category-era		 “2010s”

description		 “Test Html asset based on the
Maglev models. “

string-table 	

html-pages-button		 “<img
src=’$1’ mouseover=’$2’ width=40 height=40>”

html-pages-button-disabled	 “<img src=’$0’ width=40
height=40>”

html-pages-button-prev		 “<a href=’live://
pages/prev’><img src=’images/button-prev.tga’
mouseover=’images/button-prev-on.tga’ width=40

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

File.html (the html file is of this form)

<html>

<body>

	

</body>

</html>

height=40>”

html-pages-button-prev-disabled	 “<img
src=’images/button-prev-off.tga’ width=40 height=40>”

html-pages-button-next		 “<a href=’live://
pages/next’><img src=’images/button-next.tga’
mouseover=’images/button-next-on.tga’ width=40
height=40>”

html-pages-button-next-disabled	“<img src=’images/
button-next-off.tga’ width=40 height=40>”

html-pages-button-done		 “<a href=’live://
pages/done’><img src=’images/button-done.tga’
mouseover=’images/button-done-on.tga’ width=40
height=40>”

html-pages-button-done-disabled	 “<img
src=’images/button-done-off.tga’ width=40 height=40>”

html-page-0			 “maglev-1”

html-page-2			 “maglev-3”

msg-error-derailment		 “<font color=#000000
size=4>Failed Session!
Derailment
detected, tutorial session terminated!”

msg-error-mainline		 “<font color=#000000
size=4>Failed Session!
You strayed
out onto the mainline. Next time try and stay off the
mainline!”

msg-done-shunting		 “<font color=#000000
size=4>Consist assembled successfully, take train out
of yard onto the NW branchline as described in the
instructions.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   233   Trainz Railroad Simulator - The Content Creator’s Guide

Industry (Multiple Industry)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

concrete.texture.txt, concrete.tga, recess.texture.txt,
recess.tga - The texture files used for the industry asset.
See the section on Texture.txt files on Page 96 for more
information.

icon_multiple.tga - The image files used as an icon for
the industry.

multiple_industry.im - The indexed mesh used for the
Industry asset.

multiple_industry.gs - The script file used to outline the
behavior of the industry.

File Listings

icon0			 <kuid:-3:10164>

description		 “Test Industry asset. Based on
the Mulitple Industry New.”

kuid-table

coal			 <kuid:44179:60013>

diesel			 <kuid:-3:10011>

cont20ft			 <kuid:-3:10014>

gengoods		 <kuid:-3:10013>

logs			 <kuid:-3:10001>

lumber			 <kuid:-3:10003>

water			 <kuid:-3:10004>

mesh-table

default

mesh			 “Multiple_Industry.im”

auto-create		 1

effects

arrow0

att			 “a.track0a”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

kind			 “attachment”

arrow1

att			 “a.track0f”

default-mesh		 <kuid:-3:10092>

surveyor-only		 1

kind			 “attachment”

attached-track

out_track0

track			 <kuid:-1:15>

vertices

0	 		 “a.track0a”

1	 		 “a.track0b”

2			 “a.track0c”

3	 		 “a.track0d”

4			 “a.track0e”

config.txt

kuid			 <kuid:56113:1001>

trainz-build		 2.5

category-class		 “BIN”

category-region		 “00”

category-era		 “1810s”

username		 “testIndustry”

kind			 “industry”

light			 1

nightmode		 “lamp”

script			 “multipleindustry.gs”

class			 “MultipleIndustry”

preview-mesh-kuid	 <kuid:-3:10154>

Version 3.0   234   Trainz Railroad Simulator - The Content Creator’s Guide

5			 “a.track0f”

attached-trigger

trig0

att			 “a.track0b”

radius			 10

trig1

att			 “a.track0c”

radius			 10

trig2

att			 “a.track0d”

radius			 10

trig3

att			 “a.track0e”

radius			 10

queues

20ft_cont_q

size			 100

initial-count		 50

product-kuid		 <kuid:-3:10014>

allowed-products

0			 <kuid:-3:10014>

gen_goods_q

size			 100

initial-count		 50

product-kuid		 <kuid:-3:10013>

allowed-products

0			 <kuid:-3:10013>

logs_q

size			 90

initial-count		 45

product-kuid		 <kuid:-3:10001>

allowed-products

0			 <kuid:-3:10001>

lumber_q

size			 51

initial-count		 25

product-kuid		 <kuid:-3:10003>

allowed-products

0			 <kuid:-3:10003>

coal_q

size			 1086000

initial-count		 543000

product-kuid		 <kuid:44179:60013>

allowed-products

0			 <kuid:44179:60013>

diesel_q

size			 1164000

initial-count		 582000

product-kuid		 <kuid:-3:10011>

allowed-products

0			 <kuid:-3:10011>

water_q

size			 15000

initial-count		 10000

animated-mesh		 “default”

product-kuid		 <kuid:-3:10004>

allowed-products

0	 		 <kuid:-3:10004>

processes

multi_consumer_producer

start-enabled		 1

duration		 30

inputs

0

amount			 1

queue			 “20ft_cont_q”

1

amount			 1

queue			 “gen_goods_q”

3

Version 3.0   235   Trainz Railroad Simulator - The Content Creator’s Guide

amount			 1

queue			 “logs_q”

4

amount			 100000

queue			 “coal_q”

5

amount			 100000

queue			 “diesel_q”

6

amount			 100

queue			 “water_q”

outputs

0

amount			 1

queue			 “20ft_cont_q”

1

amount			 1

queue			 “gen_goods_q”

2

amount			 1

queue			 “logs_q”

3

amount			 100000

queue			 “coal_q”

4

amount			 100000

queue			 “diesel_q”

5

amount			 100

queue			 “water_q”

string-table

multi_pickupdropoff	 “Multiple Pickup/Drop off”

thumbnails

0

image			 “icon_multiple.tga”

width			 64

height			 64

1

image			 “thumb.jpg”

width			 240

height			 180

Version 3.0   236   Trainz Railroad Simulator - The Content Creator’s Guide

multipleindustry.gs

include “BaseIndustry.gs”

//

// MultipleIndustry industry

//

class MultipleIndustry isclass BaseIndustry

{

 ProductQueue crudeOilQueue, dieselQueue, petrolQueue,
coalQueue, cont20ftQueue, cont40ftQueue, gengoodsQueue,
logsQueue, lumberQueue, woodchipsQueue, waterQueue,
avgasQueue;

 Asset crudeOilAsset, dieselAsset, petrolAsset, coalAsset,
cont20ftAsset, cont40ftAsset, gengoodsAsset, logsAsset,
lumberAsset, woodchipsAsset, waterAsset, avgasAsset;

 bool animating = false;

 bool processing = false;

 bool scriptletEnabled = true;

 // Track if they only supply some of the logs that were
requested in the waybill.

 int avWBRemain = 0;

 int cont20WBRemain = 0;

 int cont40WBRemain = 0;

 int goodsWBRemain = 0;

 int logWBRemain = 0;

 int lumberWBRemain = 0;

 int coalWBRemain = 0;

 int woodchipWBRemain = 0;

 int oilWBRemain = 0;

 int dieselWBRemain = 0;

 int petrolWBRemain = 0;

 int waterWBRemain = 0;

 //

 //

 //

 bool TriggerSupportsStoppedLoad(Vehicle vehicle, string
triggerName)

 {

 bool vehicleToTrain = vehicle.GetFacingRelativeToTrain();

 int direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (!vehicleToTrain)

	 direction = -direction;

 // Are we up to the furthest trigger away from the side we
entered for diesel?

 if (direction == Vehicle.DIRECTION_BACKWARD and
triggerName == “trig3”)

 return true;

 if (direction == Vehicle.DIRECTION_FORWARD and
triggerName == “trig0”)

 return true;

 // If the train has already stopped, then fall thru and allow
this load as well

 if (triggerName == “trig0” or triggerName == “trig1” or
triggerName == “trig2” or triggerName == “trig3”)

 {

 if (vehicle.GetMyTrain().IsStopped())

 return true;

 }

 return false;

 }

 void PerformStoppedLoad(Vehicle vehicle, string
triggerName)

 {

 if (triggerName == “trig0” or triggerName == “trig1” or
triggerName == “trig2” or triggerName == “trig3”)

 {

 bool avWBModified = false;

 bool cont20WBModified = false;

 bool cont40WBModified = false;

 bool goodsWBModified = false;

 bool logWBModified = false;

 bool lumberWBModified = false;

 bool coalWBModified = false;

 bool woodchipWBModified = false;

 bool oilWBModified = false;

 bool dieselWBModified = false;

Version 3.0   237   Trainz Railroad Simulator - The Content Creator’s Guide

 bool petrolWBModified = false;

 bool waterWBModified = false;

 int spaceAvailable;

 LoadingReport report;

 int direction;

 if (itc.IsTrainCommand(vehicle.GetMyTrain(), Industry.
LOAD_COMMAND))

 {

 // Attempt to load everything! ;)

 //

 // Load the crudeoil

 //

 if (GetProcessOutput(“multi_consumer_producer”,
crudeOilQueue, crudeOilAsset) > 0)

 {

 spaceAvailable = crudeOilQueue.GetQueueCount();

 report = CreateLoadingReport(crudeOilQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 oilWBModified = true;

 }

 //

 // Load the diesel

 //

 if (GetProcessOutput(“multi_consumer_producer”,
dieselQueue, dieselAsset) > 0)

 {

 spaceAvailable = dieselQueue.GetQueueCount();

 report = CreateLoadingReport(dieselQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 dieselWBModified = true;

 }

 //

 // Load the petrol

 //

 if (GetProcessOutput(“multi_consumer_producer”,
petrolQueue, petrolAsset) > 0)

 {

 spaceAvailable = petrolQueue.GetQueueCount();

 report = CreateLoadingReport(petrolQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 petrolWBModified = true;

 }

 //

 // Load the coal

Version 3.0   238   Trainz Railroad Simulator - The Content Creator’s Guide

 //

 if (GetProcessOutput(“multi_consumer_producer”,
coalQueue, coalAsset) > 0)

 {

 spaceAvailable = coalQueue.GetQueueCount();

 report = CreateLoadingReport(coalQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 coalWBModified = true;

 }

 //

 // Load the cont20

 //

 if (GetProcessOutput(“multi_consumer_producer”,
cont20ftQueue, cont20ftAsset) > 0)

 {

 spaceAvailable = cont20ftQueue.GetQueueCount();

 report = CreateLoadingReport(cont20ftQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 cont20WBModified = true;

 }

 //

 // Load the cont40

 //

 if (GetProcessOutput(“multi_consumer_producer”,
cont40ftQueue, cont40ftAsset) > 0)

 {

 spaceAvailable = cont40ftQueue.GetQueueCount();

 report = CreateLoadingReport(cont40ftQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 cont40WBModified = true;

 }

 //

 // Load the gengoods

 //

 if (GetProcessOutput(“multi_consumer_producer”,
gengoodsQueue, gengoodsAsset) > 0)

 {

 spaceAvailable = gengoodsQueue.GetQueueCount();

 report = CreateLoadingReport(gengoodsQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

Version 3.0   239   Trainz Railroad Simulator - The Content Creator’s Guide

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 goodsWBModified = true;

 }

 //

 // Load the logs

 //

 if (GetProcessOutput(“multi_consumer_producer”,
logsQueue, logsAsset) > 0)

 {

 spaceAvailable = logsQueue.GetQueueCount();

 report = CreateLoadingReport(logsQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 logWBModified = true;

 }

 //

 // Load the lumber

 //

 if (GetProcessOutput(“multi_consumer_producer”,
lumberQueue, lumberAsset) > 0)

 {

 spaceAvailable = lumberQueue.GetQueueCount();

 report = CreateLoadingReport(lumberQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 lumberWBModified = true;

 }

 //

 // Load the woodchips

 //

 if (GetProcessOutput(“multi_consumer_producer”,
woodchipsQueue, woodchipsAsset) > 0)

 {

 spaceAvailable = woodchipsQueue.GetQueueCount();

 report = CreateLoadingReport(woodchipsQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 woodchipWBModified = true;

 }

 //

 // Load the water

Version 3.0   240   Trainz Railroad Simulator - The Content Creator’s Guide

 //

 if (GetProcessOutput(“multi_consumer_producer”,
waterQueue, waterAsset) > 0)

 {

 spaceAvailable = waterQueue.GetQueueCount();

 report = CreateLoadingReport(waterQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 waterWBModified = true;

 }

 //

 // Load the avgas

 //

 if (GetProcessOutput(“multi_consumer_producer”,
avgasQueue, avgasAsset) > 0)

 {

 spaceAvailable = avgasQueue.GetQueueCount();

 report = CreateLoadingReport(avgasQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.LoadProduct(report);

 // Already done something to the queue? if so, set flag
so that we don’t unload it again. (just for this multi ind)

 if (report.amount > 0)

 avWBModified = true;

 }

 }

 if (itc.IsTrainCommand(vehicle.GetMyTrain(), Industry.
UNLOAD_COMMAND))

 {

 // Attemp to unload everything! ;)

 //

 // Unload the crudeoil

 //

 if (GetProcessInput(“multi_consumer_producer”,
crudeOilQueue, crudeOilAsset) > 0)

 {

 if (!oilWBModified)

 {

 spaceAvailable = crudeOilQueue.GetQueueSpace();

 report = CreateUnloadingReport(crudeOilQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (oilWBRemain > 0)

 oilWBRemain = oilWBRemain - report.amount;

 }

 }

 //

 // Unload the diesel

 //

Version 3.0   241   Trainz Railroad Simulator - The Content Creator’s Guide

 if (GetProcessInput(“multi_consumer_producer”,
dieselQueue, dieselAsset) > 0)

 {

 if (!dieselWBModified)

 {

 spaceAvailable = dieselQueue.GetQueueSpace();

 report = CreateUnloadingReport(dieselQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (dieselWBRemain > 0)

 dieselWBRemain = dieselWBRemain - report.
amount;

 }

 }

 //

 // Unload the petrol

 //

 if (GetProcessInput(“multi_consumer_producer”,
petrolQueue, petrolAsset) > 0)

 {

 if (!petrolWBModified)

 {

 spaceAvailable = petrolQueue.GetQueueSpace();

 report = CreateUnloadingReport(petrolQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_

BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (petrolWBRemain > 0)

 petrolWBRemain = petrolWBRemain - report.
amount;

 }

 }

 //

 // Unload the coal

 //

 if (GetProcessInput(“multi_consumer_producer”,
coalQueue, coalAsset) > 0)

 {

 if (!coalWBModified)

 {

 spaceAvailable = coalQueue.GetQueueSpace();

 report = CreateUnloadingReport(coalQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (coalWBRemain > 0)

 coalWBRemain = coalWBRemain - report.amount;

 }

 }

 //

 // Unload the cont20

 //

Version 3.0   242   Trainz Railroad Simulator - The Content Creator’s Guide

 if (GetProcessInput(“multi_consumer_producer”,
cont20ftQueue, cont20ftAsset) > 0)

 {

 if (!cont20WBModified)

 {

 spaceAvailable = cont20ftQueue.GetQueueSpace();

 report = CreateUnloadingReport(cont20ftQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (cont20WBRemain > 0)

 cont20WBRemain = cont20WBRemain - report.
amount;

 }

 }

 //

 // Unload the cont40

 //

 if (GetProcessInput(“multi_consumer_producer”,
cont40ftQueue, cont40ftAsset) > 0)

 {

 if (!cont40WBModified)

 {

 spaceAvailable = cont40ftQueue.GetQueueSpace();

 report = CreateUnloadingReport(cont40ftQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_

BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (cont40WBRemain > 0)

 cont40WBRemain = cont40WBRemain - report.
amount;

 }

 }

 //

 // Unload the gengoods

 //

 if (GetProcessInput(“multi_consumer_producer”,
gengoodsQueue, gengoodsAsset) > 0)

 {

 if (!goodsWBModified)

 {

 spaceAvailable = gengoodsQueue.GetQueueSpace();

 report = CreateUnloadingReport(gengoodsQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (goodsWBRemain > 0)

 goodsWBRemain = goodsWBRemain - report.
amount;

 }

 }

 //

Version 3.0   243   Trainz Railroad Simulator - The Content Creator’s Guide

 // Unload the logs

 //

 if (GetProcessInput(“multi_consumer_producer”,
logsQueue, logsAsset) > 0)

 {

 if (!logWBModified)

 {

 spaceAvailable = logsQueue.GetQueueSpace();

 report = CreateUnloadingReport(logsQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (logWBRemain > 0)

 logWBRemain = logWBRemain - report.amount;

 }

 }

 //

 // Unload the lumber

 //

 if (GetProcessInput(“multi_consumer_producer”,
lumberQueue, lumberAsset) > 0)

 {

 if (!lumberWBModified)

 {

 spaceAvailable = lumberQueue.GetQueueSpace();

 report = CreateUnloadingReport(lumberQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (lumberWBRemain > 0)

 lumberWBRemain = lumberWBRemain - report.
amount;

 }

 }

 //

 // Unload the woodchips

 //

 if (GetProcessInput(“multi_consumer_producer”,
woodchipsQueue, woodchipsAsset) > 0)

 {

 if (!woodchipWBModified)

 {

 spaceAvailable = woodchipsQueue.GetQueueSpace();

 report = CreateUnloadingReport(woodchipsQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (woodchipWBRemain > 0)

 woodchipWBRemain = woodchipWBRemain -
report.amount;

 }

 }

Version 3.0   244   Trainz Railroad Simulator - The Content Creator’s Guide

 //

 // Unload the water

 //

 if (GetProcessInput(“multi_consumer_producer”,
waterQueue, waterAsset) > 0)

 {

 if (!waterWBModified)

 {

 spaceAvailable = waterQueue.GetQueueSpace();

 report = CreateUnloadingReport(waterQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (waterWBRemain > 0)

 waterWBRemain = waterWBRemain - report.amount;

 }

 }

 //

 // Unload the avgas

 //

 if (GetProcessInput(“multi_consumer_producer”,
avgasQueue, avgasAsset) > 0)

 {

 if (!avWBModified)

 {

 spaceAvailable = avgasQueue.GetQueueSpace();

 report = CreateUnloadingReport(avgasQueue,
spaceAvailable);

 direction = vehicle.GetRelationToTrack(me, “out_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_
BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a
way bill to complete in its entirety

 if (avWBRemain > 0)

 avWBRemain = avWBRemain - report.amount;

 }

 }

 }

 }

 }

 //

 //

 //

 thread void MultipleMain(void)

 {

 Message msg;

 Vehicle vehicle;

 string triggerName;

 wait()

 {

 // ?

 on “Scriptlet-Enabled”, “1”:

 {

 if (!scriptletEnabled)

 {

 scriptletEnabled = true;

 SetProcessEnabled(“multi_consumer_producer”, true);

 }

 continue;

 }

Version 3.0   245   Trainz Railroad Simulator - The Content Creator’s Guide

 // ?

 on “Scriptlet-Enabled”, “0”:

 {

 if (scriptletEnabled)

 {

 scriptletEnabled = false;

 SetProcessEnabled(“multi_consumer_producer”, false);

 }

 continue;

 }

 }

 }

 // called by the game once when a process is ready to start
(see Industry.gs)

 void NotifyProcessStarted(string processName)

 {

 //Interface.Print(“A process in the oil refinery has started.”);

 if (PerformProcessInput(processName))

 {

 // we are making the assumption that there is only one
process, “multi_consumer_producer”

 PerformProcessStarted(processName);

 }

 else

 PerformProcessCancelled(processName);

 }

 //

 // Called by the game once when a process is ready to stop
(see Industry.gs)

 //

 void NotifyProcessFinished(string processName)

 {

 //Interface.Print(“A process in the oil refinery has
finished.”);

 processing = false;

 if (!animating)

 {

 PerformProcessOutput(processName);

 PerformProcessFinished(processName);

			 PostMessage(me,
“GenericIndustry”, “ProcessComplete”, 0.0f);

 }

 }

 //

 //

 //

 public void Init(void)

 {

 inherited();

 usePipeAnimation = false;

 useGenericViewDetails = true;

 // initialize queues

 crudeOilQueue = GetQueue(“crude_oil_q”);

 dieselQueue = GetQueue(“diesel_q”);

 petrolQueue = GetQueue(“petrol_q”);

 coalQueue = GetQueue(“coal_q”);

 cont20ftQueue = GetQueue(“20ft_cont_q”);

 cont40ftQueue = GetQueue(“40ft_cont_q”);

 gengoodsQueue = GetQueue(“gen_goods_q”);

 logsQueue = GetQueue(“logs_q”);

 lumberQueue = GetQueue(“lumber_q”);

 woodchipsQueue = GetQueue(“woodchips_q”);

 waterQueue = GetQueue(“water_q”);

 avgasQueue = GetQueue(“av_in_q”);

 crudeOilAsset = GetAsset().FindAsset(“oil”);

 dieselAsset = GetAsset().FindAsset(“diesel”);

 petrolAsset = GetAsset().FindAsset(“petrol”);

 coalAsset = GetAsset().FindAsset(“coal”);

 cont20ftAsset = GetAsset().FindAsset(“cont20ft”);

 cont40ftAsset = GetAsset().FindAsset(“cont40ft”);

 gengoodsAsset = GetAsset().FindAsset(“gengoods”);

Version 3.0   246   Trainz Railroad Simulator - The Content Creator’s Guide

 logsAsset = GetAsset().FindAsset(“logs”);

 lumberAsset = GetAsset().FindAsset(“lumber”);

 woodchipsAsset = GetAsset().FindAsset(“woodchips”);

 waterAsset = GetAsset().FindAsset(“water”);

 avgasAsset = GetAsset().FindAsset(“avgas”);

 AddAssetToIndustryProductInfo(“oil”, “crude_oil_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“petrol”, “petrol_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“diesel”, “diesel_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“coal”, “coal_q”, “multi_
consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“cont20ft”, “20ft_cont_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“cont40ft”, “40ft_cont_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“gengoods”, “gen_goods_
q”, “multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“logs”, “logs_q”, “multi_
consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“lumber”, “lumber_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“woodchips”,
“woodchips_q”, “multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“water”, “water_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“avgas”, “av_in_q”,
“multi_consumer_producer”, true, false);

 AddAssetToIndustryProductInfo(“oil”, “crude_oil_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“petrol”, “petrol_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“diesel”, “diesel_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“coal”, “coal_q”, “multi_
consumer_producer”, false);

 AddAssetToIndustryProductInfo(“cont20ft”, “20ft_cont_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“cont40ft”, “40ft_cont_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“gengoods”, “gen_goods_
q”, “multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“logs”, “logs_q”, “multi_
consumer_producer”, false);

 AddAssetToIndustryProductInfo(“lumber”, “lumber_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“woodchips”,
“woodchips_q”, “multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“water”, “water_q”,
“multi_consumer_producer”, false);

 AddAssetToIndustryProductInfo(“avgas”, “av_in_q”,
“multi_consumer_producer”, false);

 // stop animation on refinery mesh - fueling doors are shut
and not animated

 StopMeshAnimation(“fuelling_doors”);

 SetMeshAnimationFrame(“fuelling_doors”, 0);

 MultipleMain();

 }

 public Requirement[] GetRequirements(void)

 {

 Requirement[] ret = new Requirement[0];

 int rate = 0;

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“20ft_cont_q”), GetAsset().FindAsset(“cont20ft”));

 if (rate > 0)

 {

 if (cont20ftQueue.GetQueueCount() < 30 or
cont20WBRemain > 0)

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = cont20ftQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 30;

 if (cont20ftQueue.GetQueueCount() < 30 and
cont20WBRemain == 0)

 cont20WBRemain = 30;

 req.dst = me;

 req.dstQueue = cont20ftQueue;

Version 3.0   247   Trainz Railroad Simulator - The Content Creator’s Guide

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“40ft_cont_q”), GetAsset().FindAsset(“cont40ft”));

 if (rate > 0)

 {

 if (cont40ftQueue.GetQueueCount() < 30 or
cont40WBRemain > 0)

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = cont40ftQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 30;

 if (cont40ftQueue.GetQueueCount() < 30 and
cont40WBRemain == 0)

 cont40WBRemain = 30;

 req.dst = me;

 req.dstQueue = cont40ftQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_
producer”, GetQueue(“gen_goods_q”), GetAsset().
FindAsset(“gengoods”));

 if (rate > 0)

 {

 if (gengoodsQueue.GetQueueCount() < 15 or
goodsWBRemain > 0)

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = gengoodsQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be

completed.

 req.amount = 40;

 if (gengoodsQueue.GetQueueCount() < 15 and
goodsWBRemain == 0)

 goodsWBRemain = 40;

 req.dst = me;

 req.dstQueue = gengoodsQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“logs_q”), GetAsset().FindAsset(“logs”));

 if (rate > 0)

 {

 if (logsQueue.GetQueueCount() < 25 or logWBRemain >
0)

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = logsQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 50;

 if (logsQueue.GetQueueCount() < 25 and logWBRemain
== 0)

 logWBRemain = 50;

 req.dst = me;

 req.dstQueue = logsQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“lumber_q”), GetAsset().FindAsset(“lumber”));

 if (rate > 0)

 {

Version 3.0   248   Trainz Railroad Simulator - The Content Creator’s Guide

 if (lumberQueue.GetQueueCount() < 40 or
lumberWBRemain > 0)

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = lumberQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 30;

 if (lumberQueue.GetQueueCount() < 40 and
lumberWBRemain == 0)

 lumberWBRemain = 30;

 req.dst = me;

 req.dstQueue = lumberQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“coal_q”), GetAsset().FindAsset(“coal”));

 if (rate > 0)

 {

 if (coalQueue.GetQueueCount() < 271500 or
coalWBRemain > 0) // 7 mins till empty

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = coalQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 814500;

 if (coalQueue.GetQueueCount() < 271500 and
coalWBRemain == 0)

 coalWBRemain = 814500; // 15 hoppers

 req.dst = me;

 req.dstQueue = coalQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_
producer”, GetQueue(“woodchips_q”), GetAsset().
FindAsset(“woodchips”));

 if (rate > 0)

 {

 if (woodchipsQueue.GetQueueCount() < 181500 or
woodchipWBRemain > 0) // 3 gondolas

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = woodchipsQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 544500;

 if (woodchipsQueue.GetQueueCount() < 181500 and
woodchipWBRemain == 0)

 woodchipWBRemain = 544500; // 9 gondolas

 req.dst = me;

 req.dstQueue = woodchipsQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“crude_oil_q”), GetAsset().FindAsset(“oil”));

 if (rate > 0)

 {

 if (crudeOilQueue.GetQueueCount() < 27500 or
oilWBRemain > 0) // approx 14 min to empty

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = crudeOilQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

Version 3.0   249   Trainz Railroad Simulator - The Content Creator’s Guide

 req.amount = 543000;

 if (crudeOilQueue.GetQueueCount() < 27500 and
oilWBRemain == 0)

 oilWBRemain = 543000; // 10 tank cars

 req.dst = me;

 req.dstQueue = crudeOilQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“diesel_q”), GetAsset().FindAsset(“diesel”));

 if (rate > 0)

 {

 if (dieselQueue.GetQueueCount() < 232800 or
dieselWBRemain > 0) // 6 tankers

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = dieselQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 776000;

 if (dieselQueue.GetQueueCount() < 232800 and
dieselWBRemain == 0)

 dieselWBRemain = 776000; // 20 tankers

 req.dst = me;

 req.dstQueue = dieselQueue;

 ret[ret.size()] = req;

 }

 }

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“petrol_q”), GetAsset().FindAsset(“petrol”));

 if (rate > 0)

 {

 if (petrolQueue.GetQueueCount() < 77600 or
petrolWBRemain > 0) // 2 tankers approx 10 min

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = petrolQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 116400;

 if (petrolQueue.GetQueueCount() < 77600 and
petrolWBRemain == 0)

 petrolWBRemain = 116400; // 3 tankers

 req.dst = me;

 req.dstQueue = petrolQueue;

 ret[ret.size()] = req;

 }

 }

 /* NOT BEING USED AS WE HAVE NO WAY OF
TRANSPORTING WATER YET

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“water_q”), GetAsset().FindAsset(“water”));

 if (rate > 0)

 {

 if (waterQueue.GetQueueCount() < 77600 or
waterWBRemain > 0) // 2 tankers approx 10 min //
VAUGHAN EDIT

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = waterQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 116400; // VAUGHAN EDIT

 if (waterQueue.GetQueueCount() < 77600 and
petrolWBRemain == 0) // VAUGHAN EDIT

 waterWBRemain = 116400; // 3 tankers //
VAUGHAN EDIT

 req.dst = me;

 req.dstQueue = waterQueue;

Version 3.0   250   Trainz Railroad Simulator - The Content Creator’s Guide

 ret[ret.size()] = req;

 }

 }*/

 rate = GetProcessInput(“multi_consumer_producer”,
GetQueue(“av_in_q”), GetAsset().FindAsset(“avgas”));

 if (rate > 0)

 {

 if (avgasQueue.GetQueueCount() < 145000 or
avWBRemain > 0) // approx 25% of full

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = avgasQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is
fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 465600; // 12 tank cars

 if (avgasQueue.GetQueueCount() < 145000 and
avWBRemain == 0)

 avWBRemain = 465600;

 req.dst = me;

 req.dstQueue = avgasQueue;

 ret[ret.size()] = req;

 }

 }

 return ret;

 }

 public void AppendDriverDestinations(string[] destNames,
string[] destTracks)

 {

 StringTable stringTable = GetAsset().GetStringTable();

 destNames[destNames.size()] = stringTable.
GetString(“multi_PickupDropoff”);

 destTracks[destTracks.size()] = “out_track0”;

 }

};

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   251   Trainz Railroad Simulator - The Content Creator’s Guide

Industry (Coal Mine)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

config.txt

username		 “Test Coal Mine”

kind			 “industry”

light			 1

nightmode		 “lamp”

script			 “coalmine”

class			 “CoalMine”

icon0			 <kuid:-3:10164>

kuid			 <kuid:171456:100012>

trainz-build		 2.5

category-class		 “AA”

category-region		 “AU”

category-era		 “1980s;1990s;2000s”

kuid-table

pipe			 <kuid:-3:10051>

coal			 <kuid:44179:60013>

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

various.tga - The texture graphic files for the various
textures used in the industry asset.

various.texture.txt - The texture.txt files for the various
textures used in the industry asset, usually generated
when the model is exported. See the section on Texture.
txt files on Page 96 for more information.

various.wav - The various sound files used in the
industry asset.

icon_coalmine.tga - The image files used as an icon for
the industry model asset.

coalmine.im - The indexed mesh used for the asset.

coalmine.kin - The animation file used for the asset.

coalmine.gs - The script file used to outline the behavior
of the industry.

load.im, load.im, globe.im - The model mesh files for
the main model, the animated coal load (coal pile) and
lights.

coalmine.kin, load.kin, anim.kin - The animation files
for the mine, coal load (coal pile) and lights.

File Listings

Version 3.0   252   Trainz Railroad Simulator - The Content Creator’s Guide

diesel			 <kuid:-3:10011>

soundscript

daysingle

repeat-delay		 0,0

distance		 10,300

sound

0			 ”coal_mine_ambient.wav”

truck_run0

trigger			 “truck_run0”

attachment		 “a.sound”

repeat-delay		 0,0

distance		 5,200

sound 			

0			 “truck_run.wav”

truck_idle

trigger			 “truck_idle”

attachment		 “a.sound”

repeat-delay		 0,0

distance		 5,200

sound

0			 “truck_idle.wav”

coal_dump

trigger			 “coal_dump”

attachment		 “a.sound”

nostartdelay		 1

repeat-delay		 1,0

distance		 5,200

sound

0			 “coal_dump.wav”

clunk

attachment		 “a.sound”

trigger			 “clunk0”

nostartdelay		 1

repeat-delay		 1,0

distance		 10,300

sound

0			 “clunk.wav”	

backup

attachment		 “a.sound”

trigger			 “reverse”

repeat-delay		 0,0

distance		 5,100

sound

0			 “warning.wav”

mesh-table

default

mesh			 “coalmine.im”

auto-create		 1

anim			 “coalmine.kin”

animation-loop-speed	 1

critical-animation	 1

effects

0 	

kind			 “name”

fontsize			 0.3

fontcolor		 220,220,220

att			 “a.name0”

name			 “name”

1

kind			 “name”

fontsize			 0.3

fontcolor		 220,220,220

att			 “a.name1”

name			 “name”

			

2

kind			 “name”

fontsize			 0.16

fontcolor		 220,220,220

Version 3.0   253   Trainz Railroad Simulator - The Content Creator’s Guide

att			 “a.name2”

name			 “name”

3

kind			 “name”

fontsize			 0.16

fontcolor		 220,220,220

att			 “a.name3”

name			 “name”	

load

mesh			 “load/load.im”

anim			 “load/load.kin”

auto-create		 1

load_diesel

mesh			 “diesel_load.im”

anim			 “diesel_load.kin”

auto-create		 1

att			 “a.diesel_load”

att-parent		 “default”

warning-light-0

mesh			 “warninglight/warninglight.im”

att			 “a.warnlight_0”

att-parent		 “default”

anim			 “warninglight/anim.kin”

auto-create		 1

animation-loop-speed	 1

effects

0

kind			 “corona”

att			 “a.lightcorona0”

1

kind			 “corona”

att			 “a.lightcorona1”

warning-light-1

mesh			 “warninglight/warninglight.im”

att			 “a.warnlight_1”

att-parent		 “default”

anim			 “warninglight/anim.kin”

auto-create		 1

animation-loop-speed	 1

effects

0

kind			 “corona”

att			 “a.lightcorona0”

1

kind			 “corona”

att			 “a.lightcorona1”	

warning-light-2

mesh			 “warninglight/warninglight.im”

att			 “a.warnlight_2”

att-parent		 “default”

anim			 “warninglight/anim.kin”

auto-create		 1

animation-loop-speed	 1

effects

0

kind			 “corona”

att			 “a.lightcorona0”

1

kind			 “corona”

att			 “a.lightcorona1”

dumpsterwarning-light-1

mesh			 “warninglight/warninglight.im”

att			 “a.warnlight_3”

att-parent		 “default”

anim			 “warninglight/anim.kin”

auto-create		 1

animation-loop-speed	 1

effects

0

kind			 “corona”

Version 3.0   254   Trainz Railroad Simulator - The Content Creator’s Guide

att			 “a.lightcorona0”

1

kind			 “corona”

att			 “a.lightcorona1”

dumpsterwarning-light-2

mesh			 “warninglight/warninglight.im”

att			 “a.warnlight_4”

att-parent		 “default”

anim			 “warninglight/anim.kin”

auto-create		 1

animation-loop-speed	 1

effects

0

kind			 “corona”

att			 “a.lightcorona0”

1

kind			 “corona”

att			 “a.lightcorona1”

attached-track

out_track0

track			 <kuid:-1:15>

vertices

			 0				
“a.track0a”

			 1				
“a.track0b”

			 2				
“a.track0c”

			 3				
“a.track0d”

out_track1

track			 <kuid:-1:15>

vertices

0			 “a.track1a”

1			 “a.track1b”

2			 “a.track1c”

3			 “a.track1d”

out_track2

track			 <kuid:-1:15>

vertices

0			 “a.track2a”

1			 “a.track2b”

2			 “a.track2c”

3			 “a.track2d”

out_track3

track			 <kuid:-1:15>

vertices

0			 “a.track3a”

1			 “a.track3b”

2			 “a.track3c”

3			 “a.track3d”

in_track0

track			 <kuid:-1:15>

vertices

0			 “a.track4a”

1			 “a.track4b”

2			 “a.track4c”

3			 “a.track4d”

attached-trigger

out_load0

att			 “a.trig0”

radius	

out_load1

att			 “a.trig1”

radius			 2

out_load2

att			 “a.trig2”

radius			 2

out_load3

att			 “a.trig3”

radius			 2

Version 3.0   255   Trainz Railroad Simulator - The Content Creator’s Guide

in_load0

att			 “a.trig4”

radius			 10

in_load1

att			 “a.trig5”

radius			 10

in_load2

att			 “a.trig6”

radius			 10

in_load3

att			 “a.trig7”

radius			 10

queues

coal_out

size			 1357500

animated-mesh		 “load”

product-kuid		 <kuid:44179:60013>

initial-count		 543000

allowed-products

0			 <kuid:44179:60013>

diesel_in

size			 310400

animated-mesh		 “load_diesel”

product-kuid		 <kuid:-3:10011>

initial-count		 155200

allowed-products

0			 <kuid:-3:10011>

processes

coal_consumer

start-enabled		 1

duration		 30

inputs

0

amount			 6465

queue			 “diesel_in”

outputs

0

amount			 22620

queue			 “coal_out”

smoke0

attachment		 “a.stack0”

mode			 “time”

color			 46,46,39,150

accel			 0.5,0.3,0

rate			 8

velocity			 3

lifetime			 10

minsize			 2

maxsize		 10

enabled			 1

smoke1

attachment		 “a.stack1”

mode			 “time”

color			 176,176,176,100

accel			 0.5,0.3,0

rate			 8

velocity			 3

lifetime			 8

minsize			 2

maxsize		 5

enabled			 1

smoke2

attachment		 “a.load_top0”

mode			 “time”

color			 25,25,25,220

accel			 0.5,0.3,0

rate			 8

velocity			 3

lifetime			 10

minsize			 2

Version 3.0   256   Trainz Railroad Simulator - The Content Creator’s Guide

maxsize		 10

enabled			 0

smoke3

attachment		 “a.load_top1”

mode			 “time”

color			 25,25,25,220

accel						
0.5,0.3,0

rate			 8

velocity			 3

lifetime			 10

minsize			 2

maxsize		 10

enabled			 0

smoke4

attachment		 “a.load_top2”

mode			 “time”

color			 25,25,25,220

accel			 0.5,0.3,0

rate			 8

velocity			 3

lifetime			 10

minsize			 2

maxsiz			 10

enabled			 0

smoke5

attachment		 “a.load_top3”

mode			 “time”

color			 25,25,25,220

accel			 0.5,0.3,0

rate			 8

velocity			 3

lifetime			 10

minsize			 2

maxsize		 10

enabled			 0

string-table

coalmine_loadbay1		 “Coal load bay #1”

coalmine_loadbay2		 “Coal load bay #2”

coalmine_loadbay3		 “Coal load bay #3”

coalmine_loadbay4		 “Coal load bay #4”

coalmine_dieselunload		 “Diesel unload bay”

thumbnails

0

image			 “icon_coalmine.tga”

width			 64

height			 64

1

image			 “diesel_icon.tga”

width			 64

height			 64

2

image			 “thumb.jpg”

width			 240

height			 180

Version 3.0   257   Trainz Railroad Simulator - The Content Creator’s Guide

coalmine.gs:

include “BaseIndustry.gs”

//

class CoalMine isclass BaseIndustry

{

 ProductQueue coalOutQueue, dieselInQueue;

 bool scriptletEnabled = true;

 //bool nodiesel = false;

 bool animating = false;

 bool processing = false;

 // Track if they only supply some of the logs that were
requested in the waybill.

 int dieselWBRemain = 0;

 //

 bool TriggerSupportsMovingLoad(Vehicle vehicle, string
triggerName)

 {

 if (itc.IsTrainCommand(vehicle.GetMyTrain(), Industry.
LOAD_COMMAND))

 if (triggerName == “out_load0” or triggerName == “out_
load1” or triggerName == “out_load2” or triggerName ==
“out_load3”)

 return true;

 return false;

 }

 void PerformMovingLoad(Vehicle vehicle, string
triggerName)

 {

 // OUTPUT trigger - load

 float speed = vehicle.GetVelocity();

 if (speed > -5.0f and speed < 5.0f)

 {

 int coalAvailable = coalOutQueue.GetQueueCount();

 if (triggerName == “out_load0”)

 {

 SendMessage(me, “pfx”, “+2”);

 //World.PlaySound(“coal_load.wav”);

 LoadingReport report = CreateLoadingReport(coalOutQu
eue, coalAvailable);

 vehicle.LoadProduct(report);

 SendMessage(me, “pfx”, “-2”);

 }

 if (triggerName == “out_load1”)

 {

 SendMessage(me, “pfx”, “+3”);

 //World.PlaySound(“coal_load.wav”);

 LoadingReport report = CreateLoadingReport(coalOutQu
eue, coalAvailable);

 vehicle.LoadProduct(report);

 SendMessage(me, “pfx”, “-3”);

 }

 if (triggerName == “out_load2”)

 {

 SendMessage(me, “pfx”, “+4”);

 //World.PlaySound(“coal_load.wav”);

 LoadingReport report = CreateLoadingReport(coalOutQu
eue, coalAvailable);

 vehicle.LoadProduct(report);

 SendMessage(me, “pfx”, “-4”);

 }

 if (triggerName == “out_load3”)

 {

 SendMessage(me, “pfx”, “+5”);

 //World.PlaySound(“coal_load.wav”);

 LoadingReport report = CreateLoadingReport(coalOutQu
eue, coalAvailable);

 vehicle.LoadProduct(report);

 SendMessage(me, “pfx”, “-5”);

 }

 }

 }

 //

 bool TriggerSupportsStoppedLoad(Vehicle vehicle, string
triggerName)

Version 3.0   258   Trainz Railroad Simulator - The Content Creator’s Guide

 {

 if (itc.IsTrainCommand(vehicle.GetMyTrain(), Industry.
UNLOAD_COMMAND))

 {

 bool vehicleToTrain = vehicle.
GetFacingRelativeToTrain();

 int direction = vehicle.GetRelationToTrack(me, “in_
track0”);

 if (!vehicleToTrain)

 direction = -direction;

 // Are we up to the furthest trigger away from the side we
entered for diesel?

 if (direction == Vehicle.DIRECTION_BACKWARD and
triggerName == “in_load0”)

 return true;

 if (direction == Vehicle.DIRECTION_FORWARD and
triggerName == “in_load3”)

 return true;

 // If the train has already stopped, then fall thru and allow
this load as well

 if (triggerName == “in_load0” or triggerName ==
“in_load1” or triggerName == “in_load2” or triggerName ==
“in_load3”)

 {

 if (vehicle.GetMyTrain().IsStopped())

 return true;

 }

 }

 return false;

 }

 void PerformStoppedLoad(Vehicle vehicle, string
triggerName)

 {

 int spaceAvailable = dieselInQueue.GetQueueSpace();

 LoadingReport report = CreateUnloadingReport(dieselInQu
eue, spaceAvailable);

 int direction = vehicle.GetRelationToTrack(me, “in_
track0”);

 if (direction == Vehicle.DIRECTION_FORWARD)

 report.sideFlags = LoadingReport.LEFT_SIDE;

 else if (direction == Vehicle.DIRECTION_BACKWARD)

 report.sideFlags = LoadingReport.RIGHT_SIDE;

 vehicle.UnloadProduct(report);

 // Ensure we are tracking this if we are waiting for a way
bill to complete in its entirety

 if (dieselWBRemain > 0)

 dieselWBRemain = dieselWBRemain - report.amount;

 /*if (report.amount > 0)

 {

 nodiesel = false;

 SetMeshAnimationFrame(“default”, 2);

 StartMeshAnimationLoop(“default”);

 }*/

 }

 //

 thread void CoalMain(void)

 {

 Message msg;

 wait()

 {

 on “Scriptlet-Enabled”, “1”:

 {

 if (!scriptletEnabled)

 {

 scriptletEnabled = true;

 SetProcessEnabled(“coal_consumer”, true);

 }

 continue;

 }

 // ? Power station is providing electricity, if not already
running. start the

 on “Scriptlet-Enabled”, “0”:

 {

 if (scriptletEnabled)

 {

Version 3.0   259   Trainz Railroad Simulator - The Content Creator’s Guide

 scriptletEnabled = false;

 SetProcessEnabled(“coal_consumer”, false);

 }

 continue;

 }

 // logs_consumer process in lumber mill has started, so
active smoke stack particles and

 // start the animation (forklift & conveyor)

 on “Process-Start”, “coal_consumer”:

 //Interface.Print(“CoalMine.LumberMain(): Process-
Start:coal_consumer message received, starting default
animation amd smoke stack particles”);

 SendMessage(me, “pfx”, “+0+1”);

 if (animating) // only start animating if animation isn’t
already running

 StartMeshAnimationLoop(“default”);

 continue;

 // logs_consumer process has stopped, disable particle
effect and stop animation

 on “Process-Stop”, “coal_consumer”:

 //Interface.Print(“CoalMine.LumberMain(): Process-
Stop:coal_consumer message received, stopping default
animation and smoke stack particles”);

 SendMessage(me, “pfx”, “-0-1”);

 StopMeshAnimation(“default”);

 continue;

 //

 on “Animation-Event”, “animstop”:

 {

 //if (!(GetProcessStarted(“logs_consumer”) and
GetProcessEnabled(“logs_consumer”)))

 //Interface.Print(“Animation-Event: animstop message
received, stopping default animation!”);

 StopMeshAnimation(“default”);

 // make sure we didn’t overshoot the end of the animation

 SetMeshAnimationFrame(“default”, 2);

 // it’s actually possible to receive the Animation-Event
message multiple times, even

 // though we tell the game engine to stop the animation.
this can occur if the frame-rate

 // is low and the animation repeats multiple times inside
one frame. it’s important that we

 // check for this situation, otherwise a script exception
will result.

 if (animating)

 {

 animating = false;

 if (!processing)

 {

 // we are making the assumption that there is only one
process, “coal_consumer”

 // if there were more, we would have to be careful to
finish the correct process here

 PerformProcessOutput(“coal_consumer”);

 PerformProcessFinished(“coal_consumer”);

 }

 }

 continue;

 }

 }

 }

 // Called by the game once when a process is ready to start
(see Industry.gs)

 void NotifyProcessStarted(string processName)

 {

 //Interface.Print(“CoalMine.NotifyProcessFinished: Process
Started”);

 if (scriptletEnabled) // only when power is running

 {

 if (PerformProcessInput(processName))

 {

 //Interface.Print(“NotifyProcessStarted: Starting the
default animation!”);

 // we are making the assumption that there is only one
process, “logs_consumer”

 SetMeshAnimationFrame(“default”, 2);

 StartMeshAnimationLoop(“default”);

Version 3.0   260   Trainz Railroad Simulator - The Content Creator’s Guide

 animating = true;

 processing = true;

 PerformProcessStarted(processName);

 }

 else

 PerformProcessCancelled(processName);

 }

 }

 // called by the game once when a process is ready to stop
(see Industry.gs)

 void NotifyProcessFinished(string processName)

 {

 //Interface.Print(“CoalMine.NotifyProcessFinished: Process
Finished”);

 if (scriptletEnabled)

 {

 processing = false;

 if (!animating)

 {

 PerformProcessOutput(processName);

 PerformProcessFinished(processName);

 PostMessage(me, “GenericIndustry”, “ProcessComplete”,
0.0f);

 }

 }

 //if (GetProcessInput(processName, dieselInQueue,
GetAsset().FindAsset(“diesel”)) <= 0)

 //{

 //nodiesel = true;

 //StopMeshAnimation(“default”);

 //SetMeshAnimationFrame(“default”, 1098);

 //}

 }

 //

 public void Init(void)

 {

 inherited();

 usePipeAnimation = true;

 useGenericViewDetails = true;

 coalOutQueue = GetQueue(“coal_out”);

 dieselInQueue = GetQueue(“diesel_in”);

 AddAssetToIndustryProductInfo(“diesel”, “diesel_in”,
“coal_consumer”, true);

 AddAssetToIndustryProductInfo(“coal”, “coal_out”, “coal_
consumer”, false);

 // Enabled or disabled on startup? (Depends on if we have
fuel! :D)

 /*if (dieselInQueue.GetQueueCount() > 0)

 {

 nodiesel = false;

 SetMeshAnimationFrame(“default”, 2);

 StartMeshAnimationLoop(“default”);

 }

 else

 {

 nodiesel = true;

 StopMeshAnimation(“default”);

 SetMeshAnimationFrame(“default”, 1098);

 }*/

 CoalMain();

 }

 public Requirement[] GetRequirements(void)

 {

 Requirement[] ret = new Requirement[0];

 if (dieselInQueue.GetQueueCount() < 77600 or
dieselWBRemain > 0) // Approx 25% of full

 {

 ResourceRequirement req = new ResourceRequirement();

 req.resource = dieselInQueue.GetProductFilter().
GetProducts()[0];

 // This is how many we have asked for. Wait till it is

Version 3.0   261   Trainz Railroad Simulator - The Content Creator’s Guide

fullfilled,

 // if we are not already waiting for a waybill to be
completed.

 req.amount = 232800; // 6 tank cars

 if (dieselInQueue.GetQueueCount() < 77600 and
dieselWBRemain == 0)

 dieselWBRemain = 232800;

 req.dst = me;

 req.dstQueue = dieselInQueue;

 ret[ret.size()] = req;

 }

 return ret;

 }

 public void AppendDriverDestinations(string[] destNames,
string[] destTracks)

 {

 StringTable stringTable = GetAsset().GetStringTable();

 destNames[destNames.size()] = stringTable.
GetString(“coalmine_loadBay1”);

 destTracks[destTracks.size()] = “out_track0”;

 destNames[destNames.size()] = stringTable.
GetString(“coalmine_loadBay2”);

 destTracks[destTracks.size()] = “out_track1”;

 destNames[destNames.size()] = stringTable.
GetString(“coalmine_loadBay3”);

 destTracks[destTracks.size()] = “out_track2”;

 destNames[destNames.size()] = stringTable.
GetString(“coalmine_loadBay4”);

 destTracks[destTracks.size()] = “out_track3”;

 destNames[destNames.size()] = stringTable.
GetString(“coalmine_dieselUnload”);

 destTracks[destTracks.size()] = “in_track0”;

 }

};

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   262   Trainz Railroad Simulator - The Content Creator’s Guide

Interior (Diesel)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Version 3.0   263   Trainz Railroad Simulator - The Content Creator’s Guide

Version 3.0   264   Trainz Railroad Simulator - The Content Creator’s Guide

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

various.tga, various.bmp, various texture.txt - Various
graphic files used by the asset - The texture files used by
the progressive meshes of this interior.

See the section on Texture.txt files on Page 96 for more
information.

f7interior_ampmeter.pm, f7interior_ampmeter_
needle.pm, f7interior_bpflow_needle.pm, f7interior_
bploco.pm, f7interior_bplocoequaliser_needle.pm,
f7interior_bplocomain_needle.pm, f7interior_bptrain.
pm, f7interior_bptrainbrakecylinder_needle.
pm, f7interior_bptrainbrakepipe_needle.pm,
f7interior_brakepressure.pm, f7interior_chair.pm,
f7interior_controlstand.pm, f7interior_controlstand.
pm, f7interior_horizblinds.pm, f7interior_horn.pm,
f7interior_locobrake_lever.pm, f7interior_main.pm,
f7interior_reverser_lever.pm, f7interior_speedo.pm,
f7interior_speedo_needle.pm, f7interior_switch.pm,
f7interior_throttle_lever.pm, f7interior_trainbrake_
lever.pm, f7interior_westinghouse.pm, f7interior_
windows.pm, wheelslip.pm - The progressive mesh
components used to create the interior asset. More
information on modelling interior assets can be found on
Page 358 of this document.

attpoints.txt - A text file stating which attachment points
relate to which assets. For reference purposes only. This
file may be deleted.

File Listings

config.txt

kuid				 <kuid:56113:1014>

trainz-build			 2.5

category-class			 “ZI”

category-region			 “US”

category-era			 “1960s;1970s;1980s”

username			 “testInteriorDiesel”

kind				 “interior”

cameradefault			 2

description			 “Test interor asset
(based on the F7A interior).”

mesh-table

ampmeter_needle

kind				 “needle”

mesh		 “f7interior_ampmeter_needle.pm”

att				 “a.ampmeter_needle”

limits				 0,1500

angles				 0,2.12058

att-parent			 “default”

flow_needle

Version 3.0   265   Trainz Railroad Simulator - The Content Creator’s Guide

att-parent			 “default”

dynamicbrake_lever

kind				 “lever”

mesh		 “f7interior_dynamicbrake_lever.pm”

att				 “a.dynamicbrake_lever”

limits				 0,2

angles				 0,0.94

notches				 0,0.5,1

notchheight			 1,1,1

att-parent			 “default”

independantbrake_lever

kind				 “lever”

mesh			 “f7interior_locobrake_lever.pm”

att				 “a.locobrake_lever”

limits				 0,32

angles				 0.94,0

notches		 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1

notchheight			 1,2,2,2,2,2,2,2,2,2,1

mousespeed			 -1

att-parent			 “default”

reverser_lever

kind				 “lever”

mesh			 “f7interior_reverser_lever.pm”

att				 “a.reverser_lever”

limits				 0,2

angles				 0,-0.471239

notches				 0,0.5,1

notchheight			 1,1,1

att-parent			 “default”

throttle_lever

kind				 “lever”

mesh			 “f7interior_throttle_lever.pm”

att				 “a.throttle_lever”

limits				 0,8

kind				 “needle”

mesh				 “f7interior_bpflow_
needle.pm”

att				 “a.bpflow_needle”

limits				 0,100

att-parent			 “default”

bploco_equaliser

kind				 “needle”

mesh		 “f7interior_bplocoequaliser_needle.pm”

att			 “a.bplocoequaliser_needle”

limits				 0,1000

att-parent			 “default”

bplocomain_needle

kind				 “needle”

mesh		 “f7interior_bplocomain_needle.pm”

att				 “a.bplocomain_needle”

limits				 0,1000

att-parent			 “default”

bptrainbrakecylinder_needle

kind				 “needle”

mesh	 “f7interior_bptrainbrakecylinder_needle.pm”

att			 “a.bptrainbrakecylinder_needle”

limits				 0,1000

att-parent			 “default”

bptrainbrakepipe_needle

kind				 “needle”

mesh		 “f7interior_bptrainbrakepipe_needle.pm”

att			 “a.bptrainbrakepipe_needle”

limits				 0,1000

att-parent			 “default”

speedo_needle

kind				 “needle”

mesh			 “f7interior_speedo_needle.pm”

att				 “a.speedo_needle”

limits				 0,58

Version 3.0   266   Trainz Railroad Simulator - The Content Creator’s Guide

angles				 -0.471,0

notches	 0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1

notchheight			 1,1,1,1,1,1,1,1,1

mousespeed			 -1

att-parent			 “default”

trainbrakelap_lever

kind				 “lever”

mesh			 “f7interior_trainbrake_lever.pm”

att				 “a.trainbrake_lever”

limits				 0,4

angles				 0.94,0

notches				 0,0.25,0.5,0.75,1

notchheight			 1,1,1,1,1

mousespeed			 -1

att-parent			 “default”

horn

kind				 “pullrope”

mesh				 “f7interior_horn.pm”

att				 “a.horn”

limits				 0,1

angles				 0.1,0

notches				 0,1

notchheight			 0,0

mousespeed			 -1

att-parent			 “default”

1

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch0”

limits				 0,1

angles				 0,2

mousespeed			 -1

radius				 0.2

att-parent			 “default”

2

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch1”

limits				 0,1

angles				 0,2

mousespeed			 -1

radius				 0.2

att-parent			 “default”

3

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch2”

limits				 0,1

angles				 0,2

mousespeed			 -1

radius				 0.2

att-parent			 “default”

4

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch3”

limits				 0,1

angles				 0,2

mousespeed			 -1

radius				 0.2

att-parent			 “default”

5

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch4”

limits				 0,1

angles				 0,2

mousespeed			 -1

Version 3.0   267   Trainz Railroad Simulator - The Content Creator’s Guide

radius				 0.2

att-parent			 “default”

6

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch5”

limits				 0,1

angles				 0,2

mousespeed			 -1

radius				 0.2

att-parent			 “default”

light_switch

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch6”

limits				 0,1

angles				 0,2

notches				 0,1

notchheight			 0,0

mousespeed			 -1

radius				 0.2

att-parent			 “default”

8

kind				 “lever”

mesh				 “f7interior_switch.pm”

att				 “a.switch7”

limits				 0,1

angles				 0,2

mousespeed			 -1

radius				 0.2

att-parent			 “default”

ampmetermesh		 “f7interior_ampmeter.pm”

bplocomesh			 “f7interior_bploco.pm”

bptrain

mesh				 “f7interior_bptrain.pm”

brakepressure

mesh				 “f7interior_
brakepressure.pm”

chair

mesh				 “f7interior_chair.pm”

controlstand

mesh			 “f7interior_controlstand.pm”

horizblinds

mesh			 “f7interior_horizblinds.pm”

interior_main

mesh				 “f7interior_main.pm”

speedo

mesh				 “f7interior_speedo.pm”

westinghouse

mesh			 “f7interior_westinghouse.pm”

windows

mesh				 “f7interior_windows.pm”

opacity				 0

wheelslip_light

kind				 “light”

mesh				 “wheelslip.pm”

att				 “none”

att-parent			 “default”

default

mesh				 “f7interior_main.pm”

auto-create			 1

cameralist

camera0	 -0.797,0.476,0.547,0.057,-0.085

camera1	 -1.027,1.076,0.48,-6.149,-0.264

camera2	 -1.018,1.039,0.48,-5.364,-0.117

camera3	 0.832,0.521,0.592,-12.548,-0.098

camera4	 0.859,0.662,0.434,-1.05,-0.255

camera5	 -0.797,0.476,0.547,0,0

thumbnails

Version 3.0   268   Trainz Railroad Simulator - The Content Creator’s Guide

0

image				 “thumb.jpg”

width				 240

height				 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   269   Trainz Railroad Simulator - The Content Creator’s Guide

Interior (Electric)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Version 3.0   270   Trainz Railroad Simulator - The Content Creator’s Guide

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

cabin.txt - A text file mapping sounds to their respective
interior elements.

air_horn_3.wav, lever_2.wav, lever_4.wav, lever_
5.wav, notch_1.wav, reverser.wav, switch_6.wav,
throttle.wav - The sound files associated with the interior
elements.

various.tga, various.bmp, various texture.txt - Various
graphic files used by the asset - The texture files used by
the progressive meshes of this interior.

See the section on Texture.txt files on Page 96 for more
information.

bar_meter_needle.pm, brake.pm, gen_tgv_cab.pm,
lever_handle.pm, light_switch.pm, pantograph_lever.
pm, pressure_needle_lge.pm, pressure_needle_
lge_red.pm, pressure_needle_sml.pm, reverser.pm,
speedo_needle1.pm, speedo_needle2.pm, switch.
pm, traction.pm, wheelslip.pm, windows.pm - The
progressive mesh components used to create the interior
asset. More information on modelling interior assets can
be found on Page 58 of this document.

File Listings

config.txt

kuid			 <kuid:171456:100043>

trainz-build		 2.5

category-class		 “ZI”

category-region		 “00”

category-era		 “1990s;2000s;2010s”

username		 “testElectricInterior”

kind			 “interior”

cameradefault		 2

description		 “Test electric interior. Based on

Version 3.0   271   Trainz Railroad Simulator - The Content Creator’s Guide

the TGV interior.”

cameralist

camera0			 0.773,0.671,0.2,1.566,-
0.096

camera1			 0.583,0.35,0.247,0,-
0.352

camera2			 0.479,0,0.148,0,0

camera3			 -0.69,-
0.017,0.17,0.242,-0.185

camera4			 -0.773,0.671,0.2,-
1.566,-0.096

camera5			 0.6,0.35,0.17,0,0

mesh-table

pantograph_lever

kind			 “lever”

mesh			 “pantograph_lever.pm”

att			 “a.pantograph_lever”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 3,3

radius			 0.16

att-parent		 “default”

horn

kind			 “lever”

mesh			 “lever_handle.pm”

att			 “a.horn”

limits			 0,1

angles			 0,-0.45

notches			 0,1

notchheight		 3,3

radius			 0.16

mousespeed		 -1

att-parent		 “default”

independantbrake_lever

kind			 “lever”

mesh			 “lever_handle.pm”

att			 “a.ind_brake_lever”

limits			 0,32

angles			 0,-0.45

notches			 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,
0.9,1

notchheight		 1,2,2,2,2,2,2,2,2,2,1

radius			 0.15

mousespeed		 -1

att-parent		 “default”

reverser_lever

kind			 “lever”

mesh			 “reverser.pm”

att			 “a.reverser”

limits			 0,2

angles			 0,-0.471239

notches			 0,0.5,1

notchheight		 1,1,1

att-parent		 “default”

throttle_lever

kind			 “lever”

mesh			 “traction.pm”

att			 “a.traction”

limits			 0,32

angles			 -0.75,0.75

notches					 0,0.0303,0.060
6,0.0909,0.1212,0.1515,0.1818,0.2121,0.2424,0.2727,0.
303,0.3333,0.3636,0.3939,0.4242,0.4545,0.4848,0.5151
,0.5454,0.5757,0.606,0.6363,0.6666,0.6969,0.7272,0.75
75,0.7878,0.8181,0.8484,0.8787,0.909,0.9393,1

notchheight		 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1

radius			 0.35

att-parent		 “default”

voltmeter_line

kind			 “needle”

mesh			 “bar_meter_needle.pm”

Version 3.0   272   Trainz Railroad Simulator - The Content Creator’s Guide

att			 “a.voltmeter_line”

limits			 0,125

value			 75

angles			 0,0.6

att-parent		 “default”

ampmeter_needle

kind			 “needle”

mesh			 “bar_meter_needle.pm”

att			 “a.ampmeter_motor1”

limits			 0,1500

angles			 0,0.6

att-parent		 “default”

ampmeter2_needle

kind			 “needle”

mesh			 “bar_meter_needle.pm”

att			 “a.ampmeter_motor2”

limits			 0,1500

angles			 0,0.6

att-parent		 “default”

ampmeter_brake

kind			 “needle”

mesh			 “bar_meter_needle.pm”

att			 “a.ampmeter_brake”

limits			 0,1000

value			 200

angles			 0,0.6

att-parent		 “default”

voltmeter_battery

kind			 “needle”

mesh			 “bar_meter_needle.pm”

att			 “a.voltmeter_battery”

limits			 0,125

value			 72

angles			 0,0.6

att-parent		 “default”

trainbrake_lever

kind			 “lever”

mesh			 “brake.pm”

att			 “a.train_brake_lever”

limits			 0,4

angles			 -0.75,0.35

notches			 0,0.25,0.27,0.29,0.31,0.33,0.35,
0.37,0.39,0.41,0.43,0.45,0.47,0.49,0.5,0.75,1

notchheight		 1,1,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1

radius			 0.15

mousespeed		 -1

att-parent		 “default”

bplocomain_needle

kind			 “needle”

mesh			 “pressure_needle_lge.pm”

att			 “a.res_pressure_needle”

limits			 0,1000

att-parent		 “default”

bploco_equaliser

kind			 “needle”

mesh			 “pressure_needle_lge_red.pm”

att			 “a.res_pressure_needle”

limits			 0,1000

att-parent		 “default”

bptrainbrakepipe_needle

kind			 “needle”

mesh			 “pressure_needle_sml.pm”

att			 “a.brake_cyl_pressure”

limits			 0,1000

att-parent		 “default”

no3pipe_needle

kind			 “needle”

mesh			 “pressure_needle_sml.pm”

att			 “a.ind_brake_pressure”

limits			 0,1000

Version 3.0   273   Trainz Railroad Simulator - The Content Creator’s Guide

att-parent		 “default”

speedo_needle2

kind			 “needle”

mesh			 “speedo_needle1.pm”

att			 “a.speedo_needle1”

limits			 0,50

att-parent		 “default”

speedo_needle

kind			 “needle”

mesh			 “speedo_needle2.pm”

att			 “a.speedo_needle2”

limits			 0,186

att-parent		 “default”

wheelslip_light

kind			 “light”

mesh			 “wheelslip.pm”

att			 “none”

att-parent		 “default”

switch0

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch0”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch1

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch1”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch2

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch2”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch3

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch3”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch4

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch4”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch5

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch5”

limits			 0,1

angles			 0,1

notches			 0,1

Version 3.0   274   Trainz Railroad Simulator - The Content Creator’s Guide

notchheight		 0,0

att-parent		 “default”

switch6

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch6”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch7

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch7”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch8

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch8”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch9

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch9”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch10

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch10”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch11

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch11”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch12

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch12”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch13

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch13”

limits			 0,1

Version 3.0   275   Trainz Railroad Simulator - The Content Creator’s Guide

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch14

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch14”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch15

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch15”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch16

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch16”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch17

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch17”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch18

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch18”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch19

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch19”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

switch20

kind			 “lever”

mesh			 “switch.pm”

att			 “a.switch20”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

light_switch

kind			 “lever”

att			 “a.switch21”

Version 3.0   276   Trainz Railroad Simulator - The Content Creator’s Guide

mesh			 “light_switch.pm”

limits			 0,1

angles			 0,1

notches			 0,1

notchheight		 0,0

att-parent		 “default”

windows

mesh			 “windows.pm”

opacity			 0

default

mesh			 “gen_tgv_cab.pm”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

cabin.txt

* switch switch_6.wav

dynamicbrake_lever change-notch notch_1.wav

independantbrake_lever change-notch notch_1.wav

reverser_lever change-notch lever_2.wav

throttle_lever change-notch lever_5.wav

trainbrakelap_lever change-notch notch_1.wav

pantograph_lever change-notch lever_4.wav

trainbrake_lever change-notch notch_1.wav

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   277   Trainz Railroad Simulator - The Content Creator’s Guide

Interior (Steam)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Version 3.0   278   Trainz Railroad Simulator - The Content Creator’s Guide

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

firebox_glow_op.bmp, glass.bmp, glassw.bmp, black.
tga, blackhead.tga, brass.tga, bumpy_blackhead.tga,
coalfire.tga, copper.tga, darkmetal.tga, firebox.tga,
firebox_glow.tga, flaman.tga, flame_test2.tga, glass.
tga, glassw.tga, red.tga, roof.tga, waterhose.tga,
black.texture.txt, blackhead.texture.txt, brass.texture.
txt, bumpy_blackhead.texture.txt, coal.texture.

txt, copper.texture.txt, darkmetal.texture.txt, fire.
texture.txt, firebox.texture.txt, firebox_glow-firebox_
glow_op.texture.txt, flaman.texture.txt, glass-glass.
texture.txt, glassw-glassw.texture.txt, red.texture.
txt, roof.texture.txt, waterhose.texture.txt, blackhead.
texture.txt, blackhead.tga, bumpy_blackhead.texture.
txt, bumpy_blackhead.tga, darkmetal.texture.txt,
darkmetal.tga, water.texture.txt, water.tga, needles.
tga, needles.texture.txt - The texture files used by the
progressive meshes of this interior.

See the section on Texture.txt files on Page 96 for more
information.

fireplates.kin, waterglass_left.kin, waterglass_right.
kin - The animation files used to operate certain elements
of the interior, ie the fireplate doors opening and closing.

bigsteam_interior.gs - Script file detailing some
functionality of the interior asset, in this case that no
animated fireman is present in the interior.

bigtap.im, coal.im, cylindercocks.im, drifter.im, fire.
im, firebox.im, fireglow.im, injector.im, mallard_
interior.im, regulator.im, smalltap.im, trainbrake_
lever.im, watervalvea.im, watervalveb.im, window.
im, selection_box.im, waterglass_left.im, waterglass_
right.im, boiler_needle.im, brake_needle.im, flaman_
needle.im, speedo_needle.im, fireplates.im - The
indexed mesh components used to create the interior
asset. More information on modelling interior assets can
be found on Page 358 of this document.

Cabin.txt - A text file mapping sounds to their respective
interior elements.

air_brake2.wav, air_brake.wav, boiler_blow_down.
wav, boiler_blow_down_end.wav, brakehandle.
wav, brakes.wav, coal_into_firebox1.wav, coal_into_
firebox2.wav, coal_into_firebox3.wav, coal_shovel1.
wav, coal_shovel2.wav, coal_shovel_into_combined.
wav, cylinder_cocks1.wav, cylinder_cocks2.wav,
cylinder_cocks_full.wav, fire_roar.wav, firebox_close.
wav, firebox_open.wav, metal_footstep_left.wav,
metal_footstep_right.wav, regulator1.wav, regulator2.
wav, reversing_lever_notch.wav, reversing_
lever_throw.wav, rutnut.wav, sanding_lever1.wav,
sanding_lever2.wav, seat_unfold.wav, shovel_hit.wav,
tender_handbrake.wav, throttle.wav, whistle_end.wav,
whistle_mid_loop.wav, whistle_start.wav, window_
open.wav - The sound files associated with the interior
elements.

File Listings

Version 3.0   279   Trainz Railroad Simulator - The Content Creator’s Guide

mousemode		 “exact”

trainbrakelap_lever

kind			 “lever”

mesh			 “trainbrake_lever.im”

att			 “a.trainbrake_lever”

att-parent		 “default”

auto-create		 1

limits			 0,4

angles			 0,0.94

notches			 0,0.25,0.5,0.75,1

notchheight		 1,1,1,1,1

mousespeed		 1

firebox

kind			 “firebox”

mesh			 “firebox.im”

auto-create		 1

att			 “a.origin”

att-parent		 “default”

test-collisions		 0

fire

mesh			 “fire.im”

auto-create		 1

light			 0

test-collisions		 0

coal

mesh			 “coal.im”

auto-create		 1

light			 0

test-collisions		 0

fireglow

mesh			 “fireglow.im”

auto-create		 1

light			 0

test-collisions		 0

config.txt

kuid			 <kuid:56113:1015>

kind			 “interior”

username		 “testSteamInterior”

trainz-build		 2.5

cameradefault		 0

category-class		 “ZI”

description		 “Test interior for a steam
locomotive. Based on the Mallard interior.”

category-region		 “00”

category-era		 “1940s;1950s;1960s;1970s;198
0s”

script			 “bigsteam_interior.gs”

class			 “Bigsteam_Interior”

cameralist

camera0			 1,0.9,0.55,0,0

camera1			 0.5,0.9,0.55,0,0

camera2			 0,0.9,0.55,0,0

camera3			 -0.5,0.9,0.55,0,0

camera4			 -1,0.9,0.55,0,0

camera5			 1.1,0.8,0,0,0

mesh-table

default

mesh			 “mallard_interior.im”

auto-create		 1

regulator

kind			 “lever”

mesh			 “regulator.im”

att			 “a.regulator”

att-parent		 “default”

auto-create		 1

limits			 0,1

angles			 0.24,-0.24

radius			 0.35

mousespeed		 -1

Version 3.0   280   Trainz Railroad Simulator - The Content Creator’s Guide

water_injector_0

mesh			 “injector.im”

auto-create		 1

att			 “a.injector0”

att-parent		 “default”

kind			 “lever”

mousespeed		 1

water_injector_1

mesh			 “injector.im”

auto-create		 1

att			 “a.injector1”

att-parent		 “default”

kind			 “lever”

mousespeed		 1

fire_plates

mesh			 “fireplates/fireplates.im”

anim			 “fireplates/fireplates.kin”

auto-create		 1

kind			 “animated-lever”

test-collisions		 0

notches			 0,1

notchheight		 1,1

limits			 0,1

fire_plates-collision-box

mesh			 “fireplates/selection_box/
selection_box.im”

att-parent		 “fire_plates”

att			 “a.selection_box”

auto-create		 1

kind			 “collision-proxy”

opacity			 0

collision-parent	 “fire_plates”

waterglass_right

mesh			 “waterglasses/waterglass_right.
im”

anim			 “waterglasses/waterglass_right.
kin”

auto-create		 1

limits			 0,100

kind			 “animated-dial”

waterglass_left

mesh			 “waterglasses/waterglass_left.
im”

anim			 “waterglasses/waterglass_left.
kin”

auto-create		 1

limits			 0,100

kind			 “animated-dial”

reverser

mesh			 “reverser/reverser.im”

anim			 “reverser/reverser.kin”

auto-create		 1

kind			 “animated-lever”

test-collisions		 0

limits			 -1,1

mousespeed		 -2

reverser-collision-box

mesh			 “reverser/selection_box/
selection_box.im”

att-parent		 “reverser”

att			 “a.selection_box”

auto-create		 1

kind			 “collision-proxy”

opacity			 0

collision-parent	 “reverser”

boiler_needle

kind			 “needle”

mesh			 “needles/boiler_needle.im”

att			 “a.boiler_pressure1”

limits			 0,1902

att-parent		 “default”

Version 3.0   281   Trainz Railroad Simulator - The Content Creator’s Guide

auto-create		 1

boiler_needle1

kind			 “needle”

mesh			 “needles/boiler_needle.im”

att			 “a.boiler_pressure2”

limits			 0,1902

att-parent		 “default”

auto-create		 1

speedo_needle

kind			 “needle”

mesh			 “needles/speedo_needle.im”

att			 “a.speedo”

att-parent		 “default”

auto-create		 1

limits			 0,49

bptrainbrakepipe_needle

kind			 “needle”

mesh			 “needles/brake_needle.im”

att			 “a.trainbrake_needle”

att-parent		 “default”

auto-create		 1

limits			 0,1970

bplocomain_needle

kind			 “needle”

mesh			 “needles/brake_needle.im”

att			 “a.mainres_needle”

att-parent		 “default”

auto-create		 1

angles			 0,-3.14

limits			 0,890

water_valve_

mesh			 “watervalveA.im”

auto-create				 1

att			 “a.watervalve_0”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

water_valve__

mesh			 “watervalveA.im”

auto-create		 1

att			 “a.watervalve_1”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

water_valve___

mesh			 “watervalveB.im”

auto-create		 1

att			 “a.watervalve_2”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,0.5

mousespeed		 -1

water_valve____

mesh			 “watervalveB.im”

auto-create		 1

att			 “a.watervalve_3”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,0.5

mousespeed		 -1

water_valve_____

mesh			 “watervalveB.im”

Version 3.0   282   Trainz Railroad Simulator - The Content Creator’s Guide

auto-create		 1

att			 “a.watervalve_4”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

mousespeed		 -1

water_valve______

mesh			 “watervalveB.im”

auto-create		 1

att			 “a.watervalve_5”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

mousespeed		 -1

_

mesh			 “drifter.im”

auto-create		 1

att			 “a.drifter”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

mousespeed		 -1

driver_window

mesh			 “window.im”

auto-create		 1

att			 “a.windowA”

att-parent		 “default”

limits			 0,1

angles			 0,-0.012

notches			 0,1

notchheight		 1,1

kind			 “lever”

fireman_window

mesh			 “window.im”

auto-create		 1

att			 “a.windowB”

att-parent		 “default”

limits			 0,1

angles			 0,0.012

notches			 0,1

notchheight		 1,1

kind			 “lever”

cylinder_cocks

mesh			 “cylindercocks.im”

auto-create		 1

att			 “a.cylindercocks”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

__

mesh			 “watervalveA.im”

auto-create		 1

att			 “a.steamvalve”

att-parent		 “default”

kind			 “lever”

mousemode		 “exact”

limits			 0,1

angles			 0,-0.5

speedo_needle1

kind			 “needle”

mesh			 “needles/flaman_needle.im”

att			 “a.flaman”

Version 3.0   283   Trainz Railroad Simulator - The Content Creator’s Guide

att-parent		 “default”

auto-create		 1

limits			 0,85

mesh			 “smalltap.im”

auto-create		 1

att			 “a.steamvalve0”

att-parent		 “default”

kind			 “lever”

mousespeed		 1

mesh			 “bigtap.im”

auto-create		 1

att			 “a.steamvalve1”

att-parent		 “default”

kind			 “lever”

mousespeed		 1

blower

mesh			 “bigtap.im”

auto-create		 1

att			 “a.steamvalve2”

att-parent		 “default”

kind			 “lever”

mousespeed				 1

mesh			 “smalltap.im”

auto-create		 1

att			 “a.steamvalve3”

att-parent		 “default”

kind			 “lever”

mousespeed		 1

mesh			 “bigtap.im”

auto-create		 1

att			 “a.steamvalve4”

att-parent		 “default”

kind			 “lever”

mousespeed			 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

bigsteam_interior.gs

include “DefaultSteamCabin.gs”

class Bigsteam_Interior isclass DefaultSteamCabin

{

	 public void Init(void)

	 {

		 inherited();

		 hasAnimatedFireman = false;

	 }

};

cabin.txt

* switch switch_6.wav

dynamicbrake_lever change-notch notch_1.wav

independantbrake_lever change-notch airbrake2.wav

reverser lever-low reversing_lever_notch.wav

reverser lever-high reversing_lever_throw.wav

fire_plates lever-low firebox_open.wav

fire_plates lever-high firebox_close.wav

fire_plates looping fire_roar.wav

regulator lever-high regulator2.wav

regulator lever-low THROTTLE.wav

sanding_lever lever-low sanding_lever1.wav

sanding_lever lever-high sanding_lever2.wav

blowdown looping boiler_blow_down.wav

Version 3.0   284   Trainz Railroad Simulator - The Content Creator’s Guide

cylinder_cocks change-notch cylinder_cocks_full.wav

seat0 change-notch seat_unfold.wav

seat1 change-notch seat_unfold.wav

whistle_lever looping whistle_mid_loop.wav

trainbrakelap_lever change-notch air_brake2.wav

pantograph_lever change-notch lever_4.wav

trainbrake_lever change-notch air_brake.wav

driver_window change-notch seat_unfold.wav

fireman_window change-notch seat_unfold.wav

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   285   Trainz Railroad Simulator - The Content Creator’s Guide

Library
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

button-done-on.tga, button-done.tga - Graphic files.

default_msgbox.html - HTML file used for this asset.

displayhtmlpageslib.gs - Script file.

File Listings

config.txt

kind			 “library”

username		 “test HTML Pages Library”

script			 “DisplayHTMLPagesLib.gs”

class			 “DisplayHTMLPagesLib”

kuid			 <kuid:171456:100073>

trainz-build		 2.5

category-class		 “YR”

category-region		 “00”

category-era		 “1990s;2000s”

description		 “A test Library asset.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   286   Trainz Railroad Simulator - The Content Creator’s Guide

Map
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

mapfile.bmk - The bookmark file, storing all the
bookmarks you’ve saved in surveyor.

mapfile.gnd - The “ground file” storing information about
the topology of your map.

mapfile.obs - The “objects” file storing information about
the objects placed in your map.

mapfile.trk - The track layout file. This file can be
opened in a 3rd party viewer such as Trainzmap.

File Listings

latitude			 27,28,-1

longitude		 153,2,1

altitude		 0

string-table

atsf_f7a_1		 “ATSF F7A 1”

kuid-table

0			 <kuid:-1:6270>

1	 		 <kuid:-1:101452>

2	 		 <kuid:-1:110014>

3			 <kuid:-3:10049>

4			 <kuid:44179:60021>

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

region			 <kuid:-1:7801>

kuid			 <kuid:56113:1244>

kind			 “map”

username		 “testMap”

workingscale		 0

workingunits		 0

water			 <kuid:-1:6342>

trainz-build		 2.5

category-class		 “YM”

carrate			 0

category-region		 “00”

category-era		 “2000s”

description		 “A test map. Generated in
Trainz and edited in CCP.”

world-origin

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   287   Trainz Railroad Simulator - The Content Creator’s Guide

Mesh
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

alastair.im - The default mesh.

alastair.texture.txt, alastair.tga - The default mesh
texture files. See the section on Texture.txt files on Page
96 for more information.

alastair_lowres.im - A second mesh.

alastair_lores.texture.txt, alastair_lores.tga - The
texture files for the second mesh.

File Listings

config.txt

kuid			 <kuid:56113:1003>

trainz-build		 2.5

category-class		 “HM”

category-region		 “00”

category-era		 “1980s;1990s;2000s”

username		 “testMesh”

kind			 “mesh”

description		 “Sample Mesh Asset. This is a
driver mesh.”

mesh-table

standing

mesh			 “alastair/Alastair.im”

auto-create		 1

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

sitting

mesh			 “alastair_lowres/Alastair_
lowres.im”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   288   Trainz Railroad Simulator - The Content Creator’s Guide

Mesh-Reducing-Track
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

brick.texture.txt, brick.tga,meshwall.jpg, wall.texture.
txt, wall.tga - The texture files used by the indexed
meshes for this asset. See the section on Texture.txt files
on Page 96 for more information.

default.im - The “short” mesh, which is the more detailed
mesh and is used when the camera is close to the spline.
This mesh is also used as the preview mesh in surveyor.
Must be named “default.im”.

rockwall.im - The filename of the “long mesh”, which
must be placed in a subdirectory of the same name as
the mesh.

Only the file name is entered, not the directory name nor
the file extension. For example, the full pathname and
extension is “rockwall/rockwall.im”. Enter only “rockwall”
in the text input box.

File Listings

length			 4

repeats			 4

rgb			 0,0,0

shadows		 0

upright			 0

visible-on-minimap	 1

width			 7.9

kuid			 <kuid:56113:1008>

trainz-build		 2.5

category-class		 “TR”

username		 “testMeshReducingTrack”

kind			 “track”

unit_mesh		 “rockwall”

category-region		 “00”

category-era		 “1980s;2000s;2010s”

description		 “Test Mesh Reducing Track
asset. This asset appears in the ‘splines’ menu in
surveyor. The asset has two distinct meshes, one for
far and one for close. This illustrates the way in which
Mesh-Reducing-Track works in-game.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

bendy			 0

carrate			 0

casts_shadows		 0

endlength		 0

grounded		 0.4

isroad			 1

istrack			 0

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   289   Trainz Railroad Simulator - The Content Creator’s Guide

MOCrossing
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

crossing_bell_1.wav - The environment sound of the
crossing.

anim.kin - The animation file for the crossing.

level_crossing_oz.im - The default mesh of the
crossing.

level_crossing_oz.texture.txt, level_crossing_oz.tga
- Texture files for the default mesh of the crossing. See
the section on Texture.txt files on Page 96 for more
information.

level_crossing_oz_lights.texture.txt, level_crossing_
oz_lights.tga - The texture files for the signal lights.

level_crossing_oz_signs.bmp, level_crossing_oz_
signs.tga, level_crossing_oz_signs-level_crossing_
oz_signs.texture.txt - The texture files for the crossing
signs.

File Listings

username		 “testMOCrossing”

kind			 “mocrossing”

description		 “An example MOCrossing
Asset.”

soundscript

dayloop

repeat-delay		 0,0

distance		 10,100

sound

0	 		 “crossing_bell_1.wav”

mesh-table

default

mesh			 “level_crossing_oz/level_
crossing_oz.im”

anim			 “level_crossing_oz/anim.kin”

auto-create		 1

attached-track

road1

track			 <kuid:-1:100409>

useadjoiningtracktype	 0

vertices

0			 “a.road0a”

1			 “a.road0b”

track1

track			 <kuid:-1:100396>

useadjoiningtracktype	 0

vertices

0			 “a.track0a”

1	 		 “a.track0b”

track2

track			 <kuid:-1:100396>

useadjoiningtracktype	 0

vertices

0	 		 “a.track1a”

1			 “a.track1b”

config.txt

kuid			 <kuid:56113:1261>

trainz-build		 2.5

category-class		 “WX”

category-region		 “AU”

category-era		 “1970s;1980s;1990s;2000s;201
0s”

Version 3.0   290   Trainz Railroad Simulator - The Content Creator’s Guide

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   291   Trainz Railroad Simulator - The Content Creator’s Guide

MOJunction
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

points.wav - The sound played when the junction is
toggled.

grey.bmp, grey.texture.txt, orange.bmp, orange.
texture.txt, rust.bmp, rust.texture.txt - The texture files
for the Juntion asset. See the section on Texture.txt files
on Page 96 for more information.

lever1.im, lever2.im - The indexed mesh files used for
the junction levers.

File Listings

light			 1

trackside		 0

description		 “Test MOJunction. Based on
the “UK Point Motor” by Alan Thomson (snowsignal).”

mesh-table

lever1

mesh			 “lever1/lever1.im”

auto-create		 1

lever2

mesh			 “lever2/lever2.im”

soundscript

toggle

trigger			 “toggle”

distance		 5,100

nostartdelay		 1

repeat-delay		 1,1

sound

0	 		 “points.wav”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.config.txt

kuid			 <kuid:56113:1254>

trainz-build		 2.5

category-class		 “WX”

category-region		 “AG”

category-era		 “1830s”

username		 “testMOJunction”

kind			 “mojunction”

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   292   Trainz Railroad Simulator - The Content Creator’s Guide

MOSignal
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

opacity.tga, opacity-opacity.texture.txt, concrete.
texture.txt, concrete.tga, signal_q.tga - The texture
files used for the signal asset. See the section on Texture.
txt files on Page 96 for more information.

corona_green.tga, corona_red.tga, corona_white.tga,
corona_yellow.tga - The corona textures used to light
the signals.

qr_01.im - The signal indexed mesh file.

 File Listings

signals

0

light			 11

2

light			 10,8,6,4,2,0

3

light			 10,8,7,5,3,1

4

light			 10

5

light			 9,8,6,4,2,0

6

light			 9,8,7,5,3,1

8

light			 9

9

light			 11,12,13

lights

0

corona			 “corona_white.tga”

1

corona			 “corona_white.tga”

2

corona			 “corona_white.tga”

3

corona			 “corona_white.tga”

4

corona			 “corona_white.tga”

5

corona			 “corona_white.tga”

6

corona			 “corona_white.tga”

7

corona			 “corona_white.tga”

config.txt

kuid			 <kuid:56113:1266>

trainz-build		 2.5

category-class		 “WA”

category-region		 “AU”

category-era		 “1980s;1990s;2000s;2010s”

username		 “testMOSignal”

kind			 “mosignal”

function			 “TrackSignal”

description		 “Sample MOSignal asset.”

trackside		 -2.5

Version 3.0   293   Trainz Railroad Simulator - The Content Creator’s Guide

8

corona			 “corona_white.tga”

9

corona			 “corona_green.tga”

10

corona			 “corona_yellow.tga”

11

corona			 “corona_red.tga”

12

corona			 “corona_white.tga”

13

corona			 “corona_white.tga”

mesh-table

default

mesh			 “QR_01.im”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   294   Trainz Railroad Simulator - The Content Creator’s Guide

MOSpeedboard
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files

config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

largesign.im - The indexed mesh file used for the
speedboard model.

largespeed.tga, largespeed.texture.txt - The texture
files for the speedboard asset. See the section on
Texture.txt files on Page 96 for more information.

File Listings

config.txt

kuid			 <kuid:56113:1264>

trainz-build		 2.5

category-class		 “WS”

username		 “testMOSpeedBoard”

kind			 “mospeedboard”

category-region		 “AU”

category-era		 “2000s”

trackside		 2.4

speedlimit		 33.36

description		 “Sample Speedboard Asset.”

mesh-table

default

mesh			 “LargeSign.im”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

width			 240

height			 180

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   295   Trainz Railroad Simulator - The Content Creator’s Guide

Pantograph
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

anim.kin - The animation file for the pantograph asset.

gg1_panto_a.tga, gg1_panto_b.bmp - The texture files
for the pantograph asset.

gg1_panto_a.texture.txt, gg1_panto_b-gg1_panto_
b.texture.txt - The texture files for the asset. See
the section on Texture.txt files on Page 96 for more
information.

gg1_pantograph.pm - The progressive mesh used for
the pantograph, an older file type.

File Listings

config.txt

kind				 pantograph

kuid				 <kuid:171456:100023>

username			 testPantograph

trainz-build			 2.5

category-class			 ZP

category-region			 00			

category-era			 1960s;1970s;1980s

description			 Test pantograph asset.

thumbnails

0

image				 thumb.jpg

width				 240

height				 180	

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip..

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   296   Trainz Railroad Simulator - The Content Creator’s Guide

Paintshed-Template
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

consist_mask.bmp - The template image used as a
basis for the consist menu icon.

front_mask.bmp - The template image used as a basis
for the texture on the front of the train model.

left_mask.bmp - The template image used as a basis for
the texture on the left side of the train model.

main_mask.bmp - The template image used as a basis
for the main texture of the traincar.

preview_mask.bmp -The template image used as
a basis for the 512x512 preview image generated by
paintshed.

rear_mask.bmp - The template image used as a basis
for the texture on the rear of the train model.

right_mask.bmp - The template image used as a basis
for the texture on the right side of the train model.

top_mask.bmp -The template image used as a basis for
the texture on the top of the train model.

File Listings

username		 “testPaintshed-Template”

kind			 “paintshed-template”

paintshed-skin		 <kuid:-13:132000>

description		 “Test Paintshed-Template
Asset.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

kuid			 <kuid:56113:1001>

trainz-build		 2.5

category-class		 “ZX”

category-region		 “00”

category-era		 “1970s;1980s;1990s;2000s;201
0s”

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   297   Trainz Railroad Simulator - The Content Creator’s Guide

Paintshed-Skin
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

colormap.dat, skin.dat - Files containing extra color and
skin information (generated by the paintshed program).

main.bmp, main.texture.txt - The texture files used
for the actual train model in game. See the section on
Texture.txt files on Page 96 for more information.

alphanumber_0a.tga, alphanumber_0b.tga,
alphanumber_1a.tga, alphanumber_1b.tga,
alphanumber_2a.tga, alphanumber_2b.tga,
alphanumber_3a.tga, alphanumber_3b.tga,
alphanumber_4a.tga, alphanumber_4b.tga,

alphanumber_5a.tga, alphanumber_5b.tga,
alphanumber_6a.tga, alphanumber_6b.tga,
alphanumber_7a.tga, alphanumber_7b.tga,
alphanumber_8a.tga, alphanumber_8b.tga,
alphanumber_9a.tga, alphanumber_9b.tga - The
running number images and opacity masks.

consist.bmp, consist_a.bmp, bb15000_art_icon.
texture.txt - The image used as the train icon in the train
menu. 128x64 bmp and accompanying alpha map.

preview.bmp, preview_a.bmp, bb15000_art_512.
texture.txt - These image files are used to show a
512x512 preview texture when the image is available on
the download station.

This is valid for 2004 assets, but in TRS2006 this
functionality has been replaced with the 240x180
thumbnail image referenced in the thumbnails container.

If your asset has a trainz-version of 2.5+, you should use
an image from a thumbnail container instead, at which
time these files may be deleted if you wish to decrease
the filesize of your asset.

File Listings

config.txt

origin				 “AU - AUSTRALIA”

category-class			 “AA”

product-id			 “paintshed”

product-version			 1.4

product-type			 “reskin”

pantograph			 <kuid:-1:100860>

engine				 1

interior				 <kuid:-1:100554>

fonts				 2

mass				 90000

kind				 “traincar”

enginespec			 <kuid:-1:42004205>

enginesound			 <kuid:-1:42003002>

hornsound			 <kuid:-1:42003101>

username			 “testPaintshed-Skin”

description			 “paintshed skin.
Generated in Paintshed and edited in CCP.”

alias				 <kuid:-10:182>

kuid				 <kuid:56113:1005>

Version 3.0   298   Trainz Railroad Simulator - The Content Creator’s Guide

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

paintshed-template-used	 <kuid:-13:157001>

paintshed-skin-used		 <kuid:-13:157000>

category-region			 “AU”

category-era			 “2000s”

trainz-build			 2.5

mesh-table

default

mesh				 “bb15000_body/
bb15000_body.pm”

auto-create			 1

shadow

mesh				 “bb15000_shadow/
bb15000_shadow.pm”

auto-create			 0

bogeys

0

bogey				 <kuid:-1:100005>

reversed			 0

thumbnails

0

image				 “thumb.jpg”

width				 240

height				 180

bb15000_art_icon.texture.txt

Primary=consist.bmp

Tile=st

Hint=Dynamic

Alpha=consist_a.bmp

bb15000_art_512.texture.txt

Primary=preview.bmp

Tile=st

Hint=Dynamic

Alpha=preview_a.bmp

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   299   Trainz Railroad Simulator - The Content Creator’s Guide

Product (Coal Product)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

coal.tga, coal.texture.txt - The texture file used when an
item of rollingstock is carrying a load of coal. This texture
is applied to the surface of the “load” in the rollingstock
item, for example the load in the back of a coal hopper
car.

See the section on Texture.txt files on Page 96 for more
information.

coal_icon.tga, icon_texture.texture.txt - The product
icon images (64x64 TGA).

File Listings

0

width			 240

height			 180

config.txt

kuid			 <kuid:171456:100038>

trainz-build		 2.5

category-class		 “IB”

category-region		 “00”

category-era		 “1850s”

username		 “testCoal”

kind			 “product”

allows-mixing		 1

instance-type		 “resource”

icon-texture		 “icon_texture.texture”

mass			 0.86

product-category	 <kuid:-3:10040>

product-texture		 “coal.texture”

thumbnails

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   300   Trainz Railroad Simulator - The Content Creator’s Guide

Product (General Goods Product)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

general_goods.im, crate2.im, crate3.im, crate4.im,
crate5.im, crate6.im, crate7.im - The assorted indexed
mesh files used to represent this product when placed on
an item of rollingstock.

Using more of these files creates a greater variety of
meshes to be displayed when items of rollingstock are
carrying this product.

crate.tga, crate.texture.txt, crate_2.tga, crate_
2.texture.txt, crate_3.tga, crate.texture_3.txt, crate_
4.tga, crate_4.texture.txt, crate_5.tga, crate_5.texture.
txt, crate_6.tga, crate_6.texture.txt, crate_7.tga, crate_
7.texture.txt - The texture files used by the indexed
meshes of this product.

generalgoods.tga, icon_texture.texture.txt - The
product icon images (64x64 TGA).

See the section on Texture.txt files on Page 96 for more
information.

config.txt

kuid			 <kuid:171456:100039>

trainz-build		 2.5

category-class		 “IC”

category-region		 “00”

category-era		 “2000s”

username		 “testGeneral Goods”

kind			 “product”

allows-mixing		 1

instance-type		 “instance”

icon-texture		 “icon_texture.texture”

mass			 1400

product-category	 <kuid:-3:10042>

description		 “Test General Goods Asset.”

mesh-table

default

mesh			 “general_goods.im”

auto-create		 1

crate2

mesh			 “crate2.im”

auto-create		 1

crate3

mesh			 “crate3.im”

auto-create		 1

crate4

mesh			 “crate4.im”

auto-create		 1

crate5

mesh			 “crate5.im”

auto-create		 1

crate6

mesh			 “crate6.im”

auto-create		 1

File Listings

Version 3.0   301   Trainz Railroad Simulator - The Content Creator’s Guide

crate7

mesh			 “crate7.im”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   302   Trainz Railroad Simulator - The Content Creator’s Guide

Product (Diesel Fuel Product)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

icon_texture.texture.txt, diesel.tga - The product icon
images (64x64 TGA). See the section on Texture.txt files
on Page 96 for more information.

File Listings

config.txt

kuid			 <kuid:171456:100040>

trainz-build		 2.5

category-class		 “AA”

category-region		 “00”

category-era		 “1950s;1960s;1970s;1980s;199
0s;2000s;2010s”

username		 “testDiesel Fuel”

kind			 “product”

allows-mixing		 1

instance-type		 “resource”

icon-texture		 “icon_texture.texture”

mass			 0.89

product-category	 <kuid:-3:10044>

description		 “Test Diesel Fuel product.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   303   Trainz Railroad Simulator - The Content Creator’s Guide

Product (40ft Container Product)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files

config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

40ft_blue.im, 40ft_capital.im, 40ft_container.im, 40ft_
mitsui.im, 40ft_pils.im - The assorted indexed mesh
files used to represent this product when placed on an
item of rollingstock.

Using more of these files creates a greater variety of
meshes to be displayed when items of rollingstock are
carrying this product.

40ft_blue.texture.txt, 40ft_blue.tga, 40ft_capital.
texture.txt, 40ft_capital.tga, 40ft_container.texture.txt,
40ft_container.tga, 40ft_db.texture.txt, 40ft_db.tga,
40ft_mitsui.texture.txt, 40ft_mitsui.tga, 40ft_pil.
texture.txt, 40ft_pil.tga - The texture files used by the
indexed meshes of this product. See the section on
Texture.txt files on Page 96 for more information.

Containers40ft.tga, icon_texture.texture.txt - The
product icon images (64x64 TGA).

File Listings

username		 “test40ft Container”

kind			 “product”

allows-mixing		 1

instance-type		 “instance”

icon-texture		 “icon_texture.texture”

mass			 22000

product-category	 <kuid:-3:10042>

category-region		 “00”

category-era		 “1980s”

description		 “Test 40ft Container asset.”

mesh-table

default

mesh			 “40ft_container.im”

auto-create		 1

pils

mesh			 “40ft_pils.im”

auto-create		 1

matsui

mesh			 “40ft_matsui.im”

auto-create		 1

capital

mesh			 “40ft_capital.im”

auto-create		 1

blue

mesh			 “40ft_blue.im”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

kuid			 <kuid:56113:1007>

trainz-build		 2.5

category-class		 “IC”

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   304   Trainz Railroad Simulator - The Content Creator’s Guide

Product (Lumber Product)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

icon_texture.texture.txt, lumber.tga - The product icon
images (64x64 TGA).

lumberstack.im - The indexed mesh file used to
represent this product when placed on an item of
rollingstock.

plank.texture.txt, plank.tga - The texture files used by
the indexed mesh of this product. See the section on
Texture.txt files on Page 96 for more information.

File Listings

mesh			 “lumberstack.im”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

kuid			 <kuid:56113:1019>

trainz-build		 2.5

category-class		 “IB”

category-region		 “00”

category-era		 “1980s”

username		 “testLumberProduct”

kind			 “product”

allows-mixing		 1

instance-type		 “resource”

icon-texture		 “icon_texture.texture”

mass			 8000

product-category	 <kuid:-3:10042>

description		 “Test Lumber Asset.”

mesh-table

default

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   305   Trainz Railroad Simulator - The Content Creator’s Guide

Product (Passenger Product)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

f_dress.bmp, f_dress.texture.txt, f_dress_4.bmp,
f_dress_4.texture.txt, f_dress_5.bmp, f_dress_
5.texture.txt, f_head_2.bmp, f_head_2.texture.txt,
f_head_5.bmp, f_head_5.texture.txt, f_head_7.bmp,
f_head_7.texture.txt, f_shoe_1.bmp, f_shoe_1.texture.
txt, f_torso_11.bmp, f_torso_11.texture.txt, f_torso_
2.bmp, f_torso_2.texture.txt, f_torso_3.bmp, f_torso_
3.texture.txt, f_torso_4.bmp, f_torso_4.texture.txt,

config.txt

kuid			 <kuid:171456:100043>

trainz-build		 2.5

category-class		 “IP”

username		 “testPassenger”

kind			 “product”

allows-mixing		 1

instance-type		 “instance”

icon-texture		 “icon_texture.texture”

mass			 65

product-category	 <kuid:-3:10091>

category-region		 “00”

category-era		 “1990s;2000s;2010s”

description		 “Test Passenger Product.”

mesh-table

female01-stand

mesh			 “Female01-Stand.IM”

female01-sit

mesh			 “Female01-Sit.IM”

female02-stand

mesh			 “Female02-Stand.IM”

female02-sit

mesh			 “Female02-Sit.IM”

female03-stand

f_torso_9.texture.txt, f_torso_9.bmp, f_dress_7.bmp,
f_dress7.texture.txt - The texture files used by the
indexed meshes used in this product.

See the section on Texture.txt files on Page 96 for more
information.

female01.sit.im, female01-stand.im, female02.sit.im,
female02-stand.im, female03.sit.im, female03-stand.
im, female04.sit.im, female04-stand.im, female05.sit.
im, female05-stand.im - The assorted indexed mesh
files used to represent passengers inside a populated
railcar.

icon_texture.texture.txt, passengers.tga -The product
icon images (64x64 TGA).

File Listings

Version 3.0   306   Trainz Railroad Simulator - The Content Creator’s Guide

mesh			 “Female03-Stand.IM”

female03-sit

mesh			 “Female03-Sit.IM”

female04-stand

mesh			 “Female04-Stand.IM”

female04-sit

mesh			 “Female04-Sit.IM”

female05-stand

mesh			 “Female05-Stand.IM”

female05-sit

mesh			 “Female05-Sit.IM”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

kuid-table

0	 		 <kuid:-3:10091>

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip..

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   307   Trainz Railroad Simulator - The Content Creator’s Guide

Product-Category
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

File Listings

config.txt

kuid			 <kuid:56113:1250>

trainz-build		 2.5

category-class		 “IB”

category-region		 “00”

category-era		 “1970s;1980s;2000s;2010s”

username		 “testProduct-Category”

kind			 “product-category”

description		 “Product Category. Useful
when making traincar assets and designating which
products are allowed,”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   308   Trainz Railroad Simulator - The Content Creator’s Guide

Profile
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

profile.dat - The data file containing information on
the session. This file is generated by Trainz and is not
human readable.

File Listings

9			 <kuid:-3:10077>

10			 <kuid:-3:10081>

11			 <kuid:-3:10082>

12			 <kuid:-3:10083>

13			 <kuid:-3:10090>

14			 <kuid:-3:10078>

15			 <kuid:-1:1>

16			 <kuid:56113:1244>

thumbnails

0

image			 “thumb.jpg”

width			 240

config.txt

kind			 “profile”

kuid			 <kuid:56113:1245>

username		 “testProfile”

map-kuid		 <kuid:56113:1244>

category-class		 “YS”

trainz-build		 2.5

category-region		 “AU”

category-era		 “2000s”

description		 “A Quick Test Profile. It’s best
to make these via Trainz and then edit them in CCP as
desired.”

kuid-table

0			 <kuid:-16:10212>

1			 <kuid:-16:2025>

2			 <kuid:-101:10110>

3			 <kuid:-3:10057>

4			 <kuid:-3:10058>

5			 <kuid:-3:10149>

6			 <kuid:-3:10209>

7			 <kuid:-3:10186>

8	 		 <kuid:-3:10076>

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   309   Trainz Railroad Simulator - The Content Creator’s Guide

Scenery
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

various.tga, various.texture.txt - The texture files used
for this scenery object. See the section on Texture.txt files
on Page 96 for more information.

factory_3.wav - The sound file.

ger_warehouse.im - The mesh file for the main model.

ger_warehouse_nightwindows.im - The nightwindows
mesh file, in a subdirectory.

File Listings

category-class		 “BI”

category-region		 “00”

category-era		 “1970s;1980s;1990s;2000s”

smoke0

attachment		 “a.smoke0”

mode			 “timeofday”

color			 100,100,100,250

accel			 1,0.3,0

start			 0.25,0.5

period			 0

rate			 4

velocity			 1.25

lifetime			 2

minsize			 0.5

maxsize		 1

soundscript

daysingle

repeat-delay		 0,0

distance		 2,150

sound

0			 “factory_3.wav”

mesh-table

default

auto-create		 1

mesh			 “ger_warehouse.im”

effects

0

kind			 “name”

att			 “a.name0”

fontcolor		 0,0,0

fontsize			 0.28

name			 “name”

night

mesh			 “ger_warehouse_nightwindows/
ger_warehouse_nightwindows.im”

config.txt

kind			 “scenery”

username		 “testScenery”

light			 1

nightmode		 “lamp”

kuid			 <kuid:171456:100068>

trainz-build		 2.5

description		 “Test Scenery object based on
the inbuilt German Factory.”

Version 3.0   310   Trainz Railroad Simulator - The Content Creator’s Guide

Scenery-Trackside
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

catchpoint.im - The indexed mesh of this scenery-
trackside asset.

File Listings

config.txt

kuid			 <kuid:171456:100032>

trainz-build		 2.5

category-class		 “WS”

category-region		 “00”

category-era		 “1960s;1970s;1980”

username		 “testSceneryTrackside”

kind			 “scenery”

trackside		 -2.8

description		 “Test Trackside object.”

mesh-table

default

mesh			 “CatchPoint.im”

auto-create		 1

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

night-mesh-base		 “default”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

If animation were to be included, the animation file anim.
kin would be placed in the directory, and the mesh table
entries would be as below, with the animation playing
immediately the asset is placed in Surveyor.

mesh-table

default

auto-create		 1

mesh			 “ger_warehouse.im”

anim			 “anim.kin”

animation-loop-speed	 1

etc

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   311   Trainz Railroad Simulator - The Content Creator’s Guide

Steam-Engine
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

File Listings

no3pipevent					 1.5

no3pipe_mainreservoir				 0.1

compressor					 5

trainbrakepipe_reservoir				 1

trainbrakepipevent				 0.06

no3pipe_autobrakecylinder			 0.1

epreservoirpipe_autobrakecylinder		 0.1

mainreservoir_ep				 0.1

vacuumbrakepipe				 0.1

vacuumbrakepipereleasevent			 0.1

vacuumbrakepipevent				 0.1

vacuumbrakereservoir_vacuumbrakepipe	 0.1

vacuumbrakecylinder_vacuumbrakepipe		 0.1

highspeedexhauster_vacuumbrakepipe		 0.1

volume

scale						 1

trainbrakepipe					 0.2

epreservoirpipe					 0.2

no3pipe						 0.2

no4pipe						 0.2

auxreservoir				 0.0384678

autobrakecylinder			 0.00969387

vacuumbrakepipe				 0

vacuumbrakereservoir				 0

vacuumbrakecylinder				 0

mainreservoir					 1

equaliser					 0.5

independantbrakecylinder		 0.0103239

pressure

scale						 1

compressor				 0.00946941

mainreservoir				 0.00946941

highspeedexhauster				 0

brakepipe				 0.00595441

config.txt

kuid				 <kuid:56113:1235>

trainz-build					 2.5

category-class					 “ZE”

category-region					 “US”

category-era					 “1940s”

username				
“testSteamEngine”

kind					 “steam-engine”

description				 “Test Steam
Engine asset. Based on the UP Big Boy engine file.”

flowsize

trainbrakepipe					 170000

epreservoirpipe					 0.1

no3pipe						 0.1

no4pipe						 0.1

auxreservoirvent				 0.1

auxreservoir_no3				 0.1

auxreservoir_trainbrakepipe			 0.1

autobrakecylindervent				 0.1

auxreservoir_autobrakecylinder			 0.1

equaliser_mainreservoir				 0.06

equaliservent					 0.06

equaliserventhandleoff				 0.1

equaliserventemergency			 0.1

Version 3.0   312   Trainz Railroad Simulator - The Content Creator’s Guide

brakeinitial				 0.00560291

brakefull				 0.00398601

indbrakefull				 0.00398601

trainbrakepipe_start			 0.00440781

epreservoirpipe_start				 0

no3pipe_start					 0

no4pipe_start					 0

auxreservoir_start			 0.00504051

autobrakecylinder_start			 0.00489991

vacuumbrakepipe_start				 0

vacuumbrakereservoir_start			 0

vacuumbrakecylinder_start			 0

mainreservoir_start			 0.00876641

equaliser_start				 0.00440781

independantbrakecylinder_start		 0.00489991

mass

scale						 1

fuel					 “6.2156e+006”

motor

resistance					 1.75

adhesion					 4.7

maxvoltage					 600

maxspeed					 30

brakeratio					 66000

max-accel					 5200

max-decel					 85000

axle-count					 16

surface-area					 100

moving-friction-coefficient			 0.035

air-drag-coefficient				 0.002

throttle-notches					 8

steam

firebox-to-boiler-heat-flow			 0.07125

firebox-efficiency				 0.9

boiler-volume					 95000

minimum-volume				 73000

maximum-volume				 81000

initial-boiler-temperature				 455

water-injector-rate				 20

piston-volume-min				 8.715

piston-volume-max				 232.4

piston-area					 0.285

piston-angular-offsets			 0.0174,0.8028,
1.5254,2.3736,3.0333,3.9444,4.5413,5.5152

firebox-to-boiler-heat-flow-idle			 0.003

burn-rate-idle					 0.003

boiler-to-piston-flow				 0.0039

piston-to-atmosphere-flow			 0.0031

safety-valve-low-pressure			 2164.97

safety-valve-low-flow				 0.00375

safety-valve-high-pressure			 2179

safety-valve-high-flow			 0.003875

max-fire-coal-mass				 585

max-fire-temperature				 1585

shovel-coal-mass				 55

burn-rate					 0.0825

fuel-energy					 27.5

firebox-volume					 0

main-reservoir-volume				 0

westinghouse-volume				 0

thumbnails

0

image					 “thumb.jpg”

width						 240

height						 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   313   Trainz Railroad Simulator - The Content Creator’s Guide

Texture
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

eg.bmp - The image file used as the texture in this asset.

File Listings

config.txt

kuid			 <kuid:56113:1267>

trainz-build		 2.5

category-class		 “JO”

category-region		 “AU”

category-era		 “2000s;2010s”

username		 “testTexture”

kind			 “texture”

texture			 “eg.bmp”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   314   Trainz Railroad Simulator - The Content Creator’s Guide

Texture-Group
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

1.bmp, 2.bmp, 3.bmp - The texture files stored within
this asset (which will be referenced via script from
another asset).

File Listings

config.txt

kuid			 <kuid:171456:100034>

trainz-build		 2.5

category-class		 “JO”

category-region		 “00”

category-era		 “1810s”

username		 “testTextureGroup”

kind			 “texture-group”

description		 “Test texture group.”

textures

0			 “1.bmp”

1	 		 “2.bmp”

2			 “3.bmp”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   315   Trainz Railroad Simulator - The Content Creator’s Guide

Track
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

default.im - The indexed mesh used for the track asset.
Should be named “default.im”.

rail.texture.txt, rail.tga, track.texture.txt, track.tga,
track-track.texture.txt - The texture files used by this
track asset. See the section on Texture.txt files on Page
96 for more information.

File Listings

category-class		 “TR”

category-region		 “00”

category-era		 “2000s”

username		 “testTrack”

kind			 “track”

description		 “Sample Track.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

bendy			 1

carrate			 0

casts_shadows		 0

endlength		 40

grounded		 0.4

isroad			 0

istrack			 1

length			 2

repeats			 1

rgb			 255,200,0

shadows		 0

upright			 0

visible-on-minimap	 1

width			 4

kuid			 <kuid:56113:1006>

trainz-build		 2.5

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   316   Trainz Railroad Simulator - The Content Creator’s Guide

Tracksound
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

idle 1.wav - The track sound file.

File Listings

config.txt

kuid			 <kuid:56113:1001>

trainz-build		 2.5

category-class		 “XSN”

category-region		 “00”

category-era		 “1930s;1940s;1950s;1960s;197
0s;1980s;1990s;2000s;2010s”

username		 “testTracksound”

kind			 “tracksound”

min-distance		 10

max-distance		 10000

description		 “Sample Tracksound asset.”

levels

0			 0.1

1			 10

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   317   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Coal Hopper)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

coal_dump1.wav, coal_load1.wav, coupling_1.wav -
Sound files referenced within the hopper.gs script file.

hopper.gs - Script file detailing some functionality of the
traincar asset.

coal_hopper_art_512.texture.txt, coal_hopper_art_
512.tga - These image files are used to show a 512x512
preview texture when the image is available on the
download station.

config.txt

kuid			 <kuid:56113:1001>

trainz-build		 2.5

category-class		 “XG”

username		 “testTraincar (Hopper)”

kind			 “traincar”

engine			 0

mass			 15000

category-region		 “00”

category-era		 “1990s;2000s;2010s”

enginespec		 <kuid:-1:42004201>

script			 “hopper.gs”

class			 “Hopper”

icon0			 <kuid:-3:10164>

description		 “Test Coal Hopper Asset.”

This is valid for 2004 assets, but in TRS2006 this
functionality has been replaced with the 240x180
thumbnail image referenced in the thumbnails container.

If your asset has a trainz-version of 2.5+, you should use
an image from a thumbnail container instead, at which
time these files may be deleted if you wish to decrease
the filesize of your asset.

coal_hopper_art_icon.texture.txt, coal_hopper_
art_icon.tga - The icon texture files. 128x64 pixels in
dimension.

coal_hopper_body.lm.txt - Level of Detail (or ‘LOD’) file.
See the section on LOD meshes on Page 378 for more
information.

erz3d.texture.txt, erz3d.tga, black.texture.txt, black.
tga, load_map.texture.txt, load_map.tga - The texture
files used by the indexed and progressive meshes. See
the section on Texture.txt files on Page 96 for more
information.

load.pm, coal_hopper_shadow.pm - The progressive
meshes used by the traincar asset.

unload_left.kin, unload_right.kin, load.kin - The
animation files used by th traincar asset for loading and
unloading operations.

unload_left.im, unload_right.im, coal_hopper_body.
im, coal_hopper_body_low.im - The indexed mesh files
used by the traincar asset.

File Listings

Version 3.0   318   Trainz Railroad Simulator - The Content Creator’s Guide

auto-create		 1

queues

load0

size			 54300

initial-count		 0

animated-mesh		 “load”

product-kuid		 <kuid:44179:60013>

allowed-categories

0			 <kuid:-3:10040>

smoke0

attachment		 “a.unload_left_pfx0”

mode			 “time”

color			 0,0,0,250

rate			 8

velocity			 2

lifetime			 2

minsize			 1

maxsize		 4

enabled		 0

smoke1

attachment		 “a.unload_left_pfx1”

mode			 “time”

color			 0,0,0,250

rate			 8

velocity			 2

lifetime			 2

minsize			 1

maxsize		 4

enabled		 0

smoke2

attachment		 “a.unload_right_pfx0”

mode			 “time”

color			 0,0,0,250

rate			 8

velocity			 2

soundscript

door_close

trigger			 “door_close”

nostartdelay		 1

repeat-delay		 1,0

distance		 5,170

sound

0	 		 “coupling_1.wav”

mesh-table

default

mesh			 “coal_hopper_body/coal_
hopper_body.lm”

auto-create		 1

shadow

mesh			 “coal_hopper_shadow/coal_
hopper_shadow.pm”

load

mesh			 “coal_hopper_body/load/load.
pm”

anim			 “coal_hopper_body/load/load.
kin”

auto-create		 1

use-parent-bounds	 1

effects

product-texture

kind			 “texture-replacement”

texture			 “load_map.texture”

left-door

mesh			 “coal_hopper_body/unload_left/
unload_left.im”

anim			 “coal_hopper_body/unload_left/
unload_left.kin”

auto-create		 1

right-door

mesh			 “coal_hopper_body/unload_
right/unload_right.im”

anim			 “coal_hopper_body/unload_
right/unload_right.kin”

Version 3.0   319   Trainz Railroad Simulator - The Content Creator’s Guide

hopper.gs

//

// Hopper.gs

//

// Copyright (C) 2003 Auran Developments Pty Ltd

// All Rights Reserved.

//

//

include “vehicle.gs”

//

// Hopper scriplet class. No threads - only call overridden
callbacks from Vehicle that

// are called by an Industry.

//

class Hopper isclass Vehicle

{

 // Play sound hopper is starting to be loaded.

 float BeginLoad(LoadingReport report)

 {

 Asset meAsset = GetAsset();

 World.PlaySound(meAsset, “coal_load1.wav”, 1000.0f,
20.0f, 1000.0f, me, “”);

 return 0.0;

 }

 // Activate particles and play a sound as the hopper is
beginning to unload.

 float BeginUnload(LoadingReport report)

 {

 SetMeshAnimationState(“left-door”, true);

 SendMessage(me, “pfx”, “+0+1”);

 SetMeshAnimationState(“right-door”, true);

 SendMessage(me, “pfx”, “+2+3”);

 Asset meAsset = GetAsset();

 World.PlaySound(meAsset, “coal_dump1.wav”, 1000.0f,
20.0f, 1000.0f, me, “”);

 return 1.0;

lifetime			 2

minsize			 1

maxsize		 4

enabled		 0

smoke3

attachment		 “a.unload_right_pfx1”

mode			 “time”

color			 0,0,0,250

rate			 8

velocity			 2

lifetime			 2

minsize			 1

maxsize		 4

enabled		 0

bogeys

0

bogey			 <kuid:-1:100063>

reversed		 0

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

1

image			 “coal_hopper_art/coal_hopper_
art_icon.texture”

width			 128

height			 64

Version 3.0   320   Trainz Railroad Simulator - The Content Creator’s Guide

coal_hopper_body.lm.txt

version 1.0

 offset = 0.01;

 calcPoint = center;

 multiplier = 1.0;

 animationCutOff = 0.00;

 mesh(“0.25”)

 {

 name=”coal_hopper_body_low.im”;

 }

 mesh(“1.0”)

 {

 name=”coal_hopper_body.im”;

 }

 }

 // Deactivate particles and play a sound as the hopper is
ending the unload operation.

 float EndUnload(LoadingReport report)

 {

 Sleep(1.0);

 SetMeshAnimationState(“left-door”, false);

 SendMessage(me, “pfx”, “-0-1”);

 SetMeshAnimationState(“right-door”, false);

 SendMessage(me, “pfx”, “-2-3”);

 return 1.0;

 }

};

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   321   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Diesel Engine)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

config.txt

origin			 “AU”

engine			 1

username		 “testDieselLoco”

mass			 85000

interior		 <kuid:-1:101211>

kind			 “traincar”

fonts			 2

smoke_shade		 0.18

smoke_random		 2.5

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

Various digit_.....bmp and alphanumber....tga files
used for the model and Alpha numbers.

gm_angreen_icon.tga - The icon texture files. 128x64
pixels in dimension.

gm_angreen_body.pm, gm_angreen_shadow.pm -
progressive mesh files for the model and shadow

Various texture.txt files for the textures, generated when
the model is exported. See the section on Texture.txt files
on Page 96 for more information.

File Listings

Version 3.0   322   Trainz Railroad Simulator - The Content Creator’s Guide

smoke_slowlife		 6

smoke_fastlife		 0.8

smoke_height		 1.7

smoke_fastspeed		 3

enginespec		 <kuid:-1:42004219>

enginesound		 <kuid:-1:42003000>

hornsound		 <kuid:523:54610>

description		 “Test Traincar (Diesel)”

kuid			 <kuid:171456:100028>

trainz-build		 2.5

category-class		 “AA”

category-region		 “00”

category-era		 “1960s;1970s”

mesh-table

default

mesh			 “gm_angreen_body/gm_
angreen_body.pm”

auto-create		 1

shadow

mesh			 “gm_angreen_shadow/gm_
angreen_shadow.pm”

auto-create		 0

bogeys

0

bogey			 <kuid:-1:100009>

reversed		 0

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

1

image			 “gm_angreen_icon/gm_
angreen_icon.tga”

width			 128

height			 64

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   323   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Electric Engine)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

tr08car_icon.tga - The icon for for the asset.

tr08_car.im, tr08car_rightdoors.im, tr08car_leftdoors.
im - The mesh files for the asset.

tr08car_rightdoors.kin, tr08car_leftdoors.kin - The
door animation files.

tr08_car_shadow.im - The mesh file for the shadow
model.

various.tga, various.texture.txt - The texture files for
the asset. See the section on Texture.txt files on Page 96
for more information.

File Listings

engine				 1

mass				 53000

company			 “Transrapid
International”

origin				 “Germany”

disable-extra-track-sounds	 1

enginespec			 <kuid:37522:2>

enginesound			 <kuid:-1:42003002>

hornsound			 <kuid:60723:54000>

category-region			 “DE”

category-era			 “2000s”

fonts				 0

max-coupler-gap		 0

use-coupler-sounds		 0

description			 “Test electric traincar
asset. Based on the Maglev.”

mesh-table

default

mesh				 “TR08_Maglev_body/
TR08_Maglev_body.im”

auto-create			 1

shadow

mesh				 “TR08_Maglev_
shadow/Maglev_shadow.im”

left-passenger-door

mesh				 “TR08_Maglev_body/
TR08Cab_LeftDoors.im”

anim				 “TR08_Maglev_body/
TR08Cab_LeftDoors.kin”

auto-create			 1

att				 “a.doors”

att-parent			 “default”

right-passenger-door

mesh				 “TR08_Maglev_body/
TR08Cab_RightDoors.im”

anim				 “TR08_Maglev_body/
TR08Cab_RightDoors.kin”

auto-create			 1

config.txt

kuid				 <kuid:171456:100027>

trainz-build			 2.5

category-class			 “AE”

username			 “testTrainCar (Electric)”

kind				 “traincar”

Version 3.0   324   Trainz Railroad Simulator - The Content Creator’s Guide

att				 “a.doors”

att-parent			 “default”

queues

passengers

passenger-queue			 “1”

product-kuid			 <kuid:-3:10060>

size				 92

initial-count			 5

bogeys

bogey-element0

reversed			 0

bogey				 <kuid2:171456:149:1>

thumbnails

0

image				 “tr08_icon/tr08_icon.
tga”

width				 128

height				 64

1

image				 “thumb.jpg”

width				 240

height				 180

kuid-table

0				 <kuid:-1:100141>

1		 		 <kuid:37522:2>

2				 <kuid:-1:42003002>

3				 <kuid:60723:54000>

4				 <kuid:-10:216>

5				 <kuid:-3:10060>

6	 			 <kuid2:171456:149:1>

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   325   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Rollingstock)
Directory Structure
 This is a boxcar example. A typical asset of this kind has
the following File\Directory Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

various.tga - The texture graphic files for the various
textures used in the asset.

various.bmp - The opacity texture graphic files for the
various textures used in the asset.

various.texture.txt - The texture.txt files for the various
textures used in the asset, usually generated when the
model is exported. See the section on Texture.txt files on
Page 96 for more information.

50ft_boxcar_body.pm, 50ft_boxcar_shadow.pm - The
older progressive meshes used for the asset.

File Listings

description		 “Test Roilling Stock assset”

icon0			 <kuid:-3:10164>

kuid			 <kuid:171456:100013>

username		 “Test 50’ Boxcar”

trainz-build		 2.5

category-class		 “XB”

category-region		 “US”

category-era		 “1960s;1970s”

queues

load

size			 9

initial-count		 0

product-kuid		 <kuid:-3:10013>

allowed-products

0	 		 <kuid:-3:10013>

mesh-table

default

mesh			 “50ft_Boxcar_body/50ft_
Boxcar_body.pm”

auto-create		 1

shadow

mesh			 “50ft_Boxcar_shadow/50ft_
Boxcar_shadow.pm”

auto-create		 0

bogeys

0

bogey			 <kuid:-1:100074>

reversed		 0

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

engine			 0

mass			 20865

origin			 “USA”

kind			 “traincar”

enginespec		 <kuid:-1:42004201>

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   326   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Passenger Car)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

config.txt

icon0			 <kuid:-3:10164>

origin			 “UK”

description		 “Test Pasenger car asset.”

engine			 0

mass			 28000

username		 “Test Passenger Car”

kind			 “traincar”

enginespec		 <kuid:-1:42004201>

kuid			 <kuid:171456:100026>

trainz-build		 2.5

category-class		 “PC”

category-region		 “00”

category-era		 “1970s;1980s”

soundscript

door_open

trigger			 “door_open”

nostartdelay		 1

repeat-delay		 1,0

distance		 5,170

sound

0			 “start.wav”		

door_close

trigger			 “door_close”

various.tga - The texture graphic files for the various
textures used in the asset.

various.bmp - The opacity texture graphic files for the
various textures used in the asset.

various.texture.txt - The texture.txt files for the various
textures used in the asset, usually generated when the
model is exported. See the section on Texture.txt files on
Page 96 for more information.

start.wav - The sound files used in the asset.

trans_base.im, trans_base_night.im, trans_turntable.
im, trans_platform_night.im - The indexed meshes
used for the asset.

File Listings

Version 3.0   327   Trainz Railroad Simulator - The Content Creator’s Guide

nostartdelay		 1

repeat-delay		 1,0

distance		 5,170

sound

0			 “start.wav”

mesh-table

default

mesh			 “mk1_rmb_br_bld_custd_body/
mk1_rmb_br_bld_custd_body.lm”

auto-create		 1	

shadow

mesh			 “mk1_rmb_br_bld_custd_
shadow/mk1_rmb_br_bld_custd_shadow.pm”

left-passenger-door

mesh			 “mk1_rmb_br_bld_custd_body/
left_door/left_door.im”

anim			 “mk1_rmb_br_bld_custd_body/
left_door/left_door.kin”

auto-create		 1

att			 “a.doors”

att-parent		 “default”

right-passenger-door

mesh			 “mk1_rmb_br_bld_custd_body/
right_door/right_door.im”

anim			 “mk1_rmb_br_bld_custd_body/
right_door/right_door.kin”

auto-create		 1

att			 “a.doors”

att-parent		 “default”

queues

passengers

size			 22

initial-count		 0

passenger-queue	 “1”

product-kuid		 <kuid:-3:10060>

attachment-points

0			 “a.sitpoint5a”

1			 “a.sitpoint1b”

2			 “a.sitpoint3c”

3			 “a.sitpoint2d”

4			 “a.sitpoint1e”

5			 “a.sitpoint0f”

6			 “a.sitpoint5g”

7			 “a.sitpoint0h”

8			 “a.sitpoint1a”

9			 “a.sitpoint4b”

10			 “a.sitpoint1c”

11			 “a.sitpoint1d”

12			 “a.sitpoint0e”

13			 “a.sitpoint1f”

14			 “a.sitpoint4g”

15			 “a.sitpoint1h”

16			 “a.sitpoint2a”

17			 “a.sitpoint3b”

18			 “a.sitpoint4c”

19			 “a.sitpoint0d”

20			 “a.sitpoint2e”

21			 “a.sitpoint”

bogeys

0

bogey			 <kuid:-3:10061>

reversed		 0

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   328   Trainz Railroad Simulator - The Content Creator’s Guide

Traincar (Steam Locomotive)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

bigboy-cyl-steam.tfx, bigboy-smoke.tfx, bigboy-
smoke-idle.tfx, bigboy-steam-relief.tfx - The Twinkle
files used for the smoke effects. More information on
Twinkles can be found on Page 394.

UP_Bigboy_art_512.texture.txt, UP_Bigboy_art_512.
tga - These image files are used to show a 512x512
preview texture when the image is available on the
download station.

This is valid for 2004 assets, but in TRS2006 this
functionality has been replaced with the 240x180
thumbnail image referenced in the thumbnails container.

If your asset has a trainz-version of 2.5+, you should use
an image from a thumbnail container instead, at which
time these files may be deleted if you wish to decrease
the filesize of your asset.

UP_Bigboy_art_icon.texture.txt, UP_Bigboy_art_icon.
tga - The icon texture files. 128x64 pixels in dimension.

bb_alpha.bmp, bb_alpha.texture.txt, bb_alpha.tga,
bb_alpha-bb_alpha.texture.txt, BB_Bolts.texture.txt,
BB_Bolts.tga, BB_Bolts_bump.texture.txt, BB_Bolts_
bump.tga, BB_Bolts_LOW.texture.txt, BB_Bolts_
LOW.tga, BB_Bolts_med.texture.txt, BB_Bolts_med.
tga, bb_main01.texture.txt, bb_main01.tga, bb_main.
texture.txt, bb_main.tga, bb_main_bump.texture.txt,
bb_main_bump.tga, bb_main_LOW.texture.txt, bb_
main_LOW.tga, bb_main_MED.texture.txt, bb_main_
MED.tga, Env_glass.bmp, Env_glass.texture.txt, Env_
metal.bmp, Env_metal.texture.txt, generic.texture.txt,
generic.tga, generic_LOW.texture.txt, generic_LOW.
tga, generic_med.texture.txt, generic_med.tga,
window+interior.texture.txt, window+interior.tga,
black.texture.txt, black.tga - The texture files used by
the indexed meshes.

See the section on Texture.txt files on Page 96 for more
information.

UP_Bigboy_body.lm.txt - Level of Detail (or ‘LOD’) file.
See the section on LOD meshes on Page 378 for more
information.

UP_Bigboy_body.im, UP_Bigboy_body_low.im, UP_
Bigboy_body_med.im, UP_Bigboy_shadow.im - The
indexed mesh files used by the traincar asset.

Version 3.0   329   Trainz Railroad Simulator - The Content Creator’s Guide

config.txt

kuid			 <kuid:56113:1002>

trainz-build		 2.5

category-class		 “AS”

username		 “testTraincar (Steam)”

kind			 “traincar”

engine			 1

mass			 544310

category-region		 “US”

category-era		 “1930s;1940s;1950s;1960s;197
0s;1980s”

enginespec		 <kuid:523:51469>

enginesound		 <kuid:-3:10105>

hornsound		 <kuid:523:54745>

smoke_fastlife		 6

smoke_fastspeed	 2

smoke_height		 0

smoke_random		 2

smoke_shade		 0.3

smoke_slowlife		 1

description		 “Test steam traincar asset.
Based on the UP BigBoy.”

mesh-table

default

mesh			 “UP_Bigboy_body/UP_Bigboy_
body.lm”

auto-create		 1

shadow

mesh			 “UP_Bigboy_shadow/UP_
Bigboy_shadow.im”

smoke0

attachment		 “a.steam_cyl_drainL”

mode			 “anim”

color			 255,255,255,225

start			 0.6

period			 0

rate			 1

velocity			 0.8

lifetime			 0.4

minsize			 0.5

maxsize		 1.5

smoke1

attachment		 “a.steam_cyl_drainR”

mode			 “anim”

color			 255,255,255,225

start			 0.1

period			 0

rate			 1

velocity			 0.8

lifetime			 0.4

minsize			 0.5

maxsize		 1.5

smoke2

attachment		 “a.steam_L0”

mode			 “anim”

color			 255,255,255,225

start			 0.61

period			 0

rate			 1

velocity			 0.8

lifetime			 0.4

minsize			 0.5

maxsize		 1.5

smoke3

attachment		 “a.steam_R0”

mode			 “anim”

color			 255,255,255,225

start			 0.11

period			 0

rate			 1

File Listings

Version 3.0   330   Trainz Railroad Simulator - The Content Creator’s Guide

velocity			 0.8

lifetime			 0.4

minsize			 0.5

maxsize		 1.5

smoke4

attachment		 “a.safety01”

mode			 “time”

color			 255,255,255,150

rate			 45

velocity			 0.5

lifetime			 0.4

minsize			 0.05

maxsize		 0.5

smoke5

attachment		 “a.safety02”

mode			 “time”

color			 255,255,255,150

rate			 45

velocity			 0.5

lifetime			 0.4

minsize			 0.05

maxsize		 0.5

smoke6

attachment		 “a.smoke0”

mode			 “speed”

color			 50,50,50,255

accel			 0,0,-1.5

start			 0,5,10,20

rate			 5,12,15,20

velocity			 2.5,3.5,4.5,5.5

lifetime			 2,3,4,4

minsize			 0.4

maxsize		 2,3,4,5

smoke7

attachment		 “a.smoke1”

mode			 “speed”

color			 50,50,50,255

accel			 0,0,-1.5

start			 0,5,10,20

rate			 5,12,15,20

velocity			 2.5,3.5,4.5,5.5

lifetime			 2,3,4,4

minsize			 0.4

maxsize		 2,3,4,5

bogeys

0

bogey			 <kuid:523:10071>

reversed		 0

1

bogey			 <kuid:523:10072>

reversed		 0

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

1

image			 “up_bigboy_icon/up_bigboy_
icon.tga”

width			 128

height			 64

Version 3.0   331   Trainz Railroad Simulator - The Content Creator’s Guide

UP_Bigboy_body.lm.txt

version 1.0

 offset = 0.01;

 calcPoint = center;

 multiplier = 1.0;

 animationCutOff = 0.00;

 renderCutOff = 0.00;

 attachmentCutOff = 0.06;

 mesh(“0.25”)

 {

 name=”UP_Bigboy_body_low.im”;

 }

 mesh(“0.52”)

 {

 name=”UP_Bigboy_body_med.im”;

 }

 mesh(“1.0”)

 {

 name=”UP_Bigboy_body.im”;

 }

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   332   Trainz Railroad Simulator - The Content Creator’s Guide

Tunnel
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

default.im - The middle section of the tunnel asset. This
mesh is also used as the preview image. Must be named
“default.im” and placed in the base directory.

tunnel_QR_end.im, tunnel_QR_start.im - The indexed
meshes used at each end of the tunnel.

darkstone.tga, wire.tga, qr_portal.tga - The texture files
used by the indexed meshes for this asset.

darkstone.texture.txt, wire.texture.txt, qr_portal.
texture.txt - the texture.txt files for the various textures
used in the asset, usually generated when the model is
exported. See the section on Texture.txt files on Page 96
for more information.

File Listings

endlength		 20

grounded		 0

isroad			 0

istrack			 1

length			 20

repeats			 0

rgb			 180,180,180

shadows		 0

upright			 0

visible-on-minimap	 1

width			 7.9

kuid			 <kuid:171456:100024>

trainz-build		 2.5

category-class		 “TT”

category-region		 “AG”

category-era		 “1830s”

username		 “testTunnel”

kind			 “bridge”

bridgetrack		 <kuid:-1:15>

height			 9.305

trackoffsets		 0.01

initiator			 “tunnel_QR_start”

terminator		 “tunnel_QR_end”

description		 “Test Tunnel asset.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

config.txt

bendy			 0

carrate			 0

casts_shadows		 0

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   333   Trainz Railroad Simulator - The Content Creator’s Guide

Turntable (Animated)
Directory Structure
This is a transfer turntable, that has a moveable platform.
A typical asset of this kind has the following File\Directory
Structure:

config.txt

kuid			 <kuid2:171456:60019:1>

light			 1

kind			 “turntable”

username		 “Test Transfer Table”

category-class		 “TR”

height-range		 -10,30

snapmode		 1

dighole			 6,6

keyframes	 0,80,160,240,320,400,480,560,640,720

looping			 0

frame-rate		 30

nightmode		 “home”

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

various.tga - The texture graphic files for the various
textures used in the asset.

various.texture.txt - The texture.txt files for the various
textures used in the asset, usually generated when the
model is exported. See the section on Texture.txt files on
Page 96 for more information.

idle.wav - The sound files used in the asset.

trans_base.im, trans_base_night.im, trans_turntable.
im, trans_platform_night.im - The indexed meshes
used for the asset.

anim.kin - The animation file used for the asset.

File Listings

Version 3.0   334   Trainz Railroad Simulator - The Content Creator’s Guide

description		 “A test model for a locomotive
transfer table with 10 tracks, track spacing 5 metres. The
table has catenary wire placed on the moving bridge.

This is a basic model, with night lighting. The table may
be rotated in 90 degree increments only, in order to
cover the blue hole created in the scenery for the pit.

The model is for use in TRS only. “

category-era		 “1990s;2000s”

trainz-build		 2.5

category-region		 “AU”

attached-track

in_track0

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.itrack0a”

1			 “a.itrack0b”	

out_track0

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack0a”

1			 “a.otrack0b”	

out_track1

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack1a”

1			 “a.otrack1b”

out_track2

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack2a”

1			 “a.otrack2b”	

out_track3

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack3a”

1			 “a.otrack3b”

out_track4

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack4a”

1			 “a.otrack4b”

out_track5

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack5a”

1			 “a.otrack5b”

out_track6

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack6a”

1			 “a.otrack6b”

out_track7

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack7a”

1			 “a.otrack7b”

out_track8

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack8a”

Version 3.0   335   Trainz Railroad Simulator - The Content Creator’s Guide

1			 “a.otrack8b”

out_track9

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack9a”

1			 “a.otrack9b”

out_track10

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack10a”

1			 “a.otrack10b”

out_track11

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack11a”

1			 “a.otrack11b”

out_track12

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack12a”

1			 “a.otrack12b”

out_track13

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack13a”

1			 “a.otrack13b”

out_track14

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack14a”

1			 “a.otrack14b”

out_track15

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack15a”

1			 “a.otrack15b”

out_track16

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack16a”

1			 “a.otrack16b”

out_track17

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack17a”

1			 “a.otrack17b”

out_track18

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack18a”

1			 “a.otrack18b”

out_track19

useadjoiningtracktype	 0

track			 <kuid:-3:10122>

vertices

0			 “a.otrack19a”

1			 “a.otrack19b”

mesh-table

default

mesh			 “trans_base/trans_base.im”

Version 3.0   336   Trainz Railroad Simulator - The Content Creator’s Guide

auto-create		 1

default-night

mesh		 “trans_base_night/trans_base_night.im”

night-mesh-base	 “default”

turntable

mesh		 “trans_platform/trans_platform.im”

anim		 “trans_platform/anim.kin”

turntable-night

mesh		 “trans_platform_night/trans_platform_
night.im”

att			 “a.platform_origin”

att-parent		 “turntable”

night-mesh-base	 “turntable”

soundscript

dayloop

repeat-delay		 0,0

distance		 20,100

attachment		 “a.platform_origin”

sound

0			 “idle.wav”

kuid-table

0			 <kuid:-3:10122>

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   337   Trainz Railroad Simulator - The Content Creator’s Guide

Turntable (Not animated)
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

various.tga - The texture graphic files for the various
textures used in the asset.

various.bmp - The opacity texture files used in the asset.

various.texture.txt - The texture.txt files for the various
textures used in the asset, usually generated when the
model is exported. See the section on Texture.txt files on
Page 96 for more information.

idle.wav - The sound files used in the asset.

base.im, turntable.im - The indexed meshes used for
the asset.

File Listings

category-region		 “00”

category-era		 “1850s;1860s;1870s;1880s”

snapmode		 1

dighole			 4,4

light			 1

angle			 0,10,20,30,40,50,60,180,190,20
0,210,220

looping			 0

description		 “Test turntable asset.”

mesh-table

default

mesh			 “base/base.im”

auto-create		 1

turntable

mesh			 “turntable/turntable.im”

auto-create		 1

attached-track

track_turntable

track			 <kuid:11:32001>

useadjoiningtracktype	 0

vertices

0	 		 “a.itrack0a”

1			 “a.itrack0b”

track0_base

track			 <kuid:9:50001>

useadjoiningtracktype	 0

vertices

0	 		 “a.otrack0a”

1			 “a.otrack0b”

track1_base

track			 <kuid:9:50001>

useadjoiningtracktype	 0

vertices

0			 “a.otrack1a”

1	 		 “a.otrack1b”

config.txt

kuid			 <kuid:171456:100030>

kind			 “turntable”

username		 “testTurntable”

trainz-build		 2.5

category-class		 “BR”

Version 3.0   338   Trainz Railroad Simulator - The Content Creator’s Guide

track2_base

track			 <kuid:9:50001>

useadjoiningtracktype	 0

vertices

0			 “a.otrack2a”

1			 “a.otrack2b”

track3_base

track			 <kuid:9:50001>

useadjoiningtracktype	 0

vertices

0	 		 “a.otrack3a”

1			 “a.otrack3b”

track4_base

track			 <kuid:9:50001>

useadjoiningtracktype	 0

vertices

0			 “a.otrack4a”

1			 “a.otrack4b”

track10_base

track			 <kuid:9:50001>

useadjoiningtracktype	 0

vertices

0			 “a.otrack10a”

1			 “a.otrack10b”

kuid-table

0			 <kuid:9:50001>

1			 <kuid:11:32001>

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   339   Trainz Railroad Simulator - The Content Creator’s Guide

Water2
Directory Structure
 A typical asset of this kind has the following File\Directory
Structure:

Required Files
config.txt - The config file for the asset.

thumb.jpg - The thumbnail image for this asset. A
240x180 jpeg.

water.anim.txt - Contains the animation variables for the
water asset.

water.bmp, wateropacity.texture.txt - The texture files
applied to the water. See the section on Texture.txt files
on Page 96 for more information.

water.config.txt - Contains the tile size and material
properties for the water asset.

File Listings

config.txt

kuid			 <kuid:56113:1226>

trainz-build		 2.5

category-class		 “EW”

category-region		 “00”

category-era		 “2010s”

username		 “TestWater”

kind			 “water2”

description		 “This is a test water2 kind
written for the 2006 CCG.”

thumbnails

0

image			 “thumb.jpg”

width			 240

height			 180

water.anim.txt

version 1.00

// Water DetailAnim configuration file

// Is used from DefaultWater.config.txt

DetailAnim

{

 AnimName = WaterAnimationPN; // Perlin noise
animation.

 AnimSampleRate = 10; // Sample rate (samples
per sec)

 AnimPeriod = 5; // Looping period in sec.

 AnimSpeed = 5.0; // Speed of waves

 AnimSize = 128,128; // Bump map dimentions

 //AnimSize = 32,32; // Bump map dimentions

 AnimWorldSize = 450.0; // “Size” of one tile

 AnimMaxHeight = 1.0; // Max height of the wave

 AnimScaleNormXY = 4.0; // scale X,Y coordinates
of the normal map for better interpolation

 Perlin

 {

 AnimPerlinFreq = 15.0;

 AnimPerlinSpeed = 10.0;

 AnimPerlinOctaves = 3.0;

 }

 FFT

 {

 AnimFFTWindVec = -15.0,5.0; // Direction and speed
of the wind affecting length of the waves

 AnimPhillipsA = 1.0e-3; // Phillips spectrum
constant affecting heights of the waves

 AnimFFTSeed = 0;

 // Reduce height of waves in direction perpendicular to
wind (CosMin <= cos(dir) <= CosMax)

 //acrossCosMax // Default -1.1 (disabled) (1.0 same
direction, 0.0 - perpendicular, -1.0 opposite)

 //acrossCosMim // Default 1.1

 //acrossRatio // Default 1.0

 // Reduce height of waves in direction opposite to wind

Version 3.0   340   Trainz Railroad Simulator - The Content Creator’s Guide

 //oppositeCos // Default -1.1 (disabled) (1.0 same
direction, -1.0 opposite direction)

 //oppositeRatio // Default 1.0

 }

}

Download this asset

This asset is available for download from the TRS2006
website at: http://files.auran.com/TRS2006/Downloads/
Example_Download.zip.

water.config.txt

version 1.00

// WaterManager config data

WaterManager(“WaterManagerGeneric”)

{

 WaterMaterial

 {

 materialColor = (0.20, 0.45, 0.45, 0.8);

 materialRI = 0.3;

 opacityTex = WaterOpacity.texture;

 opacityAmount = 0.5;

 }

 // Compiled DetailAnim or text ConfigData file ‘water.anim.
txt’

 // This is now loaded manually by Trainz so Trainz can cache
the anim file in a separate folder.

 // DetailAnimFile = water.anim;

}

// WaterGeometry config data

WaterGeometry

{

 UVScrollVelocity = 0.0, 0.05;

 TileUVScale = 1.0, 1.0;

 GridSpacing = 10.0; // “Size” of one cell of the
grid (is used if MaxAmp > 0)

 TileGridSize = 2, 2; // Number of vertices in one
tile (use more if MaxAmp > 0)

 WaveFreq = 0.0;//0.15;

 MaxAmp = 0.0;//0.25;

 // Mesh animation

// TileGridSize = 3, 3; // Number of vertices in
one tile (use more if MaxAmp > 0)

// WaveFreq = 0.15;

// MaxAmp = 0.25;

}

Displacements
This is a special Kind that is not created in CCP as it
does not require a config.txt file. Displacement maps are
used to create the differing height/depth and shape of an
area of terrain, based on shades of grey in a .bmp file.
For a default installation the Displacements directory is
found in:
C:\Program Files\Auran\TC\World\Custom\displacements

Create the required greyscale file (256 by 256 Greyscale
8bit .bmp file). Place it in the Displacements directory.

Directory Structure.

 A typical asset of this kind has the following example files
in the Directory Structure:

			 	 Displacement01.bmp

http://files.auran.com/TRS2006/Downloads/Example_Download.zip
http://files.auran.com/TRS2006/Downloads/Example_Download.zip

Version 3.0   341   Trainz Railroad Simulator - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 8
Modeling Guidelines
The purpose of this chapter is to assist in creating and installating custom TRS assets. We assume that
third party developers have a basic knowledge of 3dsmax or gmax and therefore only give references to
model requirements, rather than present a modelling tutorial.

The chapter includes modelling information on:

	 the interface between 3dsmax/gmax and Trainz;
	 exporting models into Trainz;
	 animation;
	 solving problems with exports;
	 polycount;
	 textures:
	 bump mapping guidelines;
	 opacity;
	 interiors;
	 steam engine settings;
	 animation events;
	 Level of Detail;
	 load texture replacement;
	 aliasing trains ;
	 bogies;
	 pantographs;
	 transfer tables;
	 fixed track;
	 chunky mesh track;
	 splines; and
	 the trainzclassicoptions file.

Version 3.0   342   Trainz Railroad Simulator - The Content Creator’s Guide

3DSMax/gmax Interface with Trainz

The interface between creating the models and exporting
to Trainz can be an area of frustration, when the
model does not show in Trainz, or animation operates
incorrectly, or not at all! This section discusses how to set
up 3dsmax/gmax, place things correctly and the export
requirements. It is not a tutorial on how to make models,
manipulate shapes or to map textures.

3DSMax/gmax Initial Setup
You should first set up 3dsmax or gmax with default
settings, both programs have similar settings. The
units are easiest to work with when set to metric, some
experience problems with animation in imperial units.

Set the menus as follows:

1. From the Customise .. Preference Settings .. General,
set the System Units Scale

2. From the Customise .. Units Setup, set the Units

3. From the Grid and Snap Settings ..Home Grid, set the
grid to a very fine value, say 0.01 metres. This allows you
to have a fine grid when you zoom in, and allows you to
snap objects to the grid points (this option may be turned
on or off in 3dsmax/gmax). The grid will not clutter the
screen as it only shows a grid density suitable for viewing
as you zoom in or out.

4. From the Customise .. Preferences .. Files, some
boxes may already be ticked, but the following settings
are useful:

Increment on save, after first saving the file with a name
of your choice, subsequently using the save button will
automatically create a new saved file, incrementing the
file number. For a file called bridge, this gives bridge001,
bridge002 etc as you Save the file, you do not need to
use Save As. Save often, and if you have a problem
with the model you can go back a few saved steps and
start again. When you have finished the model, you can
remove unnecessary older saved files.

It is very important to check the Auto Backup. If 3dsmax
or gmax crashes (and it sometimes does, when you are
trying to undo too many steps when mapping, or typing
a material name in some of the dialogue boxes in gmax)
you can find three files called Autobak001, 002, 003 in
the Autobak directory.

3dsmax cycles through these numbers and overwrites
them. Find the directory, look at the time stamp for the
most recent file, open it in 3dsmax or gmax and you will
only have lost up to 5 minutes of work (whatever time you
have set). You may have to “Show All Files” to see the
file, when trying to open it from the Autobak directory.

5. From the Customise .. Configure Paths .. General
you can choose the paths for your files. It is useful to set
the Export path to the full directory of the Custom Trainz

directory in TRS2004 or the editing directory in TC. It is
simple to then navigate to the particular model directory
from there, without navigating from the C: directory every
time you export a file.

An easy way to have consistent 3dsmax/gmax settings
is to load a previous model and then select the “new file”
option to begin a new model, retaining the settings from
the previous loaded file.

One issue with 3dsmax4/gmax is “saved file corruption”,
caused by a Microsoft upgrade. Your saved files naturally
get larger as you work, but a reasonable files size may
be 100k to 400k, depending on the model. Sometimes
the next file save becomes corrupted and the file size will
jump to 2 or 3mb.

While it does not seem to have any effect on the file
contents, you will notice this effect by the greatly
increased save and load time of the file. Do not merge
any object from the corrupted file into a new file, it can
corrupt the new file as well, and inflate the size. If you
were also using the Increment on Save option, you can
then end up with many large files, using up valuable disk
space.

This had been recognised by Discreet, and information is
available on the Discreet site:
http://usa.autodesk.com/adsk/servlet/ps/item?siteID=123
112&id=5582099&linkID=5573345

Merging and Exporting
If you have a completed model, or part, that you wish to
use in the currently open model, use the File... Merge
function to select and load the part/s. You will have a list
to choose from for the parts you wish to merge. The parts
will be loaded in the same relative location to the origin,
as when they were originally saved. Be aware if they
were hidden in 3dsmax/gmax in the original, they will be
hidden when merged.

Exporting the model to Trainz requires the use of the
Asset Creation Studio for gmax or the export plugin for
3dsmax. Use the Asset Creation Studio to load gmax,
do not use the gmax icon or menu to load gmax, or the
Trainz export option will not be enabled.

Make sure all surfaces have been mapped with your
materials or error messages may indicate that certain
parts of the model cannot be exported.

You should save the model before any export, a good
practice to make sure you have a saved file in case of
computer problems. You must save the file before the first
export, or 3dsmax/gmax will not know the correct path for
file location and materials when you try to export, and an
error message may result.

When exporting, have no part of the model selected, so
you can be sure of what is exported. If you want to export
only a part of the model, select those parts and use the
Export Selected option. Alternatively, hide all parts that

http://usa.autodesk.com/adsk/servlet/ps/item?siteID=123112&id=5582099&linkID=5573345
http://usa.autodesk.com/adsk/servlet/ps/item?siteID=123112&id=5582099&linkID=5573345

Version 3.0   343   Trainz Railroad Simulator - The Content Creator’s Guide

are not to be included in the export.

See the section on Animation Requirements below for
additional issues with exporting animated models.

Under Tools, use the Resource Collector option to
automatically find all the textures for the model and
export them to the model directory.

The exporter creates an additional file, for example
model.gmw. Files with the gmw extension are not used by
Trainz and should be deleted.

When you have finished developing a model, before you
package it using the Content Dispatcher, a good practice
is to clean out the export directories and export the model
and gather all the texture files a final time. This clears out
any unused texture files and texture.txt files that were
generated during development and are not used in the
final model. Leaving unreferenced files in a model can
give errors. In clearing the directory make sure you do
not delete the config.txt file or any readme file you have
created.

If you develop a large number of models you may find
that keeping the 3dsmax/gmax file in a suitably named
directory along with the texture files for that model, makes
it easy to find the exact files used for the model later.
Commonly a sub directory under 3dsmax/gmax, such
as “Scenes” might be used for the purpose. Use simple
names for directories and files, to minimise typing errors
in the config.txt file.

3ds is a widely used graphical file standard, and 3dsmax
can export this type of file, which can then be imported
and used in gmax. You may find that some things like
attachment points may not be exported. It also truncates
the material file names to 8 characters. When imported
into gmax you need to rename the materials to include
the original longer file name characters, for the materials
to be loaded correctly.

Gmax does not export 3ds format, so it is difficult to
transfer a gmax file into 3dsmax.

Animation Requirements
Adding animation to models requires very specific steps
and standards in 3dsmax/gmax. The following are a few
key points in having animation export and work correctly:

1. Animation is set up using helper (dummy) points using
the b.r. naming notation. It is usual to have a main point
(b.r.main or b.r.base or similar) as the main reference
point, often placed at the origin. All animation and objects
must be linked to this dummy, directly or through other
dummies connected to b.r.main.

2. Place the b.r. dummies in top view, and move them
to their correct locations, for the individual movement of
parts of the model. They are usually placed at the rotation
point of the part. Placing a dummy in top view sets the
orientation of the dummy axis correctly at the start.
Normally, do not rotate the dummy, this misaligns the

axis. If the dummy is rotated, the axis must be re-aligned
to the World axis.
3. All parts must be placed correctly at the start of the
animation, key frame 1. The axis of all parts must then
be aligned to the World axis before commencing the
linking of parts.

5. Dummies are linked to the b.r.main, and the objects
are linked to their respective dummies. When this is
done, do not move or adjust the parts, unless you are
recording the movements as part of the animation (the
red animation box is turned on).

6. Do not use groups in animation, they will not export.
You can however choose a number of separate parts and
link them to a common dummy in one step.

7. Every part of the model must be linked to a dummy,
static parts must be linked to the b.r.main.

8. Apply animation to the dummies only, not the objects.
Do not move the dummies unless you are recording the
animation (see 5 above).

9. All relevant dummies must be exported with the
animated objects. If you have two separate animations for
the same model (animations in separate subdirectories
for example) the common b.r.main must be exported for
each animated model part. Failure to include this may
give a message “nothing to export”. Again, once you
enter any dummy in the model and export it, even
before you have started any animation, all parts
must be linked to a dummy, and the dummies linked
together, or parts will not show in Trainz.

10. An event file may be used to start and stop animation
with the help of triggers and script files. The event file
is a simple text file saved with an .evt extension. When
exporting the animated model, you will be queried for an
event file. You may point the exporter to the appropriate
file, and the commands from the file will be incorporated
in the animation export. See the Animation Events file
section on Page 369 for details.

11. Some difficulty may be experienced with animation
in imperial units, or mixed units. Metric units are
recommended, and the System units must be metric.

12. The Trainz exporter will only export translation and
rotation in animations, not scalar. An object can be moved
and rotated but you cannot change the size of the object.

13. Bones may be used for smooth animation in Trainz.
They represent parts of the model, aligned to the world
axis, and linked. A bone linkage constrains the motion,
for example, moving a hand moves the wrist, elbow and
shoulder to suit.

Bones must be linked to the b.r. dummies, the objects
themselves are also linked to the dummies, and only the
dummies are animated, not the bones or objects. The
animation of the dummies is constrained by the structure
of bones.

Version 3.0   344   Trainz Railroad Simulator - The Content Creator’s Guide

Attachments
Attachments are the means of specifying how sub
meshes or other effects are placed or attached in a
model. An attachment point is located in the model and
reference is made from the config.txt file, to define its use
and function.

Attachment points use the a.name convention, to be
recognised in Trainz. For an attachment point to move
with an animated dummy, there is a special naming
convention for the point in 3dsmax/gmax, e.g. a.r.dummy/
a.name. Refer to Page 363 and Page 381 for further
explanation of this option.

Attachment points should be created in top view, and the
orientation of the axis will then be consistent. Sometimes
the attachment point may not be facing the correct
direction, and has to be rotated (realigned). Refer to other
sections for advice on any special orientation required
for different attachment points, for track, names, bogeys,
coupler points and effects.

Be aware that the point itself must be rotated correctly,
not the axis of the point. The Hirerachy...Affect Pivot Only
option may be turned on to determine the orientation of
the point, it must then be turned off before rotating the
point (click on the Affect Pivot Only box to toggle on/off).
Turn on the axis information again to verify the rotation of
the point has been done correctly.

a.bog, a.limfront and a.limback are some of the important
attachments for rollingstock models. As these have
specific placements, it may be helpful to save a file of
these points as a template, so you can merge it with your
next model. With a few adjustments, you can quickly
incorporate the template into the model and be sure the
point names and orientation are correct.

General Modeling Notes
A few general notes on other aspects of 3dsmax/gmax
when creating models may be helpful:

Hidden Surfaces and Polycount:
Any surface that will not be seen in Trainz should
be deleted to reduce the polycount and the effect on
performance. When you initially create a number of
shapes, the default settings usually have more segments
than you need.

For example, a cylinder by default has 5 height segments
and 18 sides. These should be reduced to suit the
purpose, many cylinders need only one height segment
unless they are to be bent, and small handrails need
no more than 4 or 5 segments, and sometimes 3 can
be used (or hidden surface also deleted), especially if a
smooth modifier is applied to blend the texture around the
corners odf the shape.

Planes default to 4 by 4 segments, this is not usually
required. If the 3dsmax/gmax window is set to Smooth +
Highlights, the actual number of segments may not be
noticed. Change to Wireframe mode to see how many

segments are used in an object, and reduce segments to
the minimum suitable for the purpose.

Shortcut keys:
There are a number of shortcut keys that are useful,
refer to the Help display for 3dsmax/gmax for a guide.
A particularly useful one is the function key F2. When in
Edit Mesh mode and using the Polygon option to choose
surfaces of an object by clicking on them, the F2 key will
toggle the color of those surfaces to show you exactly
which ones you have chosen.

The Ctrl key is used when selecting a number of surfaces
or polygons together, for a complicated object.

Two sided textures:
For surfaces like planes that can be seen from two sides,
ticking the 2 sided box will make the one texture show on
both sides. Be aware that this can increase the effective
polygons that have to be displayed in Trainz, however
Trainz will only have to “paint” those surface that are
towards the viewer, so the problem is somewhat reduced.

If you wish to have two different textures on the opposite
sides of a plane, you will need to make two separate
planes separated by a small distance and each textured
with the appropriate texture. Make sure the Normals face
the correct direction (see below), or the plane will be
transparent. In this case, do not tick the 2 sided texture
box for either texture.

The example below shows a billboard which is to have a
different picture on each side. A thin box is the basis for
the model.

normals show in blue	 remove the box sides,
(see below) or texture the sides separately

Normals:
Normals are the direction of the primary surface of an
object and effect the color displayed in Trainz. Normals
may be turned on in 3dsmax/gmax and show a blue line
from any selected surfaces (polygons). The normals
should be aligned for surfaces facing the same direction.
If planes are cloned (then rotated) or mirrored, the
normals can be facing in the opposite directions. These
planes show a mixture of light and dark texturing in

Version 3.0   345   Trainz Railroad Simulator - The Content Creator’s Guide

Trainz and the misaligned normals should be “flipped” in
3dsmax/gmax to align correctly with other planes.

Boolean Operators:
The boolean function is often used to cut holes in a
model (to create a window for instance). For a sequence
of cutting operations, the model should be converted
between operations, to an editable mesh, it can cause
problems if this is not done. The cutting action can also
cause very long thin polygons in the surface, these can
be difficult to texture map. Removing the polygons and
redrawing them with ones of a more regular shape can
make the mapping easier and reduce the actual number
of polygons to make the surface.

Reset XForms:
Cloning and mirroring can result in an object appearing
“inside out” or appearing hollow in Trainz. This is a
result of the pivot point alignment being changed while
processing. It cannot be fixed by flipping normals.

Use the Reset Transform utility to align object pivot points
and bounding boxes with the World coordinate system. To
reset an object’s transform, select the object, and on the
Utilities panel, click Reset XForm. In the Reset Transform
rollout, click Reset Selected. You can collapse the object
modifiers to absorb the corrected rotation and scale
values into the object mesh. If this fails to work, using a
double sided texture may fix the problem.

Hiding and Grouping:
The hide function allows you to display only the parts of
a model you want to work on. It is useful for complicated
objects made up of many individual objects, so you can
see what you are working on and when exporting only
certain parts of a model.

Grouping is also useful, allowing easier selection of
a number of objects to transform or hide. If a group is
opened, the hide function is disabled until the group is
closed. Grouped objects cannot be linked to dummies in
animation, the grouped objects will not show in Trainz.

Perspective and User Views:
These allow you to rotate around an object and see the
object from different angles. Perspective view centers
on the centre of the view box for zooming, so you have
to move the object often to zoom into different parts. It
also has a clipping box, which makes parts of the object
vanish as you zoom closer.

User view allows you to zoom in and out to any point on
the object easily, does not clip the view, but it also does
not rotate the object about the centre point of view. Each
viewing option has advantages and disadvantages for
modelling. The mouse wheel is very useful in zooming.

Model Centre of Rotation:
A model should be centred on the origin, as this will
be the centre of rotation in Trainz. If an object is set off
centre, (the origin is away from the object in 3dsmax/
gmax, it will appear very small in the Trainz Surveyor
menu selection window.

Config.txt File
The requirements of the config.txt file have been covered
in the this document. The commands recognised by
Trainz are known as tags. These are gathered into
containers. It is advisable to create all config.txt files
using CCP. This will format correctly and determine any
errors.

However, if you must manually edit the file, a few
important points should be mentioned here:

1. The config.txt file must not include any formatted code
or symbols. A simple text editor such as Notepad is to be
used, the file must be saved as UTF-8 code, not ANSI.
This encoding option is available from the save dialogue
box. Do not use a program such as MS Word that can
introduce unwanted formatting, including non standard
quotation marks.

2. While the order of the tags within containers may be
varied, leave the lines in the order as created in CCP.

3. Brackets and quotation marks must be matching pairs
(the same number of left and right facing brackets), or
tags and information will not be interpreted correctly.

4. Do not include blank entries lines for comments, in
Kuid-tables or the obsolete listing. Trainz does not need
to process additional blank entries.

5. At the start of a line, any text or symbol that is not a
recognised tag in Trainz will be ignored. If you mistype
a tag name, Trainz will jump over this line. Make sure
tags are entered correctly, with no unnecessary spaces,
correct hyphens or underscores and full path names as
necessary. CCP will also give error messages for any
unrecognised names or misspelled tags.

6. �� The description entry uses a single pair of quotation
marks, do not include additional marks within the
description or the entry will be truncated. The Description
is displayed on the Download Station so make it
informative, perhaps including what the model is called
and under what directory it is to be found in Trainz. This
will assist a user in finding the model in the Surveyor
menu.

7. The CCP program creates the config.txt file, checks for
errors and indicates if you have not included necessary
mandatory tags and files. It makes the model suitable for
the Download Station, and must be used to create the
upload file:

• It places an apparent blank line at the top. This line
contains hidden code used by the Download Station
process, and should not be removed or the config.txt file
will not function;

• It tabs the entries across the page and inserts quotes
around descriptive words. While the tabbing makes the
file hard to read sometimes, it can improve the readability
for the bracket symbols, making it easier to match pairs,
when opening the config.txt file in Explorer.

Version 3.0   346   Trainz Railroad Simulator - The Content Creator’s Guide

Problems with Model Exports

Some suggestions for common problems in having a
model export to Trainz:

1. The object shows in Trainz but has white surfaces, no
texture:

• the texture file is not a recommended size;
• it has been saved as a compressed file;
• the reference name is spelt incorrectly; or
• the texture files have not been exported to the Trainz 		
 Custom directory (use the Resource Collector).

2. Some faces of the model are invisible in Trainz:

The faces or surfaces have a single sided texture and the
normals are facing away from the viewer.

3. Some surfaces of planar objects show darker colours
(in shadow) when lit by the sun in Trainz:

The sun side of the object shows dark, and the unlit
opposite side of the object shows a lighter colour if the
normals are facing away from the viewer for a 2 sided
textured object.

This can happen when a plane object is copied to the
opposite side of a model, plates on a steel bridge for
instance, and the normals have not been flipped to face
outwards towards the viewer, on that side of the object.

After selecting the face, and clicking the Show Normals
box, use the Normals: Flip option to change the normal
direction to align with other normals of the model.

4. Building walls which include transparent windows are
see-through:

A transparent texture with an alpha channel or opacity
map has been applied to the windows as part of the wall
texture. Window transparency must be applied to window
planes separate from the main building wall and separate
textures must be used for the window and for the wall. Do
not add an opacity layer to the wall texture.

5. The animation does not work in Trainz:

• the anim.kin file has not been exported;

• parts of the model were hidden when exported;

• all the dummies were not included in the export;

• the config.txt file is incorrect, particularly with reference
to names of files, missing lines in the file, incorrect
matching brackets or quotes;

• the animation-loop-speed 1 tag has not been entered in
the config.txt file; or

• the default modelling units are not consistent.

6. The animation is working but the animated parts are
scattered over the landscape in Trainz:

• the axis of the parts were not aligned to the World
coordinates before linking and animating; or

• the objects have been moved after linking, but the
movement was not recorded as part of the animation, and
the axis reference has changed; or

• parts are linked to the incorrect dummy.

Unlinking the parts and dummies, and re-aligning the axis
does not always fix the problem. Often the dummies have
to be deleted and replaced, with all the aligning, linking
and animation redone.

7. The lettering on a sign using the a.name attachment
point option is not visible or is facing the wrong way:

The axis of the attachment point is not facing the correct
direction. You must rotate the attachment point, not the
axis, in 3dsmax/gmax. Refer to Page12 for the corrrect
method and orientation.

Orientation can also be a problem with corona visibility.

8. Deleting a model in Trainz sometimes leaves the track
attachment points behind, or attachment point changes
do not show.

When developing a mocrossing type object, you may
have changed the location of attachment points in
3dsmax/gmax. If the model has already been placed in
Trainz, these changes do not show unless the original
model is deleted and replaced.

When a model is deleted, sometimes the attachment
point circles remain. Change to the Track menu in
Surveyor to delete the obsolete attachment points.

9. Changes to queue values in the config.txt file do not
show in Trainz.

You have made changes to commodity start values
for instance, in an industry, within the config.txt file. An
already placed model in Trainz will not register these
changes - delete the model and replace it to have the
changes take effect.

We hope these ideas assist you in solving problems.

Version 3.0   347   Trainz Railroad Simulator - The Content Creator’s Guide

POLYCOUNT
3D STUDIO MAX AND GMAX
MODEL GUIDELINES:

This page contains an outline of the mesh asset
polycount guide for the various types of assets. Of course
being a ‘real-time’ 3D engine we strongly suggest you
keep the polygon count to a minimum.

In other words - in what environment is the asset being
used? Do you have a single house in the middle of a
desert or is the house surrounded by trees, power lines,
other houses and buildings, a train track and a 100,000
polygon full train consist zipping by every 10 minutes?

Based on this thought, then consider the following:

User system variations ;
User system Performance.

If you need a ladder, use alpha maps, if you need a steel
structure, use alpha maps, if you want to model a signal
pole only use a 5 sided cylinder, if a locomotive has lots
of pipes and handrails, make the pipes 3 or 4 sided (and
use the same smoothing group to get the pipe effect).

In Trainz, introduce assets gradually - if you were
approaching a forest with a number of different types of
trees, introduce a few of each type in the scene before
you get to the main forest. Trainz will then have the trees
loaded into memory gradually, instead of suffering the
frame rate impact of many assets having to be loaded in
a short time.

The following table will give you a guide for creating your
models. Slight variations to these are possible but it is
not advisable for example to use 17,000 polygons for a
locomotive body.gon locomotive body

Kind max polycount notes
Locomotive Interiors 8,000 each Diesel or steam loco’s. Including all levers, dials

and animations, & bonnets (hoods for our American
friends).

Locomotive Body (diesel) 9,000 each This should be sufficient for all diesel loco’s - excluding
bogeys, pantographs etc. For example, the ‘QR 2100’
body currently in Trainz has less than 5000 polys.
Less is always better!

Locomotive Body (steam) 12,000 each This should be sufficient for very detailed steam locos
- excluding bogeys, etc. (see images at bottom of
page).

Locomotive Bogey (diesel) 2000 per truck
Locomotive Bogey (steam) 5,000 per driving

wheel set
Including all rods and animated parts. Less is always
better! Should be sufficient enough for most steam
bogeys.

Pantographs 1,000 each On average pantographs will have about 400-700
polys.

Passenger Rolling stock 2200 each This should be sufficient for a passenger car with
window cut-outs, a low poly interior with seats (visible
from the exterior), and animated doors.

Hopper Rolling stock 1400 each This should be sufficient for most Hopper cars,
inclusive of load and animated doors.

Flat, box and tank Rolling
stock

1100 each This should be sufficient for most cars, inclusive of
load and animated doors where applicable.

Rolling stock Bogeys 400 each Rolling stock bogeys must be kept to a minimum. Make
the bogey sides basic, even alpha mapped only.

Level Crossing 350 each Based on a simple road/track crossing with animated
boom-gates and signals.

Single Caternary 200 each Based on per pole structure.
Semiphore Signal post 300 each Ladders should be 2-sided alpha mapped.
Coloured light Signal post 300 each Ladders should be 2-sided alpha mapped.
3D Passengers 140 each
Typical House 150 each The ‘Australian houses’ currently in Trainz average

about 150 polygons.
Typical Large Building 300 each

MESH POLYCOUNT GUIDE

Version 3.0   348   Trainz Railroad Simulator - The Content Creator’s Guide

Kind max polycount notes
Other Scenery Objects Varies Just don’t go overboard! Put the detail in the textures.

Remember not to go overboard with the texture sizes
either! 512x512 pixels is too big for a house.

The UTC German Lumber Yard for example, including
it’s forklift and scary looking driver, came to only 1714
polys. The logs are 5 sided cylinders, the dominant
chimney stack is an 8 sided cylinder.

SHADOW: Loco 700-900 each Just enough to model loco form (usually including
buffers)

SHADOW: Passenger cars less than 300
SHADOW: Tank cars etc less than 500
SHADOW: Bogeys less than 100 Simple box and wheel faces are usually enough

The images above are examples of the kind of detail you can get within the polygon boundaries above.

Body: 10,578 polygons (hi-res L.O.D. version)

Front bogey: 696 polygons

Rear bogey: 4018 polygons

TOTAL: 15,292 polygons (body & bogeys)

With respect to Level of Detail, this locomotive’s polygons can be reduced very easily:

	 The pipework, valve and gauge details within the cab equate to 4775 polygons;

	 The pipework and handrails on each side of the boiler equate to 948 polygons;

	 The coupling and pipe at the front equate to 459 polygons;

	 Removing these items within the LOD files means a body reduction of 6182 polygons without any loss of form.

There are more examples of cab interior polygon counts on Page 358.

In summary, train body polygon recommendations (excluding bogies):

	 Diesel loco = 3500-9000 polygons.
	 Steam loco = Up to 12000 polygons.

As a general rule of thumb, less is always better!

Train body shadow polygon recommendations:

	 Less than 1000 polygons modeled to the same basic shape and 3D space as the body. No attachments are 	
	 required within the shadow file. Holes in the shadow mesh (windows for instance) can cause streaks of grey 	
	 from the model windows to the shadow on the ground - fill in all holes in the shadow mesh.

Version 3.0   349   Trainz Railroad Simulator - The Content Creator’s Guide

TRAINS 3D STUDIO MAX AND GMAX
MODEL GUIDELINES

ATTACHMENT POINTS

In 3dsmax & gmax: ‘Create’ tab, ‘Helpers’, ‘Point’.

To maintain correct alignment, attachment points should
be created in the TOP viewport. The front end of the train
body should be on the Left hand side when displayed in
the RIGHT viewport in 3dsmax/gmax (ie, in TOP view, the
loco should face down the page).

These are ‘points’ in 3D space giving information on
various aspects of the train as follows:

a.limfront
•  Marks the front of the train, used for coupling
•  Should be roughly the same distance from origin as 		
 a.limback
•  Bogeys can be further forward than a.limfront if desired
•  Determines the forward headlight position
•  Height above origin (or Z) = 0.89m (2’ 10.8”)

a.limback
•  Marks the rear of the train, used for coupling
•  See a.limfront
•  Height above origin (or Z) = 0.89m (2’ 10.8”)

a.bog0
•  Front bogey attachment
•  Used for positioning the train on the track
•  Positioned at absolute centre of front bogey

a.bog1
•  Rear bogey attachment
•  Used for positioning the train on the track
•  Positioned at absolute centre of rear bogey

a.bog	 (2, 3, etc)
•  Any other bogey attachments

a.exhaust (0, 1, etc..)
•  Smoke generator attachments (where needed)

a.light* (0, 1, etc..)
•  Light “corona” attachments
On a locomotive use a.light0, a.light2 (even numbers) for
the forward lights, and a.light1, a.light3 (odd numbers)
for the rear lights. Thsi allows the correct lights to show
depending on running direction.

a.cabfront
•  Attachment point for the front cabin of a loco
•  Located at the centre of cabin

a.cabback
•  Attachment point for the rear cabin of a loco. Use this
 for dual cab locomotives.
•  Located at the centre of cabin
•  Front/back cab toggled using the ‘Alt C’ key when using
the internal camera mode.

a.pant (0, 1, etc..)
•  Attachment point for pantographs (where needed, i.e.

 Electric locos)

a.driver (0, 1, etc..)
•  Attachment point for driver mesh (0 is used for the first
driver, 1 for the second driver in dual cab for instance).
Currently, only a.driver 0 is supported.

a.outsideview (0, 1, etc..)
•  These are located external of the loco body mesh.
•  The camera is positioned to face the negative Y
 direction of the attachment.
•  Toggled using [and] using the internal camera mode
 after default interior camera view(s).

a.r.pivot/a.lever (sample names used only)

•  Special naming convention for attachment points that�
 are to move �������������������������������� with the animation of the asset.
•  Refer to Page 363 for information.

a.whistle

•  Attachment point for particle effects being emitted when
the whistle key is pressed.

In addition to these, you may add any other attachments
so long as they use the a.name naming convention.
These can be used as steam or smoke points, or as an
attachment position for another mesh or animated mesh.

All additional smoke and mesh attachment points are
referenced through the Loco’s config file, smoke through
the smoke fields, the mesh attachments through the
mesh table field.

TRS has the ability to allow it’s rolling stock to pick-up
and deliver commodities (or products) to the various
industry assets. In the coal hopper for example, the load
mesh is a simple animated mesh, that is tied in through
the config.txt file to the product queue values.

Simple carriage cars require only a.limfront, a.limback,
a.bog0, and a.bog1.

Another idea for animated attachments is a diesel
locomotive roof fan. This would be set-up using the same
animated mesh inserted at each point. This can be done
easily through the mesh-table.

Refer to TRAINCAR EXAMPLES Page XIII for links to
downloadable in-game files, documentation and source
files of the various types of TRS compatible traincar
assets.

Version 3.0   350   Trainz Railroad Simulator - The Content Creator’s Guide

TEXTURES and FILE SIZES

Textures should be .tga files (24 bit). An alpha channel
may be used for opacity, within the .tga file (32 bit).
Alternatively, a separate .bmp file (16 or bit) may be
used for opacity. While .jpg files may be used, it is not
recommended, as they are a compressed file format,
and lose quality if repeatedly loaded and resaved. Trainz
has to uncompress each .jpg file on loading, and this
degrades performance. The .jpg file does not support an
alpha channel.

The materials are of Multi/Sub-Object type (one M/SO
only per model) and we have used UVW Map and
Unwrap UVW for texture allocation. Textures must be of
following pixel dimensions: 8, 16, 32, 64, 128, 256, 512
and 1024 pixels. Maximum ratio = 1:8 e.g. 64x512

Diffuse Maps: In many cases a single 512x1024 24-
bit .tga file is sufficient to texture a locomotive. We
recommend not making them any larger than this.

Occasionally an extra texture (say 128x256) can be
added.

Reflection maps are supported (16 bit colour .bmp). We
generally set train body reflection amounts (in 3dsmax) to
10 and windows to 25.

Opacity Maps (8 bit greyscale .bmp) are also supported
to the EXACT same pixel dimensions as the diffuse map.

Where possible, opacity maps should be included as
an alpha channel of the main diffuse texture .tga file.
A separate opacity map degrades the performance of
Trainz as the extra file has to be processed separately.

Reflection and Opacity maps must not be used together
within the same texture. Reflection and Opacity maps
must not be used on digits. Window opacity is derived
from the material and opacity settings - see the diagram
on the right.

LOCOMOTIVE NUMBERING

TRS supports dynamic locomotive numbering for custom
content (using alpha-numbers). Otherwise known as
‘running numbers’.

Digits are modeled as 6 individual rectangular polygons
offset from the face of the Loco body (about 5mm). Digit
polygons must be texture mapped using the correct
texture naming and alpha-number naming conventions as
follows:

If one font type used:
Digit textures (digit_1.tga to digit_6.tga) are replaced
automatically with alphanumber textures (alphanumber_0
to alphanumber_9).

If two or more font type used:
Digit textures (digit_1a.tga to digit_6a.tga and digit_1b.tga
to digit_6b.tga etc) are replaced automatically with

3dsmax/gmax window material
alphanumber textures (alphanumber_0a to alphanumber_
9a and alphanumber_0b to alphanumber_9b).

Locomotive numbering in TRS is edited in Surveyor:
Trains panel (Train mode) - Edit Properties (the ‘?’ icon).

Refer to the example download files for configuration of
Loco numbering digit’s.

BUMP MAPPED AND SPECULAR
MATERIALS

TRS supports bump mapping and specular materials.
A nice example of a bump mapped loco with specular
values in use is the TRS asset: The SNCF TGV loco.

Bump mapping *
This is only available for 3dsmax 4 and 5 users.

Bump mapping is used to add 3-dimensional detail to
an image (using an applied RGB ‘Normal’ map), without
increasing the number of polygons. Bump mapped
materials for TRS requires the latest 3dsmax exporter.

Specular Materials *
3dsmax and gmax Users

Adding Specular values to a material is best described
as adding ‘shininess’ to the material. Altering specular
values can give realistic material properties to metallic
and glassy surfaces.

You can specify specular values from 3dsmax or gmax,
but it is quite important for bump mapped materials to
have specular values in order to highlight the bump
mapping effect.

* See note next page.

Version 3.0   351   Trainz Railroad Simulator - The Content Creator’s Guide

BUMP MAPPING INFORMATION

Bump Mapping Background Theory
For those new to this term, Bump mapping is used to
add 3-dimensional detail to an image (using an applied
RGB ‘Normal’ map), without increasing the number of
polygons.

A ‘normal’ is a vector that points into the direction that
a surface is facing (orthogonal to its surface). ‘Normal’
bump mapping applies ‘false’ normals to each pixel
of a polygon, so that the reflection is not computed in
accordance to the ‘real’ polygon surface, but according to
the surface vectors of the normal map.

This results in the bump mapping effect, giving the
surface a 3D-appearance that is not ‘really’ geometrically
there.

If the user’s graphics card does not support per-pixel
bump mapping, then the bump mapping effect won’t be
seen.

DIFFUSE TEXTURE 1024x512 24 bit .tga

Figure 2

QR Class PB 15

Figure 1

Note: Bump mapped materials for TRS requires the
latest exporter. At the time of writing, only a 3dsmax
4 and 5 exporter update is available. A gmax exporter
update is not available.

Bump Mapping in TRS2004
For all intents and purposes, bump mapping should only
be used on locomotives and only in the hi-res locomotive
version if ‘level of detail’ mesh reduction is being used.
Refer to Level of Detail, Page 370.

Bump mapping can be used to simularte 3-dimensional
detail to rivets, bolts, rust and joints for example. The
following example is taken from Auran’s steam locomotive
the QR Class PB 15 (figure 1).

* Note: Please download the following zip file for
information and set-up of bump mapped and specular
materials and the 3dsmax4 / 5 exporter:
http://www.auran.com/TRS2004/downloads/contentcreation/
TRS_Max4_Plugin_Bump.zip

Version 3.0   352   Trainz Railroad Simulator - The Content Creator’s Guide

‘Normal’ Map Generation
This ‘normal’ map was created from the greyscale height
map above using a Photoshop Normal Map Generation
Filter available for download from the Nvidia web site.
The plug-in also includes a 3D preview with per-pixel
lighting to view the generated normal map. PaintShop
Pro 7 users should also be able to use it.

The plug-in generates the normal map by calculating
the greyscale contrast. White is high, grey is flat, black
is low.

The above normal map was generated using the
settings displayed right (figure 5).

Note: Bump map textures will need to be in a pixel ratio
of ‘power of 2’ for the filter to function. i.e. 512x512,
256x512, 512x1024 etc. Of course these are the same
dimensions as TRS2004 so you shouldn’t have a
problem!

Refer to Important Notes: ‘Normal Maps’ below.

RGB NORMAL MAP 1024x512

Figure 4

GREYSCALE HEIGHT MAP 1024x512

Figure 3

PHOTOSHOP NORMAL MAP GENERATION FILTER

Figure 5

http://developer.nvidia.com/object/nv_texture_tools.html

Version 3.0   353   Trainz Railroad Simulator - The Content Creator’s Guide

Important Notes: ‘Normal Maps’
•  Once the bump map has been converted to a RGB

Normal Map, do not apply any changes to it like scale,
blur sharpen etc. If you wish to alter the normal, apply
the changes to the greyscale height map then re-
generate.

•  The normal map does not have to be the same
dimensions as the diffuse map. Normal maps can be
smaller to save texture space, larger for finer grain
bumps but the later is not advisable at 1024x512. As
above, do not apply changes to an already generated
normal map.

•  At no time should you save RGB normal maps in a
‘lossy’ file format (i.e. jpg or other compression file
format). This is due to the fact that compression de-
normalises normals. Use only uncompressed 24 bit
tga’s.

•  Keep all mapping clean. i.e. Don’t stretch your mapping
co-ordinates. You can get some seriously undesirable
effects!

Bump Mapped Materials

3D Studio Max 4/4.2, 5.1
The setup has altered from previous exporters. This is
to allow specular control of bump mapped surfaces (see
notes on Page 354 for Specular Control).

After downloading and installing the new exporter, ensure
the following configuration:

Check the drive paths are correct

If these values are set to 1, they will override the
Ambient, Diffuse, Specular and Emissive settings
noted on page 356.

Note:
These settings will also apply when specifying specular
levels of non-bump mapped materials. Just remember
to make the Diffuse and Ambient colour values pure
white (unless you really know what you are doing!).

Emissive values (self-illumination) is also exportable
using the above configuration.

Specific material naming conventions need not apply
to non-bump mapped materials.

gmax: You can specify Specular, Ambient Diffuse and
Emissive settings via Trainz Asset Creation Studio
exporter.

Edit the .cfg file as above...
C:\gmax\gamepacks\Trainz\Plugins\JetExporter.cfg
(you cannot export bump mapping, suitable for the
Download Station).

C:\3dsmax4\plugins\JetExporter\JetExporter.cfg

	 enableWarnings = 1
	
	 [C:\3dsmax4\Plugins\JetExporter\IndexedMeshExport.dll]
	 {
	 buildNeighborArray = 0
	 forceTxtOverwrite = 0
	 defaultMaterialColor = 0
	 disableautobillboard = 1
	 }
	 [C:\3dsmax4\Plugins\JetExporter\ProgressiveMeshExport.dll]
	 {
	 buildNeighborArray = 0
	 forceTxtOverwrite = 0
	 defaultMaterialColor = 0
	 disableautobillboard = 1
	 }
	 [C:\3dsmax4\Plugins\JetExporter\AnimationExport.dll]
	 {

	 }

Version 3.0   354   Trainz Railroad Simulator - The Content Creator’s Guide

Material Naming Conventions.
For straight bump mapped materials with or without alpha (no reflection allowed) = name.m.tbumptex
For bump materials with reflection (or gloss) (no alpha allowed) = name.m.tbumpgloss

Specular Values:
The specular setting is controlled by the
whiteness slider (left). The whiter it is, the higher
the value.
• Ensure Specular Level is 100

• For bump mapped materials, the Glossiness
value gives a visual representation in MAX only
(as TRS forces this value to 32)

• For non-bump mapped materials the glossiness
value WILL be exported, you should still use the
whiteness slider to determine the specular level.
The Glossiness value adjusts the width of the
Specular.

Version 3.0   355   Trainz Railroad Simulator - The Content Creator’s Guide

TEXTURES AND OPACITY EFFECTS
Trainz makes use of a texture.tga map associated with
an opacity texture map to create transparent, translucent
and see through effects. This is applied to objects for
transparent/translucent windows, ladders, lattice work for
cranes, handrails, and catenary, to name a few.

A 24 bit uncompressed .tga texture (diffuse texture) may
be created for the object and a 8 bit .bmp map (opacity
texture) of the same size is used with the .tga texture
to create areas of transparency. The opacity map is
predominately black and white, or shades of grey.

• any area on the opacity map that is white, will make
corresponding areas on the diffuse map opaque;

• any area on the opacity map that is black, will make
corresponding areas on the diffuse map transparent;

• any area on the opacity map that is shades of grey,
will make corresponding areas on the diffuse map
translucent, depending on the shade of grey.

There are certain requirements in using such maps:

Placement in 3DSMax/gmax
In 3dsmax/gmax, when using an opacity map with a
diffuse map, the .tga texture is placed in the diffuse colour
slot of the Material Navigator, and the opacity map is
placed in the opacity slot. If an alpha channel is used,
the same .tga file is placed in the opacity slot. Often it is
necessary to tick the texture 2 sided box, so the object
is visible from all directions, particularly with ladders and
windows.

Opacity Fade Out
Most opacity maps are primarily black and white. In TRS,
requirements have changed for the opacity map. If the
map consists only of black and white, a third colour must
be added. It is convienient to add at least one pixel of
another colour, say rgb 32,32,32 to an area of black.

This is necessary to prevent the object from fading out
and flickering a short distance away. It is particularly
important with ladders, railings and catenary, any model
with fine detail. However, use of the third color can give
interferance between different overlapping opacity layers,
see Opacity Interferance on Page 356.

Alpha Channel Use
While a separate opacity map to create the transparent
effects may be used, it is better to make the opacity
map an Alpha channel of the original .tga diffuse texture.
This may be made in Photoshop, Paint Shop Pro or
TgaTools2. The primarily black and white Alpha channel
is saved (embedded) within the diffuse .tga texture file.

Using the alpha channel procedure is more efficient for
Trainz to process, it is quicker to load, than two separate
maps. This is the recommended process for loading the
opacity effects. Of course there are instances where the

separate opacity map is useful (see reflective materials
below).
Example
The images show a window .tga texture and a
corresponding .bmp opacity map.

The window frame will show in the model, because the
corresponding area on the opacity map is white. The
green glass area will be translucent (show a green tinge)
in this example because the “black” areas are actually
a grey, rgb, 64,64,64. Once again, it is good practice
to combine this opacity file as the Alpha channel of the
original .tga texture file.

Applying Opacity to Models
When modelling a building with windows in 3dsmax/
gmax, as an example, the windows should be
constructed as separate planes and the window texture
with the opacity applied to those planes.

This has two effects:

• only requiring a small opacity map to match the window
texture, instead of a very large opacity texture of the
whole building with a few opacity areas “cut out”;

• more importantly, it is essential to prevent the complete
wall being “see through” from different angles in Trainz.
An opacity map that is part of a larger wall map can
create this “vanishing wall effect”, and flickering.

Version 3.0   356   Trainz Railroad Simulator - The Content Creator’s Guide

Opacity Settings in 3DSMax/gmax
In the 3dsmax/gmax material editor there is an opacity
settings box, where you can change the opacity of a
material.

This option however will make the whole surface, to
which the material is applied, transparent to the degree
chosen in the percentage selection, 100% being opaque.

colour. All texture files must be the same size, in this case
64 x 64. The image below shows the texture files:

It will not allow the fine control of the opacity texturing that
the Alpha channel provides.

Opacity Interference
If there are two opacity planes (transparency) close
together and behind each other, there may be some
display issues in Trainz. Current graphic cards are not
always capable of determining the depth order of opacity
texture in a scene in Trainz. This means that an object
behind another object, both using transparency, may
actually be shown in front of the foreground object.

An example would be a footbridge using transparency to
show the timber lattice construction, being behind a train
with transparent windows, the footbridge supports may
actually appear in front of the train, instead of behind.
This effect can occur on different parts of the same
model, but also with separate objects. It may be reduced
by using only black and white in the opacity map. If grey
is used, the effect can be accentuated - see Page 355.

Special Use of Opacity - Reflection Materials
The methods outlined above may be extended to give
other lighting effects, using the additional Reflective
materials slot in the 3dsmax/gmax Material Navigator.

A nightwindows directory is often useful to provide a
night mode for the model, with lights and lit windows.
This requires a separate night model mesh, and can be
called up as a sub mesh in the config.txt file. Some Kinds
such as splines do not support the Nightwindows option.
To make a night effect on a spline, certain parts may be
specially textured to give a lighted appearance at night.

Three texture files are used, a texture for the day visible
object or planes, an opacity file to determine the shape
of the lit portion at night, and a reflective texture to give
the night colour and attributes. These are applied as one
material to the object.

For example, a road barrier is made as a spline and
requires white reflectors at regular distances along the
spline, to light up at night. A light.tga file will define the
day texture for a circular reflector, a light.bmp will make
the opacity file to be used, and the reflective material can
be a single colour .tga or .bmp texture, to be the night

To the left is the reflector.tga, the next is the opacity.bmp,
and the third image is the light colour to show at night,
this could be a whiter shade, but is left yellow so it shows
better in this example image. It is placed in the Reflective
material slot in 3dsmax/gmax. The last image is a circular
gradient opacity.bmp texture that could also be used, to
give softer edges to the circular night shape.

The yellow colour texture may cover the whole area, but
a single pixel of colour may be used instead. This gives
directional lighting - a pixel placed to the left of centre
will light up the whole circular area, but the colour will
only be seen from the right side of the object - you can
experiment.

There are two important differences between the use of
the opacity texture for reflection and when used for the
normal transparency effects:

• if the reflector object were made in 3dsmax/gmax using
a square 2 poly plane, the opacity file will not “cut out” the
circular shape of the reflector, as a circular opacity map
might normally do. The black border will show in the day
time. If you want the circular shape to be apparent in the
day time, the object itself must be that shape; and

• the opacity map acts differently, the reverse of
transparency. The white area allows the yellow light to
shine through, in a circular shape, the black area blocks
the yellow light.

This technique can be applied to normal scenery objects,
and does not require a nightwindow option, or can be
used in addition to a nightwindow directory. It could
be used to make a concrete area light up at night with
pools of light, if the texture is tiled. Choose your colours
carefully as the effect can show in the day time.

Version 3.0   357   Trainz Railroad Simulator - The Content Creator’s Guide

The following image is the 3dsmax maps rollout showing
the texture files as entered in the three slots (the gmax
display is similar).

Opacity on Roads, Track and Bridges
To blend a road or track model into the ground, track
built-in to Trainz has used an opacity map as part of the
ballast or road diffuse texture. The edges of the road or
track are made transparent, blending into the opaque
track or road texture.

Often a spline rail bridge is constructed with initiators and
terninators. These may have a solid deck as part of the
model. When using track with opacity mapping applied
(Alpha channel) on a bridge, the transparency can “cut
through” the textures of the bridge deck, and make it
transparent when viewed from the track level.

Specify a track type that does not use transparency,
such as the no ballast options available in Trainz, to fix
the problem. Alternatively, model the track as part of the
bridge deck, and use an invisible track as the spline for
the model.

You could also use the Auran no ballast track across a
truss bridge for instance, then model the track check rails
as part of the bridge model.

Opacity Texture Bleeding
Opacity maps or Alpha channels may be used to make
large areas of a plane transparent, for example making a
scenery backdrop to place at the edge of the baseboard.
A scenery picture is used for the texture, and the sky area
above the tree line is made transparent using an opacity
map as the Alpha channel. This allows the Trainz sky to
show through the backdrop plane.

When viewed from some directions, often the top edge of
the backdrop plane in the sky area shows a phantom line,
being the texture colour bleeding from the bottom of the
plane to the top. When exported, the texture.txt file for the
plane has the Tile=st option. By changing this to Tile=s
the line may become invisible. The s and the t options are
related to the x and y axis, (tiling in the x or y direction) so
experiment to find the correct option to delete.

The plane may have transparency on the top and sides,

so use the Tile=none option to turn off the tiling for both
directions. Texture.txt example - a separate .bmp opacity
map:

Texture.txt example - an alpha channel within the .tga file:

If you re-export the model after changing these values,
they will revert to the original Tile=st settings. You will
need to amend the lines in the file again.

Texture Clarity
Sometimes when you are close to a model in Trainz, the
texture on the surface appears blury, even if it is a quality
texture. Add the line Hint=Dynamic to the texture.txt for the
material, and often the texture will be clearer.

Textures for Tiling
Tiled textures are used to cover a large surface with a
small high quality picture file. The tile is mapped multiple
times across a surface. The tile needs to be seamless
(the patterns match and repeat at the edges) so no
distinct line is visible at the joins.

For a brick pattern, the brick shape and colour should
match at the sides to make full bricks, and a mortar joint
is placed only at the bottom or top of the tile, otherwise a
double thickness mortar line will appear at every tile join.

Mortar at top only

Half bricks match
 at sides

Primary=river1.tga
Alpha=river1.bmp
Tile=none

Primary=river1.tga
Alpha=river1.tga
Tile=none

Phantom line

Primary=wall.tga
Tile=none
Hint=Dynamic

Version 3.0   358   Trainz Railroad Simulator - The Content Creator’s Guide

CREATING AN INTERIOR FOR TRS
Overview
The creation of interiors is probably the most time-
consuming mesh asset you can make for Trainz. This
is no doubt the reason why there are very few custom
interiors around.

In fact it is quite common to spend 2 weeks of full 8
hour days on a single interior. Excluding research time,
tweaking and testing. Auran uses 3dsmax and Photoshop
for modeling and texture creation. One major advantage
of 3dsmax over it’s simpler counterpart gmax is the ability
to render images. As you will read further on, rendering
images has been a integral part of the realtime texture
creation of Auran’s released interiors.

As every interior is fundamentally different, each has had
it’s own issues and requirements. Ie. Steam loco’s have
fire, and animated levers, Electric loco’s need pantograph
levers (while Diesel and Steam don’t), and Diesel
loco’s may have a Dynamic brake and other specific
requirements.

Modeling and Texture Passes
We’d like to give an outline of how we went about
creating the mesh, the textures and the implementation of
these combined to give you a better understanding of the
interior asset’s structure.

  •  Phase 1 - Research
  •  Phase 2 - Modeling
  •  Phase 3 - Hi-res Textures and Placement
  •  Phase 4 - Lighting Placement
  •  Phase 5 - Rendering for Realtime
  •  Phase 6 - Realtime Textures and Placement
  •  Phase 7 - Realtime Model Spit-up and Attachments
  •  Phase 8 - Exporting and Config setup.

Phase 1 - Research
Much of the information we have found has come straight
from the internet. I suppose Auran has had the luxury of
making ‘generic’ interiors where possible by re-using the
control mechanism in other interior shells.

The main focus for the generic cabs has been to make
the window and side door layout correct. The general
interior layout such as beams, electrical boxes, sound
proofing hessian and grills has really been up to the artist
to make look convincing. This is certainly the case if there
isn’t a lot of information available.

You can often come across a photo of the front and one
side of an interior, but rarely will you find a photo of the
back!

One thing to bear in mind though is that you don’t have to
create a perfect prototypical representation. As an artist
you have a bit or ‘artistic-licence’ and flexibility to place
and arrange things that simply add to the feel of the cab.
Take the animated fan in the DD40 cab for example.

Phase 2 - Modeling
We start the model under the premise that it will be
used for in-game purposes. We model it fairly low poly.
Sometimes we may add some specific detail i.e. pipes
if necessary, that will be removed after the rendering
phase.

Note: Many game developers use very high polycount
models for rendering realtime textures, and then assign
these to low polycount models for realtime purposes.

The interior shell, the levers, accessories, windows and
piping should all be modeled at this stage.

The interior polycount limits are a little more flexible
in TRS due to the increased minimum spec machine
requirements. However don’t go silly! 

As an indication, here are the polycounts for a selection
of Auran’s realtime interior components:

QR PB15 Steam Cab Interior
•  Cab shell, exterior, pipes, dial cylinders, valve bases and 	
firebox = 7941 polygons
•  Blowdown lever = 86 polygons
•  Boiler needle = 14 polygons
•  Brake lever = 86 polygons
•  Cylinder clean lever = 40 polygons
•  Animated fire panel = 513 polygons
•  Animated water injector lever = 122 polygons
•  Animated regulator lever = 244 polygons
•  Animated reverser lever = 132 polygons
•  Animated seat = 132 polygons
•  Sander lever = 28 polygons
•  Whistle lever = 68 polygons

SBB Krokodil Electric Cab Interior (available for download)
•  Cab shell, dash board, seats, gauges, bonnet and fire
 extinguisher = 3362 polygons
•  Brake wheel = 220 polygons
•  Horn lever = 46 polygons
•  Reverser lever = 124 polygons
•  Throttle wheel = 154 polygons

SNCF TGV Electric Cab Interior
•  Cab shell, dash board, seats and windows
 = 1886 polygons
•  Brake lever = 54 polygons
•  Pantograph lever = 94 polygons
•  Throttle ring = 96 polygons
•  Reverser lever = 38 polygons

UP DD40 Diesel Cab Interior
•  Cab shell, exterior, dash panel, windows, brake lever 	
 bases, handrails, driver seat and fire extinguisher
 = 2629 polygons
•  Animated fan (including blades) = 354 polygons
•  Swivel seat = 180 polygons
•  Sun visor = 94 polygons
•  Animated wipers = 96 polygons
•  Train brake lever = 60 polygons
•  Loco brake lever = 50 polygons

Version 3.0   359   Trainz Railroad Simulator - The Content Creator’s Guide

Phase 3 - Hi-res Textures and Placement
This is the first of three texture passes undertaken to
crate realtime textures.

We map hi-res textures to every surface of the model
using the mapping commands from the ‘Modify’ panel of
3dsmax - ‘UVW map’ and ‘Unwrap UVW’.

Below are examples of hi-res textures assigned to the
first pass of the DD40 interior front. Generally match the
ratio of physical model dimensions to the texture. This
way we eliminate details being stretched when mapping.

It is fairly important to limit the highlight and shadow
variations to the hires diffuse textures as this will be
created by 3dsmax during the render phase. Adding dirt
and subtle surface texture is usually necessary (keep
detail and texture consistent over all hires textures).

In many cases we will also create and assign greyscale
bump maps to add additional surface variation and relief.

You can alter the material properties by altering the
‘specular’ and ‘glossiness’ settings before the next texture
pass of rendering.

Hi-res bump map (800h x 887w) for the DD40 cab Hi-res diffuse map (800h x 887w) for the DD40 cab

Version 3.0   360   Trainz Railroad Simulator - The Content Creator’s Guide

Phase 4 - Lighting Placement
Once the first texture pass is finished it is now time to
strategically add lighting to the scene. 3D Studio Max
ships with a variety of light types.

The ones we generally use are the following:

Target Spotlight
The main light source for the scene.
Acts as the ‘sun’.

Omni Light
Ambient lighting and additional highlights.
- given a negative ‘multiplier’ value
removes light to accentuate shadows.
I.e. Under benches.

You’ll have to experiment with lighting
and add variation to make it look right.

Omni light
Multiplyer: 0.6
Contrast: 100
Soften Dif. Edge: 100.0
Far attenuation:	 Start: 5.0m
 		 End: 10.0m
Decay: none
Object shadows: On
	 - Shadow map

Phase 5 - Rendering for Realtime
The next step is to the second texture pass. This
involves rendering all details and surfaces (front,
back, sides, floor, ceiling, door recesses etc.).

There is a very handy 3dsmax material plugin
called “Cast Shadows Only” from Blur Studios This
material makes the object invisible, but lets it cast
shadows. Very handy when trying to control what
does and doesn’t render in a scene.

We create another cab shell with the window cut-
outs to completely surround the textured cab shell.
This casts the window shadows over the model.

Download the ‘Cast Shadows Only’ plugin for
3dsmax4 from this webpage:
http://max3d.3dluvr.com/plugins.php

This plugin requires a utility called ‘blurlib’ available
on the same site. You may need to use the search
box on the site to locate the files.

Omni light
Multiplyer: 0.4
Contrast: 10
Soften Dif. Edge: 100.0
Far attenuation:	 Start: 2.0m
 		 End: 3.0m
Decay: none
Object shadows: On
	 - Shadow map

Omni light
Multiplyer: 0.7
Contrast: 70
Soften Dif. Edge: 100.0
Far attenuation:	 Start: 2.0m
 		 End: 3.0m
Decay: none
Object shadows: On
	 - Shadow map

Omni light
Multiplyer: 0.7
Contrast: 50
Soften Dif. Edge: 100.0
Far attenuation:	 Start: 2.0m
 		 End: 3.0m
Decay: none
Object shadows: On
	 - Shadow map

Target Spotlight
Multiplyer: 1.6
Contrast: 0.0
Soften Dif. Edge: 100.0
Far attenuation:	 Start: 9.0m
 		 End: 14.0m
Decay: none
Object shadows: On
	 - Shadow map

Realtime render of the
DD40 interior front.

http://max3d.3dluvr.com/plugins.php

Version 3.0   361   Trainz Railroad Simulator - The Content Creator’s Guide

Phase 6 - Realtime Textures and Placement
This Phase takes all the rendered out textures
(from Phase 5) and manipulate them into a
format that TRS can read.

The following example is one of the realtime
textures from the DD40 interior. Note the front
render described before is now part of the
realtime texture. As are the two sides and the
rear render.

The front door however has been rotated 90
degrees and the floor render is in its place. This
is in order to economically utilise the texture
space.

Once the render manipulation is complete, you
will probably have to re-assign much of the new
textures back onto the model. In many cases
this should just consist of re-doing the Unwrap
UVW command.

Phase 7 - Realtime Model Spit-up and
Attachments
After all your realtime textures have been
mapped, it is now time to split up the model into
logical divisions and add attachment points.

Doing this in the logical order described below will save a
lot of time and frustration.

Remember to save a non-split version for backup!

Any object in the scene that has to move (ie. levers and
dials), or animate, will need to be ‘detached’ from the
main model. To do this, select the polygons or elements
you want detached and through the 3dsmax modify
panel, press the detach button and name the new object.

To make life a heck of a lot easier later on, it pays to
move the pivot point of each new object to it’s logical
position. Ie. For needles and levers the pivot point should
be the centre of rotation (with the rotation around the Z
axis). Align lever shaft in the Positive Y direction.

To do this, access the 3dsmax Hierarchy panel, and
press Affect Pivot Only. From here you can centre and
align the pivot to the object and move it to the preferred

location.

Once the pivot points have been set for all your new
objects, now is the time to start adding attachment
points. Add these through the 3dsmax create panel (see
image below). Remember to use the a.name naming
convention. Attachment points are simply points in 3D
space where another mesh can inserted (through config.

txt reference).

Since you have
already worked out

the pivot points of all your
objects, all you have to do is
align the attachment points
to your object pivot points.
Press the icon (above) and
select the object to align to....

Align position: X, Y & Z
Current and Target: Pivot Point

Realtime texture example of the DD40 interior.

Note: gmax users...
It is of course possible to skip Phase 3 to 6 and create the realtime textures
yourselves with a 2d editing program such as Photoshop of Paintshop Pro before
assigning them to the model.

Study the cab interiors that Auran has included in TRS as correct lighting variations
truly add to the 3D feel of the interior.

Studying how light falls on and reflects off differerent materials and adding this
knowledge to your textures could be the difference between a nice cab and an
awesome one.

3dsmax does remove a lot of the guesswork and has the ability to create flowing,
seemingly natural lit scenes. It might take a little extra time but the results are worth it!
Rendering options are not available in gmax.

Attachment point creation

Version 3.0   362   Trainz Railroad Simulator - The Content Creator’s Guide

These attachments are exported as part of the default
mesh (or the main mesh). Objects for attachment must
not be included in the export as they are each exported
from their own 3dsmax files and attached to the default
mesh separately (through config.txt reference).

Save a backup of the 3dsmax file!!

Select each object from the scene and save each one
as its own 3dsmax file, (command panel, file - save
selected). You may delete the object from the main mesh
scene after you save it.

The next step is to open each 3dsmax
file you have just created (of the movable
objects), and move the object to 0,0,0

and make the rotational values 0,0,0 (press and right
click these 3dsmax icons). This makes the object (and it’s
pivot) aligned correctly to the origin of the scene.

Now is the time to export the object to a Trainz mesh file
(.im).

Note: When a lever is inserted into the default mesh
it is attached at the lever’s origin, regardless of the
geometry the lever has. Setting the pivot point of the
object earlier, and aligning the object to the origin in it’s
own scene, reduces the possibility of alignment errors.

The rotation is always through the attachment point’s
Z axis and the in-game notch display defaults from
the positive Y location (clockwise) around the Z axis.
Altering the angle settings in the config can adjust the
notch position.

Refer to the config.txt example earlier

Phase 8 - Exporting and Config setup.
Exporting the objects is very simple. You will need the
Trainz Exporter Plugin for 3dsmax,
http://www.auran.com/TRS2004/downloads/contentcreation/
TRS_Max4_Plugin_Bump.zip

or the gmax Asset Creation Studio,
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_
Studio.zip

Select the objects within the scene that you want
exported, from the command panel, press File, Export
Selected, select Trainz Format and remember to type in
the file extension in the File name dialogue box.

All mesh files should be within the same directory as the
config (or in a directory within the same path). The config.
txt may contain a sub-path to find the mesh, e.g.

When exporting the default mesh, you must include
all attachment points. TRS may crash if the config.txt
references an attachment that is not there.Config.txt file
set-up
There are a few key things to remember.

1. Mesh-table:
An interior uses the same properties as any TRS mesh-
table, you need to add auto-create 1 or the mesh will not
show in the scene.

There may be occasions where you don’t want a mesh
visible by default. Take the switchlights for example.
These have auto-create 0 in the config as their visibility is
controlled by script when the switch is in the on position.

2. Animations:
Note the animated fan and the wipers do not have the
animation-loop-speed tag added. This is because the
animations are controlled through the script. They are
visible by default, but the animation does not play by
default.

Should we have added animation-loop-speed 1 the
looping animation would have played by default (with or
without a script)

3. Levers:
The visors, swivel chair and sliding windows are all setup
as levers.

In these three cases the notchheights are 0 so they don’t
display.

In the case of the visor and sliding windows, they each
have a number of invisible notches. This is to give the
user the option to have them ‘slightly’ open or ‘partially’
closed.

The sliding windows have a very large radius (30m), and
very small angles.

STEAM CAB INTERIORS
Overview
TRS steam cab interiors have been set-up in generally
the same way as diesel and electric cabs with a few
additional steam specific features.

Many of the levers and fireplates have several moving
objects and required mouse controlled animations. This
differed from the usual lever types with only one object,
set to rotate around an attachment point.

Not only did the levers need reviewing, but the cab
firebox itself had to produce fire and glow variations and
the coal shoveller needed to be controlled and also linked
to the coal requirements.

Download PB15 Interior source and in-games files here:
http://www.auran.com/TRS2004/downloads/contentcreation/
TRS2004_PB15_interior.zip

http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS_Max4_Plugin_Bump.zip
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip
http://www.auran.com/trainz/creation/Trainz_Asset_Creation_Studio.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_PB15_interior.zip
http://www.auran.com/TRS2004/downloads/contentcreation/TRS2004_PB15_interior.zip

Version 3.0   363   Trainz Railroad Simulator - The Content Creator’s Guide

Animated Levers

Animated levers are generally set up like all other
animations in TRS/Trainz. Bones (or dummies) need to
comply with the b.r.name naming convention.

As the new animated levers are mouse controlled, the
need arose to be able to ‘grab’ the lever handle only
and not the rest of the animated parts. Because of this,
animated levers require a collision mesh (kind: collision-
proxy)

Take the animated fire plates for example:

fire_plates
{
 mesh fireplates/fireplates.im
 anim fireplates/fireplates.kin
 auto-create 1
 kind animated-lever
 test-collisions 0
 notches 0, 1.0
 notchheight 1,1
 limits 0, 1.0
}
fire_plates-collision-box
{
 mesh fireplates/selection_box/selection_box.im
 att-parent fire_plates
 att a.selection_box
 auto-create 1
 kind collision-proxy
 opacity 0
 collision-parent fire_plates
 }

The fire_plates are kind animated-lever. The mouse
cannot select this mesh as it has the test-collisions 0 tag.

Note the fire_plates-collision-box has auto-create 1 but
has an opacity 0. Also, the parent mesh it defaults to is
the fire_plates. That is, you have to mouse over the fire_
plates-collision-box in order to move the fire_plates.

The a.selection_box attachment is named
a.r.handlearm/a.selection_box in 3dsmax as it is ‘linked’
to the animated bone called b.r.handlearm.

a.r.handlearm/a.selection_box
(linked to b.r.handlearm)

b.r.handlearm

b.r.firebase at origin (0,0,0)
and insertion point

Note: Moving attachment points for other models.

Attachments use the a.name convention and allow the
attachment of a submesh to a specific point in a mesh.
If the attachment point in the main mesh is to move
with an animation of that mesh, the special naming
convention above must be used for the point to follow
the animation, and allow the submesh to then follow the
point.

For example, a submesh is to be attached to a
main mesh using the attachment name a.lever. This
attachment point in the main mesh must be linked to a
helper point called b.r.pivot, that is animated.

The attachment point in the 3dsmax/gmax model must
be named a.r.pivot/a.lever. In the config.txt file the
attachment point will be entered as a.lever. Note the
helper point in 3dsmax/gmax will be called b.r.pivot, not
a.r.pivot!

The submesh will now follow any animation in the
main mesh. It can be useful for moving coronas, and
animated nightwindow meshs.

Version 3.0   364   Trainz Railroad Simulator - The Content Creator’s Guide

These effects are generated automatically by TRS when
it finds firebox, fire, coal, and fireglow in the config.txt.

Note the tag: light 0. This is because the
mesh’s lighting is dealt with differently
through code to resemble the gradual
glowing of the coal and fire heating up.

flametest2.tga

coalfire.tga

Firebox
This is simply a textured box. TRS controls lighting
effects when the temperature rises

Fire
This is simply a few polygons with simple planar UVW
mapping with a texture called flametest2.tga. The UVW
mapping is altered automatically by TRS to play each
frame of the fire animation.

coal
This is simple mesh with simple planar UVW mapping
with a texture called ‘coalfire.tga’. The UVW mapping is
altered automatically by TRS as the temperature rises.

fireglow
This is single polygon that acts as a visible glow around
the firebox opening. Visibility is controlled by TRS.

coal mesh fire mesh fireglow mesh

fireglow meshfirebox mesh

firebox
{
 mesh firebox.im
 auto-create 1
 kind firebox
 light 0
 test-collisions 0
}
fire
{
 mesh fire.im
 auto-create 1
 light 0
 test-collisions 0
}
coal
{
 mesh coal.im
 auto-create 1
 light 0
 test-collisions 0
}
fireglow
{
 mesh fireglow.im
 auto-create 1
 light 0
 test-collisions 0
}

Steam Cab Fire and Coal Glow Effects

Version 3.0   365   Trainz Railroad Simulator - The Content Creator’s Guide

5. set the safety valve values (see comment below);

6. suggest firebox-to-boiler-heat-flow, and burn-rate, of
0.06 as a good starting point;

7. boiler-to-piston-flow and piston-to-atmosphere-flow 		
usually 0.0035;

8. the water-injector-rate at 15 to start, shovel-coal-mass
at 35, and fuel-energy value at 20;

9. the boiler-volume approximately 10x real volume (see
the table in the Content Creation Guide for three sets of
figures that cover “proportionally” appropriate loco sizes).

Testing Suggestions:

1. starting with the loco and train on a long level 	section
adjust the speed and power with the boiler to piston and
piston to atmosphere flows;

2. carefully adjust the “firebox-to-boiler-heat-flow”, the
“max-fire-temperature” along with the “fuel-energy”
settings (the boiler steam production can be made to be
prototypical and produce enough steam providing the
locomotive is hauling a train within its capacity and is
driven with the correct use of the valve gear);

3. during this process, the injector is tuned in to feed
enough water at just below maximum demand;

4. the shovel rate is used to adjust the amount of coal
used and to supply heat;

5. the fuel value is another adjustable in the fire
parameters;
	
This should give a config.txt file that reasonably
reproduces the real performance in Trainz, hauling
standard Auran cars (most users don’t vary or adjust
the rollingstock config.txt files, yet it is not difficult to find
tonnage and speed numbers for the locomotives).

A comment on the safety valve settings: Try not to waste
water through the safeties, keeping the settings close
together (by setting the safety valves to 15Kpa (2lbs)
difference) allows for a rapid release to bring the pressure
back quickly, thus emulating the action of “Pop” type
valves. This is both deliberate and prototypically accurate,
to prevent over pressure and ultimately the big bang.
More practically in Trainz, it prevents water wastage.

Narrow Gauge Geared Locomotives
These engines have relatively small cylinders and they
use a miniscule amount of water. To get the water usage
up to an appropriate prototypical rate, you will need to
multiply the cylinder volume by the gear ratio then you will
get it to use the apropriate amount of water.

The cylinder volume makes no difference to the
performance, just the water usage, so for a geared
locomotive such as a Shay, Climax, or Heisler, by
multiplying the cylinder volume by the gear ratio then the

RESEARCHING DATA AND TESTING
OF A STEAM LOCOMOTIVE

Steam locomotives are quite complicated and many of
the performance values entered as tags in the
config.txt file interact with, and influence, each other. This
can make it difficult to firstly choose starting values for
the various input data, then to vary those values during
testing within Trainz to produce a smoothly operating and
realistically performing locomotive.

Using the Steam Locomotive information in this document
and entering data for the various settings, the following
may assist in developing a workable and realistic steam
locomotive.

Research and Record:

1. the locomotive data and convert the data to metric
values (the config.txt is ALL in metric);

2. the dimensions for the cylinders, bore & stroke;

3. boiler working pressure;

4. the specific locomotive hauling rating on what 			
percentage grade (for cut off and speed);

5. the normal service speed with that load on the level,
and its practical maximum speed; and

6. the water and coal consumption per hour (sometimes
the hardest to find).

Input in the Config.txt file:

1. piston-area in sq metres;

2. piston-volume-max in litres;

3. piston-volume-min of the cylinder at 3% of the
maximum volume;

4. set the initial-boiler-temperature at 80 - 85% of 		
working boiler temperature;

Version 3.0   366   Trainz Railroad Simulator - The Content Creator’s Guide

class Steam_Tank isclass Locomotive {
 bool UnloadProduct(LoadingReport report) {
 bool UnloadFlag = false;
 return UnloadFlag;
 }
};

The following lines should be included in the config.txt file
for the engine:

Config.txt entries:-

script “steamtank”
class “Steam_Tank”

* Auxiliary Tender or Water Gin for Steam Locos,
Script by Wulf_9

This is a complete class - save to the filename and use
as-is by copying all the text between the dotted lines.

// slw_auxtender.gs
//
// Auxiliary tender (or water gin) distributor and feeder
script
//
// Will run automatically when directly coupled, in single or
multiple,
// to an active steam loco and tender combination. Not for
tank locos.
//
// GetVehicleProductQueue() is a specially-customised
adaptation of
// GetVehicleQueue() by Mike Carter, (c)TrainzProRoutes.
com, 2004
//
// This code is (c)Wulf_9, Saxon Locomotive Works,
March 2005.
// NOT to be used in payware without prior written
agreement.
//
// Freeware creators are encouraged to use and share
this script,
// provided the code is distributed in UNMODIFIED form.
Any and
// all support obligations and other liabilities shall reside
// with the author of the asset to which this script belongs.

include “vehicle.gs”

class SLW_ATWG isclass Vehicle {

 Asset waterAsset;
 Train thisTrain;
 float rsd;
 bool active = 0, update = 0;

 float EndLoad(LoadingReport report) {

 if (active) PostMessage(me, “SLW_ATWG”,

amount of water used will be realistic. It is the piston area
/ boiler pressure that gives the output force / power that
drives the locomotive and train.

For example, a typical Shay locomotive may have a gear
ratio quoted as 3.3:1 (3.3 to 1). Multiply the boiler volume
by 3.3 to give a realistic water usage.

Tenders
Locomotives with tenders normally operate as a unit.
However, if you use the runaround comand in Driver the
locomotive leaves the tender behind.

For steam tender config.txt files, add the following line:

tender 1

This ensures the tender stays with the locomotive.

Tenders Dump Coal

To prevent steam tenders or the coal bunker of a steamer
being robbed at the Power station or any Multi industry
track that is coal unload enabled, you should use the “No
Dump” Script by Wulf_9, reproduced with permission.

You may find the scripts useful.

* Stop steam locos and tenders dumping coal.

This is a complete class - save to the filename and use
as-is by copying all the text between the dotted lines

Tender version

// steamtender.gs
// prevents unloading of coal at industries
// ©Wulf_9, Sept ‘04
include “vehicle.gs”
class Steam_Tender isclass Vehicle {
 bool UnloadProduct(LoadingReport report) {
 bool UnloadFlag = false;
 return UnloadFlag;
 }
};

Include the script with the asset and add these lines to a
tender config.txt file and it stops the tender dumping coal
incorrectly.

Config.txt entries:-

script “steamtender”
class “Steam_Tender”

A second script is available for tank engines.

Tank engine version

// steamtank.gs
// prevents unloading of coal at industries
// ©Wulf_9, Sept ‘04
include “vehicle.gs”

Version 3.0   367   Trainz Railroad Simulator - The Content Creator’s Guide

“ReBalance”, 5.0);
 return 1.0;
 }

 bool UnloadProduct(LoadingReport report) {

 if (active) return false;
 return true;
 }

 ProductQueue GetVehicleProductQueue(Vehicle v,
Asset prodAsset) {

 string vQ, prodKuid, catKuid;
 bool found = 0;
 int s, l, p;
 vQ = “”;

 Soup vSoup = v.GetAsset().GetConfigSoup();
 Soup pSoup = prodAsset.GetConfigSoup();
 Soup vqSoup = vSoup.GetNamedSoup(“queues”);
 prodKuid = pSoup.GetNamedTag(“kuid”);
 catKuid = pSoup.GetNamedTag(“product-category”);

 for (s = 0; s < vqSoup.CountTags(); s++) {

 Soup load = vqSoup.GetNamedSoup(vqSoup.
GetIndexedTagName(s));

 if (load.GetNamedTag(“product-kuid”) == prodKuid) {

 found = 1;
 vQ = vqSoup.GetIndexedTagName(s);
 break;
 }

 for (l = 0; l < load.CountTags(); l++) {

 if (load.GetIndexedTagName(l) == “allowed-
categories”) {

 Soup prod = load.GetNamedSoup(“allowed-
categories”);

 for (p = 0; p < prod.CountTags(); p++) {

 if (prod.GetNamedTag(prod.
GetIndexedTagName(p)) == catKuid) {
 found = 1;
 vQ = vqSoup.GetIndexedTagName(s);
 break;
 }
 }
 }
 if (found) break;
 }

 if (found) break;

 Soup prod = load.GetNamedSoup(“allowed-
products”);

 for (p = 0; p < prod.CountTags(); p++) {

 if (prod.GetNamedTag(prod.
GetIndexedTagName(p)) == prodKuid) {
 found = 1;
 vQ = vqSoup.GetIndexedTagName(s);
 break;
 }
 }
 if (found) break;
 }
 return (v.GetQueue(vQ));
 }

 void UpdateTrain(Message msg) {

 if (((msg.src == me) or TrainUtil.IsInTrain(thisTrain,
msg.src)) and !update) {

 update = 1;
 ClearMessages(“SLW_ATWG”, “ReBalance”);
 thisTrain = me.GetMyTrain();
 Vehicle[] cars = thisTrain.GetVehicles();
 float avlf = 0.0;
 int i = 0, inc = 0, tvp = 0, avp = 0, atc = 1;
 active = 0;

 for (i = 0; i < cars.size(); i++) {

 ProductQueue pQ = GetVehicleProductQueue(cars[
i], waterAsset);
 bool isST = (cars[i].GetVehicleTypeFlags() ==
Vehicle.TYPE_TENDER);
 bool facing = cars[i].GetDirectionRelativeToTrain();
 bool isAT = cars[i].isclass(SLW_ATWG);
 if (facing) inc = i - 1;
 else inc = i + 1;
 bool count = 0;

 if (pQ and isST and !isAT) {

 if ((i > 0 and facing) or (i < cars.size() - 1 and
!facing)) {
 if (cars[inc].GetEngineType() != Vehicle.ENGINE_
STEAM) continue;
 }
 active = 1;
 count = 1;
 tvp = i;
 avp = tvp;
 ++atc;
 }

 if (pQ and isAT and (i == avp + 1)) {

 count = 1;
 avp = i;
 if (cars[i] != me) ++atc;
 }
 if (count) avlf = avlf + ((float)pQ.GetQueueCount() /
(float)pQ.GetQueueSize());
 }

 avlf = avlf / (float)atc;

Version 3.0   368   Trainz Railroad Simulator - The Content Creator’s Guide

 if (active) {

 for (i = tvp; i < (tvp + atc); i++) {

 ProductQueue pQ = GetVehicleProductQueue(cars
[i], waterAsset);
 bool isAT = cars[i].isclass(SLW_ATWG);

 if (pQ and ((i == tvp) or isAT)) {

 int vQc = (int)(avlf * (float)pQ.GetQueueSize());
 cars[i].SetQueueInitialCount(pQ, waterAsset,
vQc);
 }
 }
 PostMessage(me, “SLW_ATWG”, “ReBalance”, rsd);
 }
 }
 update = 0;
 }

 void InitStart(Message msg) {

 thisTrain = me.GetMyTrain();
 }

 public void Init(void) {

 inherited();
 if (GetAsset().LookupKUIDTable(“water”)) waterAsset =
GetAsset().FindAsset(“water”);
 rsd = (float)GetAsset().GetConfigSoup().
GetNamedTagAsInt(“update_delay”, 300);
 AddHandler(me, “Vehicle”, “Coupled”, “UpdateTrain”);
 AddHandler(me, “Vehicle”, “BadCouple”,
“UpdateTrain”);
 AddHandler(me, “Vehicle”, “Decoupled”,
“UpdateTrain”);
 AddHandler(me, “SLW_ATWG”, “ReBalance”,
“UpdateTrain”);
 AddHandler(me, “World”, “ModuleInit”, “InitStart”);
 }
};

Config.txt entries:-

script “slw_auxtender”
class “SLW_ATWG”

; this value is in seconds
update_delay “180”

kuid-table {
 water <kuid:-3:10004>
}

Version 3.0   369   Trainz Railroad Simulator - The Content Creator’s Guide

ANIMATION EVENTS
Sounds events and generic events can be linked to an
animation key-frame to give great control over sound and
script timing for industry and scenery assets.

When an animation file (.kin file) is exported from 3dsmax
or gmax, the exporter will make a query for an event file.
Tick the box and you will be asked to browse to the event
file. See Figure 1. The event information is added to the
contents of the new animation file.

The Event File: (.evt)

Format: FrameNum EventType EventName.

The event file consists of a list of events and is set up
as a simple text file. Each event consists of the frame
number, followed by the event type
(Sound_Event or Generic_Event), then the event name.
Sound events are generally referenced as a trigger within
the asset’s config.txt file (or through script). All events
start on a new line (should there be more than one)

Sound and Generic Events:
A Sound_Event tells TRS when to play a sound,
relative to an animation keyframe.

A Generic_Event is an animation keyframe reference for
script timing and control.

Figure 1. Export Animation window.

Important Note:

The Max file in Example 1 has 1000 frames:

One thing to note is that although the Max file states the
frames are from
0 - 1000 frames, we must remember that frame 999 is
the last one.

On a looping time scale, frame 1000 is the same time as
frame 1.

Therefore, the Generic-Event at the end of the
animation is thus:
999 Generic_Event animstop

Example 1: Lumbermill:
The animation in the max file is set up over 1000 frames.*
We want a single sound to play on frame 760 as a log
runs through the mill on the conveyor. When exporting
the kin animation we are queried for an event file.

lumbermill.evt
760 Sound_Event logcut
999 Generic_Event animstop

An exerpt from the TRS Lumbermill
config.txt file (note the trigger) :

Example 2: Looping sounds:
Not only can we control when a single sound plays but
we can also control the start and the stop of a looping
sound by adding another Sound_Event with a / before the
relevant name. In the example below the sound starts on
frame 370 and ends on 589.

looping.evt
370 Sound_Event reverse
589 Sound_Event /reverse

Note: For script reference please refer to
index.chm found in \Trainz\scripts\docs
directory.

soundscript
 {
 log_cut
 {
 trigger logcut
 attachment a.sawsound
 nostartdelay 1
 repeat-delay 1
 distance 10,400
 sound
 {
 log_cutting.wav
 }
 }
}

soundscript
 {
 backup
 {
 attachment a.sound
 trigger reverse
 repeat-delay 0
 distance 5,100
 sound
 {
 warning.wav
 }
 }
}

Version 3.0   370   Trainz Railroad Simulator - The Content Creator’s Guide

LEVEL OF DETAIL MESH REDUCTION

General Description

Level of Detail (or ‘LOD’) is a technique used for asset
mesh reduction. Trainz uses a different mesh dependant
on the viewing distance.

This concept is different from the previous “progressive
mesh” (.pm) reduction as used by UTC. That is, instead
of gradually reducing the polycount of a single mesh you
can now have several versions of the same asset, each
at different polycounts and texture levels. (See ‘Directory
Structure’, next page)

Assets with LOD reduction must comprise of ‘indexed
meshes’ or .im files only (exported from gmax or
3dsmax). No .pm files are used in LOD.

TRS2004 looks for these .im files through an .lm.txt (LOD
mesh file) which is referenced via the asset’s config.txt
file.

Note: Only Figure 4 the hi-res version is bump-mapped.
Bump mapping will be ignored if the graphics card does
not support it.

Use only non-formated text to create the .lm.txt file i.e.

Use a simple text editor such as notepad

The use of upper and lower case letters in the tag names
are important, please follow the example.

Refer to the .lm file in the next column for information.

PB_15_body_lowest.im (600 polys, 64x64 tex) bogies 		
	 attachments flagged ‘:Cull’,
	 bogies represented in mesh (see next page)

Figure 1

PB_15_body_low.im (1947 polys 256x256 tex)

Figure 2

PB_15_body_med.im (5066 polys 512x256 tex)

Figure 3

PB_15_body.im
(10578 polys, 1024x512 tex & bump-mapped)

Figure 4

 version 1.0
 offset = 0.01;
 calcPoint = center;
 multiplier = 1.0;
 animationCutOff = 0.00;
 renderCutOff = 0.00;
 attachmentCutOff = 0.06;

 mesh("0.07")
 {
 name="PB_15_body_lowest.im";
 }

 mesh("0.30")
 {
 name="PB_15_body_low.im";
 }

 mesh("0.52")
 {
 name="PB_15_body_med.im";
 }

 mesh("1.0")
 {
 name="PB_15_body.im";
 }

LOD Mesh File (PB_15_body.lm.txt) Auran’s steam loco:

Breakdown of LOD Mesh File

Version 1.0
offset = 0.01;
The offset that prevents “popping” between two levels of
detail- repeatedly.

calcPoint = center;
The position where the level of detail is calculated from
(center,near,far)

Version 3.0   371   Trainz Railroad Simulator - The Content Creator’s Guide

multiplier = 1.0;
A level of detail multiplier (leave as 1.0)

animationCutOff = 0.00;
The level of detail where animation stops
(to screen width) 1.00 = full width,
0.5 = half screen width, 0.00 = never stop animation.

renderCutOff = 0.00;
The level (to screen width) where rendering stops (no
longer visible).

attachmentCutOff = 0.06;
The level where :Cull flagged attachments are dropped.
(to screen width) * See note below

Note: Below. Meshes referenced within an LOD file must
be in ascending screen width order.

 mesh(“0.07”)
 {
 name=”PB_15_body_lowest.im”;
 }

When the mesh is displayed at
0.07 of the screen, the mesh ‘PB_
15_body_lowest.im’ is displayed.
Note the figure is just bigger then
the attachment-CutOff figure
above. This ensures the modeled
bogeys in this LOD mesh are
rendered before the actual bogeys
are culled.

 mesh(“0.30”)
 {
 name=”PB_15_body_low.im”;
 }
Mesh ‘PB_15_body_low.im’ is
displayed when the mesh is
displayed at 0.3 of the screen.

mesh(“0.52”)
 {
 name=”PB_15_body_med.im”;
 }

mesh(“1.0”)
 {
 name=”PB_15_body.im”;
 }

Directory Structure (LOD Loco)

The main thing to remember is that all LOD files, .im
meshes and textures must be located within the same
directory. In the case of a locomotive or rolling stock item,
it should be in the *_body directory. Note the LOD Mesh
file is referenced from the config.txt file.

kuid <KUID:-3:10024>
kuid-table {
}
obsolete-table {
}
mesh-table
{
 default
 {
 mesh PB_15_body/PB_15_body.lm
 auto-create 1
 }
 shadow
 {
 mesh PB_15_shadow/PB_15_
shadow.im
 }
 reverser
 {
 mesh PB_15_body/reverser/
reverser.im
 anim PB_15_body/reverser/
reverser.kin
 auto-create 1
 att a.bog2
 att-parent default
 }
}

Note
attachmentCutOff = 0.1;
Attachment cutoff specifies the level where
attachments with the flag “:Cull” are dropped.

ie To stop drawing the bogeys of the trains at a
specific level of detail, append :Cull to the bogie
attachment point. (ie “a.bog0:Cull”)

Where the above applies (bogeys culled) the body
mesh will need a low poly representation of the
bogeys.

Config.txt file extract

Version 3.0   372   Trainz Railroad Simulator - The Content Creator’s Guide

LOAD TEXTURE REPLACEMENT
This feature was created for rolling stock items that use
animated bulk loads.

If a rolling stock item (say a Gondola) is setup to carry
any product within product-category ‘Bulk Load’, AND it’s
config.txt file is set up to enable texture replacement, then
a texture replacement on the load mesh will take place to
visually represent the product.

Let us break down the texture-replacement setup:

Texture swapping functionality relies on 2 things:

1) The rolling stock item config.txt to include with ‘prod-
uct-texture’ load effects setup (see Rollngstock examples
1 and 2 below).

2) The product config.txt itself needs product-texture
information and reference to the texture to be loaded (see
product examples on Page 374).

ROLLINGSTOCK EXAMPLE 1:

COAL HOPPER

Load allows texture replacement:

Note: The load_map.tga texture file is the original tex-
ture used on the mesh in 3dsmax/gmax, and is to be
replaced. The load_map.texture.txt file references this
texture to be replaced in trainz by a different texture for
the new product (see load, effects, product-texture in con-
fig.txt).

The original texture size and the mapping on the mesh
will effects the appearance of the replacement texture.

Default product load:

COAL <KUID:44179:60013>
(see product-kuid field in config.txt)

Can take product-category:

BULK LOAD <KUID:-3:10040>
(see allowed-categories field in config.txt)

When the Coal hopper enters an industry asset that
produces a bulk-load other than it’s default (ie. woodchips
at a lumbermill), and it loads this product, texture-replace-
ment will take place.

mesh-table
{
 default
 {
 mesh coal_hopper_body/coal_hopper_body.lm
 auto-create 1
 }
 shadow
 {
 mesh coal_hopper_shadow/coal_hopper_
shadow.pm
 }
 load
 {
 mesh coal_hopper_body/load/load.pm
 anim coal_hopper_body/load/load.kin
 auto-create 1
 use-parent-bounds 1
 	effects
	 	 {
	 	 	 product-texture
	 	 	 {
	 	 	 kind texture-replacement
	 	 	 texture "load_map.texture"	
	 	 }
	 	 }
 }
}
queues
{
 load0
 {
 size 54300
 initial-count 0
 animated-mesh load
		 product-kuid <KUID:44179:60013>
	 	 allowed-categories
	 	 {
	 	 	 0 <KUID:-3:10040>
	 	 }
 	 }
}

Extract from Coal Hopper Config.txt

Coal Hopper Directory Structure

Version 3.0   373   Trainz Railroad Simulator - The Content Creator’s Guide

ROLLINGSTOCK EXAMPLE 2:

WOODCHIP GONDOLA

Load allows texture replacement. Note the texture to be
replaced (load_map).
(see load, effects, product-texture in config.txt)

Default product load:

WOODCHIPS <KUID:-3:10002>
(see product-kuid field in config.txt)

Can take product-category:

BULK LOAD <KUID:-3:10040>
(see allowed-categories field in config.txt)

When the Woodchip Gondola enters an industry asset
that produces a bulk-load other than it’s default (ie. coal at
a coalmine), and it is loads this product, texture-replace-
ment will take place.

mesh-table
{
 default
 {
 mesh woodchip_gondola_body/woodchip_
gondola_body.lm
 auto-create 1
 }

 shadow
 {
 mesh woodchip_gondola_shadow/woodchip_
gondola_shadow.im
 }
 load
 {
 mesh woodchip_gondola_body/load/load.im
 anim woodchip_gondola_body/load/load.kin
 auto-create 1
 use-parent-bounds 1
	 	 effects
	 	 {
	 	 	 product-texture
	 	 	 {
	 	 	 	 kind texture-
replacement
	 	 	 	 texture "load_map.
texture"
	 	 	 }
	 	 }
 }

}
queues
{
 load0
 {
 size 60500
 initial-count 0
 animated-mesh load
	 	 product-kuid <KUID:-3:10002>
	 	 allowed-categories
	 	 {
	 	 	 0 <KUID:-3:10040>
	 	 }
 }
}

Extract from Woodchip Gondola Config.txt

Woodchip Gondola Directory Structure

Version 3.0   374   Trainz Railroad Simulator - The Content Creator’s Guide

kind product
kuid <KUID:44179:60013>
username "Coal"

instance-type resource
product-category <KUID:-3:10040>
icon-texture "icon_texture.texture"

mass 0.860

product-texture "coal.texture"

mesh-table
{
}

Coal Product Config.txt

Coal Product Directory Structure

Primary=coal.tga
Tile=st

coal.texture.txt

PRODUCT EXAMPLE 2:

WOODCHIP PRODUCT

In the case of the woodchip product, the texture to
be used is ‘woodchips.tga’

I.e. If the coal hopper enters the lumber mill to load
woodchips, the load-map texture will be replaced
with woodchips.tga.

kind product
kuid <KUID:-3:10002>
username "Woodchips"

instance-type resource
product-category <KUID:-3:10040>
icon-texture "icon_texture.texture"

mass 0.400

product-texture "woodchips.texture"

mesh-table
{
}

Woodchip Product Config.txt

Woodchip Product Directory Structure

Primary=woodchips.tga
Tile=st

woodchips.texture.txt

As a rolling stock item with texture-replacement enabled
has reference to the texture to be replaced, the product
has reference to the texture that will be used in its place.

PRODUCT EXAMPLE 1:

COAL PRODUCT

In the case of the coal product, the texture to be used
is ‘coal.tga’, i.e. if the woodchip gondola enters the coal
mine to load coal, the load-map texture will be replaced
with coal.tga.

Version 3.0   375   Trainz Railroad Simulator - The Content Creator’s Guide

TRAINCAR DIRECTORY STRUCTURE

Expanded Directory Structure

Typical Directory Structure

(512x512 pixel 32-bit .tga file)

(128x64 pixel 32-bit .tga file)

‘Load’ animation file. Referenced through the config
‘Load’ mesh file. Referenced through the config
Exporter generated txt file
Load texture.

The grey area indicates optional files. The load files
are essential for visualisation of the TRS bulk load
product such as coal or woodchips.

The hi-res mesh in level of detail mesh reduction
LOD file (.lm). Ref. through default-mesh in config.
The low-res mesh in level of detail mesh reduction

24-bit .tga file

Default textures for shadows
Shadow mesh.
Wave sound files. Timing controlled through script.
Config.txt and Hopper.gs (script) files. Refer:
http://www.auran.com/TRS2004/trssp4dl/dfile.
php?FileID=10

Primary=coal_hopper_art_512.tga
Alpha=coal_hopper_art_512.tga
Tile=st
Hint=Dynamic

The following example is of a typical Coal hopper.
This asset has an animated load (typical for bulk load
rolling stock) and animated unload doors (specific to this
asset). These doors are controlled by the hopper.gs script
file.

http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10
http://www.auran.com/TRS2004/trssp4dl/dfile.php?FileID=10

Version 3.0   376   Trainz Railroad Simulator - The Content Creator’s Guide

ALIASING TRAINS
TRS Traincars can reference archived locomotive mesh
assets for use with custom textures. This process is done
by aliasing the KUID of the archived traincars.

A typical structure of an aliased loco could be as follows:

World

custom\
	 trains\
		 train\
			 train_alpha_numbers\
			 train_art\
			 Config.txt
			 x.tga
			 x.texture.txt
			 y.tga
			 y.texture.txt

The textures must have exactly the same names and
have exactly the same quantity and pixel dimensions that
the aliased mesh uses.

The shadow file of the aliased loco will also be read (if
present).

kuid <KUID2:####:#####:1>
alias <KUID:-10:183>
name train
company Auran
origin AU
bogey <KUID:###:#####>
engine 1
interior <KUID:###:#####>
fonts 1
mass 97600
kind traincar
running-numbers
{
 rn-0 #0003
 rn-1 #0004
 rn-2 #0005
 rn-3 #0006
}
smoke_shade 0.18
smoke_random 2.5
smoke_slowlife 6
smoke_fastlife 0.8
smoke_height 1.7
smoke_fastspeed 3.2
enginespec <KUID:-1:42004209>
enginesound <KUID:-12:2100>
hornsound <KUID:-1:42003103>
description " "
kuid-table
{
 0 <KUID:###:#####>
 1 <KUID:###:#####>
 2 <KUID:###:#####>
}
obsolete-table
{
}
username My locomotive
trainz-build 1.5
category-class AC
category-region-0 AT
category-era-0 1980s

The KUID of
the aliased
mesh

Version 3.0   377   Trainz Railroad Simulator - The Content Creator’s Guide

BOGEYS

Download Source files from the Trainz Website
POLYGON LIMITS:
Steam Loco bogey polygon recommendations
< 5000 polygons per driving wheels (including all rods
and animated parts)
Diesel Loco bogey polygon recommendations
< 2000 polygons per truck.

Bogey shadow polygon recommendations
< 100 polygons per truck.

Carriage bogey polygon recommendations
< 300 polygons per truck.

Carriage bogey shadow polygon recommendations
< 100 polygons per truck.

As a general rule of thumb, less is always better! 

The absolute centre of bogeys should be located at
World origin point (0,0,0). This is where they are inserted
into the a.bog0 etc attachment points in the loco body
mesh.

BOGEY TEXTURES
The materials are of Multi/Sub-Object type (one M/SO
only per model) and we have used UVW Map and
Unwrap UVW for texture allocation.

Diffuse Maps: Generally a single 128x128 16-bit TGA file
is sufficient to texture a bogey. Additional maps (e.g. for
springs) are also used.

Opacity Maps (8 bit greyscale .bmp) are supported to
the same pixel dimensions as the diffuse map. Used
regularly for carriage bogey sides. Reflection maps are
supported but generally not
used on bogey models.

Bump mapping and specular
values are possible to give
greater detail and variation.
(3dsmax 4 + users only). See
TRAINCAR Bump mapping
notes Page 350.

b.r. helper points must be made
in top view in 3dsmax/gmax.

EXPORTING MODELS:

As per ‘Modeling Trains’ section. Remember naming
conventions and to type in the file extension under file
name (e.g.TRAIN_NAME_bogey.im).

Refer to Page 33 for information on reversing bogeys
and animation, with reference to attachment points.

IMPORTANT NOTE: Steam Driving Bogeys
The Steam loco driving bogey is connected to the piston
and physics system by adding the following tag to the
bogey’s config.txt: direct-drive 1

(See PB_15_bogey2 Config.txt below)

This tag MUST be included for piston and steam sounds
to work.

kind bogey
kuid <KUID:44179:50003>
animdist 3.816
category-class AS
category-region-0 AU
category-era-0 1920s
category-era-1 1930s
category-era-2 1940s
category-era-3 1950s
category-era-4 1960s
category-era-5 1970s
category-era-6 1980s
direct-drive 1

Hierarchal Sub-tree:
	b.r.base
		 b.r.wheel0
			 wheel_0
		 b.r.wheel1
			 wheel_1
		 bogey

b.r.base 0,0,0

b.r.wheel_0

b.r.wheel_1

wheel_0

wheel_1

bogey

In this example, the bogey will be inserted into the Train model attachment point
(e.g. a.bog0) at b.r.base (or 0,0,0). b.r.wheel0, and b.r.wheel1 (bones) were
animated to turn 360o over 32 frames.

Bones must have the b.r.* naming convention for Trainz to recognise them.

					 Animated Bogey Example 1

PB_15_bogey2 Config.txt

Version 3.0   378   Trainz Railroad Simulator - The Content Creator’s Guide

Animated Bogey Example 2a - Objects

smallwheel crank drive0

drive1

basewheel_1

middleshaft

wheel_2 link1

link0

wheel_3

Animated Bogey Example 2b - Bones

b.r.base 0,0,0

b.r.smallwheel

b.r.crank

b.r.wheel_1
b.r.wheel_2

b.r.wheel_3

b.r.output

b.r.drive1
b.r.drive0

b.r.link1
b.r.link0

Hierarchal Sub-tree
	b.r.base
		 b.r.crank
		 crank
		 b.r.output
			 b.r.drive0
			 	b.r.link0
					 link0
			 drive0
			 b.r.drive1
			 	b.r.link1
					 link1
			 drive1
			 middleshaft
		 b.r.smallwheel
			 smallwheel
		 b.r.wheel_1
		 wheel_1
		 b.r.wheel_2
		 wheel_2
		 b.r.wheel_3
		 wheel_3
	 base

Wheel_1, 2 & 3 circumference = 4.2m
•  Animated to turn 720o over 120 frames:
 Distance traveled: 4.2m x 2 revs = 8.4m

smallwheel circumference = 2.8m

•  Animated to turn 1080o over 120 frames:
 Distance traveled: 2.8m x 3 revs = 8.4m

Animated Bogey Example 2c - Side view after a few frames

This example is much more complex than the previous example. Animation frames = 120	

•  Animdist: (worked out from distance travelled in 30 frames: 8.4 / 4 = 2.1) therefore animdist 2.1

Version 3.0   379   Trainz Railroad Simulator - The Content Creator’s Guide

kuid <KUID:###:#####>
kind bogey
animdist 2.1
mesh-table
{
 default
 {
 mesh dd40ax_bogey.im
 auto-create 1
 }
 shadow
 {
 mesh dd40ax_bogey_shadow/dd40ax_bogey_
shadow.im
 }
}

obsolete-table
{
}
username mybogey
description " "
trainz-build 2.0
category-class AC
category-region-0 AT
category-era-0 1980s

Typical TRS bogey config.txt (.im files with mesh-table)

Typical UTC bogey config.txt (.pm files)
kind bogey
kuid <KUID:44179:50003>
animdist 3.816
category-class AS
category-region-0 AU
category-era-0 1920s
category-era-1 1930s
category-era-2 1940s
category-era-3 1950s
category-era-4 1960s
category-era-5 1970s
category-era-6 1980s
direct-drive 1

Two Axle Bogey

A traincar requires two bogeys minimum, to track
correctly on track. To make a traincar with two axles
(fixed to the body) use two invisible bogeys, placed in the
usual locations, a.bog0 and a.bog1.

Make the visible fixed axles as a bogey mesh placed at
a.bog2, centered on the traincar body.

Version 3.0   380   Trainz Railroad Simulator - The Content Creator’s Guide

PANTOGRAPHS

Pantographs are the animated mechanisms on the roof of
electric locomotives that conduct to an electric catenary
(wires) above.

Model configuration:

Typical model configuration: (based on the bb15000
pantograph)

Typical Hierarchal Sub-tree

b.r.base
		 b.r.midbase
			 b.r.mid
				 b.r.top
					 pant_top
				 pant_mid
		 b.r.strutbase
			 b.r.strut
			 pant_basestrut
		 pant_base

b.r.base (0,0,0)
b.r.midbase

b.r.strutbase

b.r.strut

b.r.mid

b.r.top

pant_top

pant_mid

pant_base

pant_basestrut

In this example, the Pantograph will be inserted into the Train model
attachment point (a.pant0) at b.r.base (or 0,0,0).

Generally Pantograph animations should take place
over 16 frames only. Bones must have the b.r.* naming
convention for Trainz to recognise them.

Refer to the example download files and the Content
Creation Art Source resource (available from the Trainz
Website) for working examples.

Note: Animation should commence in the lowered
position (frame 0) and be in the highest position at frame
16. All b.r. helper points (dummies) are constructed in top
view in 3dsmax/gmax.

Typical Pantograph Directory Structure

Animation exported from 3dsmax/
gmax

Mesh incl. bones exported from
3dsmam/gmax

Version 3.0   381   Trainz Railroad Simulator - The Content Creator’s Guide

TURNTABLE (TRANSFER TABLE)

A transfer table is a particular kind of turntable, instead of
using the in-built options of specifying angles for the track
stopping positions, it uses an animation file exported from
3dsmax or gmax, with stopping points located by the key
frames of the animation.

Generally the platform will move in a linear motion, but
any type of motion is possible with this asset, specified by
the animation file. Refer to the example Kinds in Chapter
6 and Chapter7 for full examples of turntable Kinds.

Model configuration:

A typical model configuration consists of a base model
(the static pit in the ground) and a transfer table or
platform model. Additional night models and other
attached meshes may be used. A sample directory
configuration is shown in the column to the right.

Track for the static approach tracks and the track on the
moving platform are specified using the track container.
In order to have the track on the platform (or any other
attachment on the platform) move with the platform, a
special notation in 3dsmax or gmax is required for the
attachment points, as discussed on Page 363.

Typical Hierarchal Sub-tree in 3dsmax or gmax:

b.r.base
		 b.r.platform
			 platform
			 a.r.platform/a.cabfront
			 a.r.platform/a.itrack0a
			 a.r.platform/a.itrack0b
			 a.r.platform/a.warnlight0
		 b.r.night
			 night
	 base
			 a.otrack0a
			 a.otrack0b
			 a.otrack1a
			 a.otrack1b etc

Refer to the diagrams.

In the example above, the moving platform has attached
track, and interior requiring an a.cabfront attachment, and
a flashing corona warning light.

Note: While interiors will function for turntables in Trainz,
currently the CCP checking template file for Kinds rejects
the use of interiors and shows errors. This may be
corrected in future update releases.

The base of the transfer table, the pit, has attached track
at regular intervals. A night mesh is also used for the
base.

The b.r.base is the main fixed helper point located on the
origin. The moving platform is linked to the b.r.platform
helper that is also linked to the b.r.base.

Version 3.0   382   Trainz Railroad Simulator - The Content Creator’s Guide

Note in the diagram, for the platform in the start
position as shown, the attachment point on the
platform, 	a.r.platform/a.itrack0a is in the same position as
the joining track on the base, a.otrack0a.

Any object using attachment points and linked to the
moving b.r.platform uses the special notation in 3dsmax
or gmax shown above, the cabfront, track attachment
points and flashing coronas on the platform use the
a.r.platform/ notation as part of the attachment point
name, however only the attachment point name itself is
used in the config/txt file.

For example, the track attachment point at one end of
the moving platform is called: a.r.platform/a.itrack0a in
3dsmax or gmax. The name entered in the config.txt file
is: a.itrack0a

If the platform had a night mesh attached, it also would
need to be attached in this manner.

Naming conventions

The naming of the track attachment points is not
important in TC. For circular turntables in TRS2004, the
names used above were reserved names, recognised
and interpreted by Trainz, to place the attached track
correctly, for example, a track on the rotating turntable
was a.itrack0a and a.itrack0b, the “i” denoting an inner
track on the platform.

The attached track on the base was labeled as

a.otrack0a and 	a.otrack0b, the “o” denoting an outer
track, and the “a” and ‘b” denoting the extremities of the
track attachment.

In TC, mesh tables are now used to list all the attached
track, and this default notation is not now required. It has
been used in this example for consistency.

Animation Key Frames

An animation file exported from 3dsmax or gmax will
specify the key frames that coincide with the attached
track along the transfer table, for example, the key frame
entries in the config.txt file might be:

keyframes 0,160,320,480,640
looping 0
frame-rate 30

The key frame 0 would co-incide with the a.otrack0a
position on the diagram above, and key frame 160 would
co-incide with the 	a.otrack1a position.

Normally a transfer table is moved either through a
script or by clicking a number of times on the red arrows
showing above the table, click 5 times and it will move
smoothly to the fifth stopping position, for example. If
you wish to have the table hesitate at each intermediate
stopping position on the way, enter additional key frames
in 3dsmax or max, either side of the correct stopping
point, for example at 158 and 162, either side of the
frame 160 point, with the same co-ordinate locations as
the 160 key frame. These additional frames are not listed

Version 3.0   383   Trainz Railroad Simulator - The Content Creator’s Guide

in the key frame list in the config.txt file table.

Because the use of animation key frames is so versatile
for a transfer table, for example a vertical mine shaft
might be made, with the elevator car as the platform,
the platform can vanish as it moves away from the base
model.

This is caused by the platform moving outside the main
bounding box of the base model. An additional tag, use-
parent-bounds 1 should be used in the config.txt file, in
the platform container, to correct this issue:

FIXEDTRACK
A fixedtrack in TRS could be likened to a model train
sectional track system. They snap into position when
moved onto another track in Surveyor.

Technically, all a fixedtrack comprises is a mesh asset
with an attached track (or tracks) and surveyor-only
rendered arrows so the user knows where the fixedtrack
segment starts and ends.

The model consists of a few attachment points (using the
a.name naming convention) set-up accurately in 3dsmax
or gmax, and a single invisible polygon to allow exporting,
and for in-game asset selection.

Note that correct track end attachment orientation is
essential. The Y axis must point ‘out’ at the correct angle.
The Z axis must point ‘up’. Mid points only need to be in
the correct spline path. See diagram to the right.

When a spline track is attached to a fixedtrack the
fixedtrack will update to the attached track type. (unless
the tag useadjoiningtracktype 0 is used - see example
config.txt file).

The arrows are inserted at each end as a kind attachment
- referenced by the arrow’s KUID: <KUID:-3:10092>

Each fixedtrack asset needs a preview-mesh, as spline
tracks will not render in the Preview window. A preview-
mesh can simply be setup as a kind mesh. This way
the preview-mesh will never be selectable or seen in
Surveyor.

a.track1a

Y

X a.track0b

a.track0a

a.track1b a.track0a

a.track0b

a.track0c

X

X

X

X

Y Y

Y

Y
Y

Y
X X

Crossing Attachments		 Curve Attachments

TRS2004 released fixedtracks consists of only curved
and straight sections. Crossings may be made, just
create two attached-track fields. For junctions, see below.

FIXEDTRACK - Junctions
Junctions (turnouts) are now possible in TC, with the use
of additional tags. A number of samples are available in
TC. Because the Kind fixed track is not based on the Kind
Track asset, there is some functionality for the common
flexi track that is not available for the fixed track asset.

The default red and green direction arrows of the flexi
track junctions are not available with the fixed track
object. The fixed track object may be raised or lowered
and placed on a slope. Operation of the turnout using
the mouse will only operate one trigger or animation.
Multiple operations such as double slip junctions should
be possible by scripting.

The in-built example asset in TRS2006 has been
constructed with a main default mesh consisting of
the fixed rails and ballast, the moveable blades are a
separate animated mesh connected to an attachment
point in the main mesh, and a separate lever mesh also
connect to an appropriate attachment point either to the
left or right of the default mesh.

In the TRS2006 in-built example, the red and green
arrows have been simulated using an arrow texture with
some transparency, with rotating animation, and attached
to the lever attachment points. By amending the config.txt
file, the arrows and the levers may be deleted or replaced
by other suitable meshes.

platform

mesh cage/cage.im
anim cage/anim.kin
use-parent-bounds 1

Version 3.0   384   Trainz Railroad Simulator - The Content Creator’s Guide

To define the attached track in attached-track container,
attachments a.track0a and a.track0b are common to both
track tag lists.

The vertices are listed as:

for the curved track0
	 0 a.track0a
	 1 a.track0b
	 2. a.track0c
	 3 a.track0d
	 4 a.track0e

and for the straight track1
	 0 a.track0b
	 1 a.track1a
	 2 a.track1b

The diagram in the column to the right shows the
positioning of:

• the various track attachments (referenced in the
attached-track container);

• the helper point b.r.blade for the animated blades; and

• the switch lever attachment, a.lever0, called the
junction-vertex tag in CCP, and the lever mesh,
referenced by the junction-lever-mesh tag in CCP.

For convenience, the b.r.blade is placed on the origin,
and is also the helper for the default mesh (the fixed parts
of the turnout).

For examples of the attributes and tags required for Fixed
Track assets, refer to Kind Fxed Track Containers, Tags
and Examples in Chapter 6 and Chapter7.

Note that in this example, actual meshes for the ballast
and shape of the junction track have been created in
3dsmax/gmax. This mesh will show in the Surveyor
preview window, and a separate referenced preview
mesh is not required.

Use a preview mesh where track is called up between
attachment points and no actual mesh is used, the asset
mesh is too large to be a true representation in the
preview window (airport model), or the mesh used does
not show a recognisable preview.

a.track1a

Y

X a.track0e

a.track0a

a.track1b

a.track0d

a.track0b

X

X

Y

Y

Y

Y

X

X

Y

X

a.track0cX
Y

a.track0b is the common
track attachment point. The
curved track may require
more attachment points then
the straight track, to define
the curve shape.

Note the Y axis at the end
attachments must point
outwards and be aligned
with the track entrance or
exit direction.

CHUNKY MESH TRACK
Chunky mesh track is an asset that uses a default inbuild
mesh. The creator does not have to construct a mesh in
3dsmax or gmax.

The cross sectional track and ballast shape of the mesh
is pre-defined by the diagram on the next page.

A 128 by 128 pixel tga file is used for the texture. This
generally includes the ballast, ties and a larger rail
section texture on the right of the graphic. Because
the shape is defined by geometric proportions, the
approximate equivalent dimensions measured in pixels is
shown in the chunky_info texture file data shown below.
This is approximate due to rounding of values to whole
pixels. For additional information on using the Kind, reefer
to Page 123.

Version 3.0   385   Trainz Railroad Simulator - The Content Creator’s Guide

chunky_info
These values (in metres) define the shape of the mesh
created for the track. See drawing below:

chunky_info A, B, C, D, E, F, G
chunky_info 0, 2, 1.2, 0.2, 0.85, 0.3, 0.7

chunky_info texture file

The texture file with the track texture on the left and a rail
texture on the right is 128 x 128 uncompressed tga, and
may have an alpha layer. The texture is mapped to the
mesh shape above using the values in the drawing below,
as fractions of the 128 pixel width.

0.01 0.225 0.525 0.74 0.75 0.83 0.91 0.99

A

D

F

B

G

E

0,0,0 (Origin)C
D

+0
.0

5m

0.01

0,0,0 (Origin)

0.225 0.525
0.74

0.75

0.83 0.91

0.990.750.99

0.910.83

Fraction 0.01 0.225 0.525 0.74 0.75 0.83 0.91 0.99

Pixels 1 29 67 95 96 106 117 127

SPLINES
Splines have a number of tags that have special effects in
Trainz, and alos need to be constructed in a certain way
in 3dsmax or gmax.

For example, the effect of the following tags are explained
in the diagrams:

upright 0
This effects how vertical the objects in the spline are, for
example a row of poles:

0 = the poles will be placed at right angles to the slope of
the ground.

1 = the poles will be truly vertical regardless of the ground
slope.

bendy
Switches how track is bent on corners, set as 1 allows
the mesh to be deformed as the spline is bent around
corners.

Notes: bendy and upright have a visible effect for Kind
Track splines, see diagram below. For Kind Bridge or
Tunnel, the splines show as in bendy 1, bendy 0 has
no visual effect. However, bendy 1 should always be
entered in the config.txt file for bridge and tunnel Kinds,
as the tag improves handling of the spline and Trainz
performance .

	 Bendy 1		 Bendy 0

	 Upright 1		 Upright 0

length and endlength

A spline may be made by specifying a length value in the
config.txt file. To add a different model at the start or end
of the spline, Initiators and Terminators are used.

Initiator
Name of model to use at start of bridge, placed in sub
folder with same name.

Version 3.0   386   Trainz Railroad Simulator - The Content Creator’s Guide

The initiator or terminator is a fixed length and the main
spline model repeats as in the diagram above.

In 3dsmax/gmax, the initiator, terminator and spline
models must be constructed starting on the origin and
extending in the negative Y axis direction. The top view in
the diagram shows the correct placement and dimensions
L1 or L.

The initiator may be rotated 180 degrees to create a
terminator model, if required.

Attachment points will be automatically generated in
Trainz at ground level. The model heights need to be
adjusted in 3dsmax/gmax so a road or track will connect
at the correct levels.

origin

initiator/terminator length “L1”,
or spline length “L”

3dsmax/gmax Top view

Y

 X

origin

3dsmax/gmax Front view

Z

 X

ground level
in Trainz

terminator
Name of model to use at the end of the bridge, placed in
a sub folder with same name.

length
Length of the main spline track segment in meters.

endlength
Length in meters of the initiator and terminator models.

initiator “L1” spline “L” spline “L” terminator “L1”

TRAINZCLASSICOPTIONS FILE

The trainzclassicoptions.txt file specifies a number of
settings for Trainz, and for a default installation of Trainz,
it is found in the C:\Program Files\Auran\TC directory. It is
a standard text file and may be edited.

1. As a creator, you may have an asset placed in a map,
and you would like to find the creator for that asset.

While the asset name may be shown in the Surveyor
menu and then the item located in CMP, it is sometimes
useful to have the kuid of the asset displayed in the
bottom right corner of the Surveyor screen when you
select the asset, (use the get tool in the Surveyor menu
for that object type).

By adding the following line to the trainzclassicoptions.
txt file, the kuids of a placed and selected object will be
displayed in Surveyor:

-showkuids

2. When testing a traincar asset or track configuration in
Driver, sometimes it is helpful if the locomotive moves at
a faster speed than normal. This is achieved by adding
the following line to the trainzclassicoptions.txt file.

-debug

In Driver, use the arrow keys or speed dial to set the
speed and direction, then hold down the Shift key. The
train will move around the track at high speed.

3. When creating, Trainz has to be loaded regularly
to test the models. To speed up loading time, you can
disable the introduction screens by entering the following
line in the trainzclassicoptions.txt file:

-intro=disable

Don’t forget to start the commands with a hyphen (-) and
save the file.

4. To determine the coordinates for the viewpoints to be
used for a cabin cameralist, six valkues are required:
0,0,0,0,0 =left/right, front/back, up/down, yaw, pitch

To determine these variables, add the following line to the
trainzclassicoptions.txt file.

-freeintcam

Pan around the interior in Driver, using arrow keys and
mouse. Viewing co-ordinates are displayed at the bottom
left of the screen. Make sure you include any negative
sign for coordinates where appropriate when entering
them in CCP for the config.txt file.

VIEWPOINTS IN SURVEYOR

If you wish to move around easily in Surveyor, to take
a screen shot for instance, there are two keyboard
functions that are useful.

In TRS2006, hold down the Alt key and type either u or y

Version 3.0   387   Trainz Railroad Simulator - The Content Creator’s Guide

on the key board.

Alt u - this allows you to move the viewpoint around
the scenery to get in closer, or to frame a section for a
screenshot. Use the keyboard scroll arrow keys and the
Page Up and Page Down keys to move and zoom.

This is the most useful, as you can move anywhere, and
the compass point and menus are removed from the
view, for a clean screenshot.

Alt y - this allows you to walk around the scenery at
ground level, the height is not adjustable.

Since the menus are removed, this is a mode only for
viewing or taking a screenshot. Press the Esc key to exit
either mode,

Note: in TRS2004 these commands were Alt fly and Alt
walk (typing the individual letters while holding the Alt key
down).

To take a screen shot press the Print Screen key.
The captured image is pasted to the clipbpoard and
also placed in the C:\Program Files\Auran\TRS2006\
ScreenShots directory as a .tga image (for a default
installation of Trainz).

When you initially install Trainz you may have to create
the Screenshots directory.

The .tga image size depends on the set resolution of your
screen. The .tga file is quite large, preserving the best
quality. You should convert the images to a .jpg file for
uploading to the forum, to reduce the image transfer size.

Version 3.0   388   Trainz Railroad Simulator - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 9
Uploading to the Download Station

The purpose of this chapter is to familiarise users with the new Uploading and Content Distribution
procedures made available by Content Creator Plus.

The Download Station combined with CMP makes it easy to retrieve assets and maps for TC. Asset
dependencies are gathered automatically when downloading, and installed in TC. Assets with missing
dependancies can be frustrating, when they are not included on the Download Station, and we are sure you
would understand if we ask that creators upload their assets to assist others to easily find useful models, in
one location.

The aim of CMP and CCP is to have fully functional and correct assets in Trainz. Errors in asset files for
previous builds have created frustration for users. With CCP we now have a utility to eliminate as many
errors and problems as possible, and therefore we ask that the following procedures be used.

For all TC (trainzbuild 2.7) assets, they must be checked using CCP before uploading to the Download
Station. This will show any errors that may then be corrected, and format the files suitable for the Download
Station.

While assets from prior builds may be imported into TC and appear to function correctly, if they are to be
made into a build 2.5 asset for upload, they must be loaded into CCP and a processed (and corrected)
config.txt file saved.

CCP must be used to create the upload package.

Version 3.0   389   Trainz Railroad Simulator - The Content Creator’s Guide

The Trainz Download Station
With the introduction of Content Manager Plus (CMP),
many aspects of the upload process have been changed.

Unlike previous versions of Trainz, uploading and
downloading are now fully encapsulated within the
Content Manager Plus (CMP) program. Assets no longer
need to be manually packaged in order to be uploaded,
making the process much simpler.

To upload your content, you must have a valid Planet
Auran profile, with a registered version of Trainz. You are
also only able to upload your own custom content.

Steps to Upload

Verify Content is Error Free
Before uploading content it must be verified and found
error-free; a process which is rigorously enforced by the
CMP program. This verification occurs automatically
during the upload process in order to ensure a high
standard of quality among download station assets.

Faulty assets are marked with a in CMP. If an asset
is faulty, it must be fixed with the Content Creator Plus
(CCP) program and verified as error free before it is able
to be uploaded.

Select Content to be Uploaded
Next, you must select the assets to be uploaded. You
needn’t select the dependencies of an asset you wish
to upload as these will be selected automatically by the
program.

If some of your dependant content has been created by
other authors, or if it is already present on the Downlaod
Station it will automatically be removed from your upload
list.

When a user downloads your content, any dependant
assets which are present on the Download Station will
also be queued for download.

Begin Uploading
Once you’ve selected the appropriate assets to be
uploaded, clicking the “upload” button will bring up the
Planet Auran License Agreement which details the legal
issues regarding uploaded content.

Accepting this agreement will upload your content to
the Download Station and open the Planet Auran “Your
Content” page.

This page is part of your personal Planet Auran profile
and allows you to manage your online content at any
time.

You can access this section separately by visiting the
Auran website and following the “Planet Auran” link.

The “Your Content” section is divided into the following
areas:

Upload Content: You needn’t utilize this section as
CMP now handles the entire upload process. It is
recommended that you only use CMP to upload TC
assets.

Unprocessed: The “unprocessed” section shows the
files you have uploaded which have not yet passed
through the automated checking process.

After uploading an asset via CMP you will find it in this
section. Any files you upload using CMP will be packed
into an “upload.cdp” file automatically. If you upload
many files in one instance, they will be compiled into a
single file before they are processed online.

Files are usually processed daily and will remain in this
section until they are either verified as valid or rejected.
If you have uploaded a file and decide that you no longer
wish for it to be processed, you can mark the offending
upload as “do not process”. The file will remain in this
area should you change your mind, and will be purged at
the end of the day.

Preview Area: The preview area acts as a temporary
‘holding bay’ for previewing and testing your content
before it is submitted for approval. The main features of
the Preview Area are as follows:

a. You can review and approve your own content before
the final approval process.

b. You can send a link to your content to others for testing
purposes. Only you have initial access as the content
is not publicly available until you submit the content for
approval, and approval is granted.

c. You can re-check all the Download Station pack
information before final approval, i.e. Pack contents,
category, obsoletes, descriptions etc.

d. You may have multiple revision uploads for assets of
the same KUID.

e. You may delete the content before it is made publicly
available.

Important note:

Version 3.0   390   Trainz Railroad Simulator - The Content Creator’s Guide

Preview Area content can only be held for 4 weeks since
last revision. All testing/revisions must be done within this
time.

If you have (say) 4 assets for upload - A locomotive, an
engine file, a bogey and a pantograph, and you only
update ONE of these assets, the other 3 are still on the
original 4 week period.

Waiting Area: The waiting area section houses that
content which has successfully passed through the
automated checks made by the Download Station system
and is awaiting visual confirmation from internal Auran
staff. This is done for a number of reasons, including:

- Verifying that the name and description are valid and
appropriate

- Verifying that the correct category is selected

- Verifying that the thumbnail image is visually acceptable

You will receive an email to indicate if your content has
been approved or declined. If approved, the content will
be available on the Download Station approximately 8
hours after the email is sent.

Your Content: The “Your Content” section shows your
content which is currently available for download on the
Trainz Download Station.

Download Station Checks
If your content fails any of the following checks, the
content will be removed and you will be notified:

- File/s were extracted successfully.

- Compares the number of files to the number processed.

- Ensures that the User ID of the content belongs to the
user uploading the content.

- If content was uploaded via a Group member, it checks
that the User ID belongs to that Group.

- That the KUID is valid.

- Name for minimum length of 3 characters and no swear
words.

- Description is present and free of swear words. If
updating content, it checks that the content being
updated is the latest version and not a previous version.

- The Region / Country codes are valid.

- The Eras are valid.

- Description for maximum length of 2048 characters, if
over 2048, description is truncated.

- Name for maximum length of 64 characters, if over 64
the name is truncated.

- Valid thumbnail tags and accompanying image are
included.

- File size is below the maximum. The maximum file size
will be stated on the Download Station upload page as
this may be subject to revision.

Packaging Files (CDP’s)
You may wish to distribute your content through means
other than the Trainz Download Station. To facilitate this,
CMP allows you to export CDP “package” files (which
experienced users may already be familiar with).

Like the upload process, when packaging CDPs you can
only package your own custom content for distribution.

To create a package with CMP:

- Select the items of content you wish to add.

- Right Click and select “Save to CDP” (or press CTRL
SHIFT D)

Save the resulting CDP file to a location of your choice.

The CDP format is intended for content distribution
purposes and doesn’t automatically include any
dependencies associated with the assets you are
packing.

If you wish to store backups of your work then it is
recommended that you use the “Archive” CMP feature
instead (procedures are mentioned in the CMP help file).

Version 3.0   391   Trainz Railroad Simulator - The Content Creator’s Guide

Trainz Railroad Simulator 2006

CHAPTER 10
Particle Effects and Soundscripts

TRS gives you the ability to add customizable smoke,
steam, vapor and similar effects to your custom trains
and scenery objects. For simplicity, this document will
refer to this set of effects simply as “smoke effects”.

There are two ways of setting up particle effects (pfx) for
TRS mesh assets.

1) Setup all the settings and variables in the config.txt file
using CCP, or

 2) Use a pfx tool called Twinkles PFX to set pfx
parameters and reference it via the config.txt.

It is assumed the reader is already familiar with creating
and exporting models from either 3dsmax or gmax.

Method
Smoke effects are added to custom trains and scenery
objects in two steps:

1.	 Add attachment points to the original model.
2.	 Add smoke tags to the object’s config.txt file.

Adding Attachment Points
Attachment points are added to the original model using
3dsmax or gmax wherever a smoke effect is desired. See
figures 1 and 2 below to locate the Insert Point tool. After
a point is inserted, it must be given a name with a prefix
of ‘a.’ to identify it as an attachment point, e.g. a.smoke,
a.steam, a.safety, a.mist, etc.

The attachment point should also be rotated so that its Y
axis is pointing in the direction that smoke particles will be
emitted. (Ensure Axis Tripod is checked to see the point’s
orientation - use the Hierarchy - Affect Pivot Only option

3dsmax insert point gmax insert point

INTRODUCTION

in 3dsmax or gmax.) When finished, save and export the
model as per normal.

Make sure you rotate the point itself and not the axis
when aligning the point. Unselect the Hierarchy - Affect
Pivot Only option before rotating.

Version 3.0   392   Trainz Railroad Simulator - The Content Creator’s Guide

ADDING SMOKE TAGS
Smoke blocks are added to an object’s config.txt file to
describe each smoke effect that will be created on the
object. Smoke blocks are named smoke# (where # is
a number) and are sequentially numbered starting at 0.
See Example 2.

Smoke blocks have two sections: main and sequence
properties. Main properties describe the attributes that
do not change based on the mode’s key. Sequence
properties describe a set of one or more phases/periods
in the smoke emission sequence.

A smoke block has the following format:

smoke#
{
 mode		 time | speed | anim | timeofday | stack |
lowpressurevalve
 attachment	 <name of attachment point>
 color		 <red>, <green>, <blue>, <opacity>
 accel		 <x>, <y>, <z>
 loop		 <n>
 start		 <n> [, <n>] …
 period	<n> [, <n>] …
 rate		 <n> [, <n>] …
 velocity	 <n> [, <n>] …
 lifetime	 <n> [, <n>] …
 minsize	 <n> [, <n>] …
 maxsize	 <n> [, <n>] …
}

Notation:
# 	 Is a number, starting with 0
[] 	 Means optional,
… 	 Indicates a variable number of parameters,
| 	 Means or.
{ }	 These brackets define the smoke container limits,
and are generated by CCP when the config.txt file is
saved.

Breakdown:
<name of attachment point>
Is the name of an attachment point in the model. e.g.
a.smoke0, a.smoke1, a.steam, a.chimney etc

<red>, <green>, <blue>
Are numbers from 0 to 255 describing the intensity of that
color component.

<opacity>
Is a number from 0 to 255 describing the effect’s initial
opacity / transparency.

<x>, <y>, <z>
Are vector components pointing in the direction of the
sum of all forces affecting this smoke effect. Essentially,
<z> describes gravity, and <x>, <y> describe the force of
wind.

<n>
Is a decimal number.

Refer also to Chapter 5 for additional explanations.

MAIN PROPERTIES:
mode
Describes the mode or type of this smoke effect. This
affects how start and period are interpreted. Default is
time. In all modes, period can be set to -1 (default) to
imply the phase is active until the next phase begins.

1. If set to time, start is a set of time values in seconds
after the creation of this effect’s parent object when
this phase of the effect will start. Period is the duration
of time this effect will remain active. Scenery objects
currently only support time mode.

2. If set to speed, start is a speed in meters per second
(m/s) and period is not used. (Note: 1 m/s = 3.6 km/hr.)
All other sequence attributes (rate, velocity, lifetime,
minsize, maxsize) are interpolated so there are smooth
transitions between phases. See smoke3 in Example 2.

3. If set to anim, start is a value from 0.0 to 1.0 which
describes the start time into the object’s animation
cycle. period is a value from 0.0 to 1.0 that describes
the duration over which the effect is active. start + period
must not exceed 1.0.

4. If set to timeofday, start is a value from 0.0 to 1.0
which describes the time of day when this effect will start.
Values range as follow:
0 - midnight, 0.25 - 6am, 0.5 - midday, 0.75 6pm, 1.0 -
midnight.

The following modes are suitable for use with Twinkles
generated effects, as a .tfx file.

5. If set to stack, this allows the use of two tags:

inherit-velocity - range 0 to 1, this is to tell the particle
that it will inherit the velocity of the emitter. This can have
different effects depending on the verlocity and direction
of the locomotive.

scale - range 0 to 1, the scale of the emitter or the scale
(rate) of the particles. Small values increase the precision
of the effect with regards to regulator usage.

A typical layout for this mode is as follows:

smoke0
{
attachment “a.smoke0”
mode “stack”
file “chimneymoving.tfx”
color 0,0,0,0
enabled 1
inherit-velocity 0.0
scale 0.98
}

PFX FROM CONFIG.TXT

Version 3.0   393   Trainz Railroad Simulator - The Content Creator’s Guide

6. If set to lowpressurevalve, the effect is turned on and
off in relation to the boiler pressure in the engine spec
for the locomotive. When the maximum boiler pressure
is reached when driving, the effect will be activated until
the boiler pressure drops below the specified maximum
pressure. A typical layout for this mode is as follows:

smoke4
{
attachment “a.smoke3”
mode “lowpressurevalve”
file “safetyvalve.tfx”
color 0,0,0,0
enabled 1
}

7. If set to anim, when placing an attachment for a
whistle steam effect the attachment must be named
a.whistle for the effect to turn on when the whistle key is
pressed. A typical layout for the effect is shown below:

smoke7
{
attachment “a.whistle”
mode “anim”
file “whistle.tfx”
color 0,0,0,0
enabled 1
}

color
The color of the smoke effect. e.g. ‘150,150,150,255’
for dark smoke; ‘255,255, 255,150’ for steam;
‘150,150,255,255’ for water. Default is ‘255,255,255,255’.

accel
Acceleration. A vector pointing in the direction of the sum
of all forces affecting this smoke effect. Essentially, <z>
describes gravity, and <x>, <y> describe the force of
wind. Default is 0,0,0.

loop
Time in seconds to loop the smoke sequence. Only valid
if mode is set to time. Not functional in TRS.

SEQUENCE PROPERTIES:

The following properties can be set to a single value or
a set of values for multiple phases of the smoke effect.
Please note that phases must not overlap as only one
phase can be active at any one time. If a property has
a set of values, it must be the same length as start. If a
single value is given then it will be used for all phases of
the effect. See Example 1 using multiple phases.

start, period
See mode.

rate
The rate of emission in particles per second for modes
time, speed, and timeofday, or the number of particles to

emit over the animation period for anim mode, default 4.

velocity
The initial speed of emitted smoke particles. Default is 1.

lifetime
Time in seconds that smoke particles exist for. Default is
3.

minsize
Start size of smoke particles. Default is 0.

maxsize
End size of smoke particles. Default is 3.

In general, it is better to use a low emission rate with
large particles (ie min/max size) than using a high
emission rate with small particles to reduce the impact on
frame rate. Smoke effects can be quite stunning but are
best used in moderation.

Try experimenting with the different values to get a feel of
how they affect the smoke effects. Many different types
of effects other than smoke are possible with only a little
imagination, e.g. waterfalls, mist, toxic green clouds, fire
by using a few effects at the same position to simulate
the smoke and flames etc.

Using a model of a factory with a chimney, an attachment
point called ‘a.smoke’ is placed at the top of the chimney
with it’s Y axis pointing up. The factory is then exported
as an indexed mesh (.im file type) to the Trainz\world\
custom\scenery\factory folder and the model’s art assets
are copied to the same location.
The following smoke container entries in the config.txt file
will cause smoke to come out of the factory’s chimney
between 6am and midday and 3pm and 6pm.

EXAMPLE 1 - ����������������������� SMOKE FROM A FACTORY’S
CHIMNEY

Config.txt

kuid <KUID2:####:#####:1>
region Britain
kind scenery
type Industrial
light 1

smoke0
{
 attachment a.smoke
 mode timeofday
 color 150,150,150,250
 accel 1,0.3,0
 start 0.25, 0.5
 period 0.25, 0.125
 rate 8
 velocity 3
 lifetime 5
 minsize 0.5
 maxsize 2
}

Version 3.0   394   Trainz Railroad Simulator - The Content Creator’s Guide

EXAMPLE 2 - STEAM TRAIN

An animated steam train model that requires four smoke
points may be set up as follow:

• Dark smoke from the main chimney stack that is
dependant on the trains velocity (a.smoke, Y axis pointing
up),

• A constant steam trail from a small safety pipe on top
(a.steam.safety, Y axis pointing up),

• 2 steam trails on each side of the train that alternately
expel steam keyed to the animation of the trains wheels
(a.steam.l, a.steam.r, Y axis pointing outwards).

The model is exported as an indexed mesh (.im file type)
to ‘Trainz\world\custom\ trains\steam_train\steam_train_
body’ folder and the model’s art assets are copied to the
same location. Please see the custom content creation
guide for more information on creating your own custom
trains. The following config.txt file in the parent folder
will generate the desired smoke effects. Note the given
KUID is also invalid and should not be used in your own
context.

For example purposes, the settings of an F7 train have
been used.

Please refer to examples and detailed explanations of
additional tags in the earlier chapters of this document.

kuid <KUID2:####:#####:1>

kuid <KUID2:####:#####:1>
kind traincar
bogey 0
engine 1
name Steam Train
mass 100000

enginespec <KUID:###:#####>
enginesound <KUID:###:#####>
hornsound <KUID:###:#####>
interior <KUID:###:#####>

smoke0
{
 attachment a.steam.l
 mode anim
 color 255,255,255,150
 start 0
 period 0.4
 rate 2
 velocity 1
 lifetime 2
 minsize 0.05
 maxsize 1
}

smoke1
{
 attachment a.steam.r
 mode anim
 color 255,255,255,150
 start 0.5
 period 0.4
 rate 2
 velocity 1
 lifetime 2
 minsize 0.05
 maxsize 1
}

smoke2
{
 attachment a.steam.safety
 mode time
 color 255,255,255,150
 rate 2
 velocity 1
 lifetime 2
 minsize 0.05
 maxsize 1
}

smoke3
{
 attachment a.smoke0
 mode speed
 color 100,100,100,200
 start 0,10,20,30
 rate 3,5,7,9
 velocity 3,4,5,5
 lifetime 4,3,2.5,2
 minsize 0.3
 maxsize 2
}

Config.txt

Twinkles pfx is a particle effects editor.

Twinkles was designed for the creation and configuration
of 3D effects for use in 3D games. Twinkles is game
independent and requires a TRS effects plugin to convert
it’s particle emitters into TRS format, a .tfx file.

Once installed, adding an effect in Twinkles allows you to
add and configure the TRS particle emitter effect.

Full documentation is supplied with Twinkles PFX as is
the TrainzPFX plugin.

Examples of smoke block configuration for TRS assets
are available from the Twinkles PFX User Guide.doc
which forms part of the Twinkles install.

A number of tutorials are available from forum links,
explaining how to use twinkles effects. See also Page
392 for some uses of the .tfx file with the mode options.

Download Twinkles from the following site:
http://www.auran.com/TRS2004/downloads/contentcreation/
Twinkles.zip

TWINKLES PFX

http://www.auran.com/TRS2004/downloads/contentcreation/Twinkles.zip
http://www.auran.com/TRS2004/downloads/contentcreation/Twinkles.zip

Version 3.0   395   Trainz Railroad Simulator - The Content Creator’s Guide

SOUND SCRIPTS

Soundscripts give ambient or directional sounds to
objects. They cannot be used on track, bridge or spline
objects. Refer to the new tracksound container options to
change track sound on a bridge or tunnel for example.

Wav files should be located within the same directory as
the config.txt file. Examples as follows:

MOJUNCTION
Config.txt
kuid <KUID:###:#####>
kind mojunction
region Australia
trackside 2
light 1
mesh-table
{
 mode0
 {
 mesh lever1/lever1.im
 auto-create 1
 }
 mode1
 {
 mesh lever2/lever2.im
 }
}
soundscript
{
 toggle
 {
 trigger toggle
 distance 5, 100
 nostartdelay 1
 repeat-delay 1
 sound
 {
 points.wav
 }
 }
}
etc.

PEOPLE CROWD
Config.txt :
kind scenery
region Australia
kuid <KUID:###:#####>
type People

soundscript
{
 daysingle
 {
 repeat-delay 0
 distance 3,150
 sound
 {
 crowd_1.wav
 }
 }
}
etc.

MAP
Config.txt
kind map
kuid <KUID:###:#####>
soundscript
{
 morning
 {
 ambient 1
 value-range 1, 0.1
 volume 0.3
 sound
 {
 ctry_day_1.wav
 }
 }
 night
 {
 ambient 1
 value-range 0, 0.9
 volume 0.3
 sound
 {
 night_loop.wav
 }
 }
}
username Britain
workingscale 0
workingunits 0
water <KUID:-1:8009>
region Britain
etc.

THUNDERBOX
Config.txt
kuid <KUID:###:#####>
region Australia
light 1
kind scenery
type Residential

soundscript
{
 dayloop
 {
 repeat-delay 15,50
 distance 5, 50
 sound
 {
 strain_1.wav
 }
 }
}
etc.

Version 3.0   396   Trainz Railroad Simulator - The Content Creator’s Guide

Breakdown of Soundscripts:

repeat-delay
1 or 2 numbers (min, max, in sec) time to delay between
the end of the sound playing, and playing it again	
randomised between
(min .. max)

default min = 0	 default max = min

attachment
Attachment point on the object to which the sound is
attached.

Default: The sound will attach to the origin of parent
object (not used for ambient sound)

distance
2 numbers (meters)

1st number = the distance at which the sound is played at
100%

2nd number = The cut-off distance. Doesn’t affect the
volume of the sound default: 50m, 150m

sound
List of .wav files to play (randomly picked)

volume
Gain of the sound
Default 1.0 = 100%

ambient
0 or 1, default 0 is off

Ambient sounds have no 3D “position” and may be
stereo. Non-ambient (positional) sounds are positioned
on the object and must be mono - see attachment above

value-range
2 numbers, currently used only for day/night sound
effects.

Midnight is 0.5, midday = 0.0 or 1.0

Where the numbers are not the same, this sets the start
and end times for the sound to play.

Default 0,0 (off)

trigger
A trigger may be used in an event file (.evt) associated
with an animation. It plays at selected key frames of the
animation as defined in the event file. Sound files may be
triggered in this manner, and from scripting.

Used in the mojunction example (switch lever) the
“toggle” action is automatically triggered when the lever
is operated and the sound plays. The sound doesn’t play
until the trigger message happens, as a result of the lever
operating.

nostartdelay
0 or 1, default 0
If not set, the sound will have a short delay before
playing, this stops flanging (flanging is a really nasty
sound caused when several copies of the same sound
are played at once).

dayloop, daysingle, morning, night
These have no current function in Trainz and have only
been put in for user reference.

Each is a single word only. Do not use a space.

Please refer to examples and detailed explanations of
additional tags in the earlier chapters of this document.

HORN SOUNDS

Horn sounds are covered on Page 39, however it may
be found difficult to get a good horn or whistle sound that
can be looped. The sound files are:

•  horn.wav
‘Railyard’ hornsound (non-looping)

•  horn_loop.wav
The looping hornsound used in ‘Driver’.

•  horn_start.wav
The starting sound played before the looping hornsound
above.

•  idle 1.wav
Generally used for the bell sound (bell keystroke = b)

It is possible to put a very short (i.e. <0.5s) clip in as the
horn_start.wav and the whole whistle/horn sound clip in
as the horn_loop.wav. This allows the horn sound to still
be latching (i.e. only sounds for as long as the H key is
pressed), but the clip will be repeated after it is finished.

A period of silence (for 2 seconds or so) can be inserted
after the end of the clip so as to stop it repeating straight
away.

Horn Sound File Format

The file format for horn .wav sound files should be mono.
A 22050 (22 kHz) bit rate is sufficient. While Trainz can
handle a 44 kHz bit rate file, it does not improve the
sound quality in the game and doubles the size of the
sound file.

Refer also to Page 39 for additional explanation on the
use of sound files for locomotives.

Version 3.0   397   Trainz Railroad Simulator - The Content Creator’s Guide

appropriate Category Class for your item. Select the
Class from the CCP drop down menu box - only one
class may be selected for an asset.

Selecting a correct Category Class is important since
Trainz will allow users to use the Category Class as a
sort and selection criteria.

A	 MOTIVE POWER
AA	 Electric Multi-current
AC 	 AC Electric
AD 	 DC Electric
AE 	 Experimental or Special
AG 	 Gas Turbine
AH 	 Diesel Hydraulic
AL 	 Diesel & Diesel Electric
AM 	 Mammal
AS 	 Steam Loco & Tender
AT 	 Steam Tank

B 	 BUILDINGS & STRUCTURES
BC 	 Commercial (scenery non-functional)
BI 	 Industrial (scenery non-functional)
BH 	 Home & Residential (scenery non-functional)
BR 	 Railway (scenery non-functional)
BS 	 Special (e.g. military) (scenery non-functional)
BT 	 Traffic & Streetscape (scenery non-functional)
BU 	 Utility (incl. Civil buildings) (scenery non-functional)
BIN	 Industry asset with product processing 			
	 functionality
BPF	 Passenger Station with passenger processing 		
	 functionality
BPN	 Passenger Station (non-functional)
BB	 Buildable (Kind Buildable)
C	 CABEESE
CB 	 Brake van

CATEGORY CLASS

The Category Class is listed in the config.txt file of each
item of content.

The classes represent a standardized system for referring
to the various types of Locos, Rolling stock, Scenery,
Spline and Industry assets.

The Category Classes are:

Class “A” 	 Motive Power
Class “B”	 Buildings and Structures
Class “C” 	 Cabeese
Class “D” 	 Defence
Class “E” 	 Environment
Class “F” 	 Foliage
Class “G” 	 Ground
Class “H”	 Mesh
Class “I”	 Product
Class “J”	 Texture
Class “L” 	 Light Rail & Monorail
Class “M” 	 Maintenance Of Way
Class “O” 	 Organism
Class “P” 	 Passenger & Mail Cars
Class “R” 	 Railcars & Multiple Unit Sets
Class “S” 	 Splines
Class “T” 	 Track
Class “V” 	 Vehicles
Class “W” 	 Wayside
Class “X” 	 Freight Cars
Class “Y” 	 Maps and Scenarios
Class “Z” 	 Train Parts

Each Category Class may have a number of
subcategories as listed below. Please choose the most

Trainz Railroad Simulator 2004

CHAPTER 11
Appendix A - Classes and Codes

Version 3.0   398   Trainz Railroad Simulator - The Content Creator’s Guide

CC 	 Caboose

D 	 DEFENCE
DA 	 Military motive power
DE 	 Military experimental & special vehicles
DP 	 Military equipment - lab & personnel 			
	 vehicles
DX 	 Military equipment - freight

E 	 ENVIRONMENT
ES 	 Sky
EW 	 Water

F 	 FOLIAGE
FC 	 Cactii
FF 	 Flowers
FO 	 Orchards & Crops
FS 	 Shrub
FT 	 Trees

G 	 GROUND
GA 	 Arid
GL 	 Lush
GS 	 Seasonal

H 	 Mesh
HM 	 Mesh

I 	 PRODUCT
IC	 Container Category
IP	 Passenger Category
IB	 Bulkload Category
IL	 Liquid Category

J 	texture
JC	 Corona
JI	 Icon
JP	 Particle Effects Texture
JO	 Other Texture

L 	 LIGHT RAIL & MONORAIL
LS 	 Articulated train sets
LT 	 Trolleys, trams & streetcars
LM 	 Monorail vehicles

M 	 MAINTENANCE of WAY
MA 	 Camp vehicles
MB 	 Ballast cars
MC 	 Cranes/lifting
MD 	 Diagnostic vehicles (e.g. dynamometer)
ME 	 Instructional vehicles
MF 	 Fire vehicles
MI 	 Inspection vehicles
MT 	 Track vehicles (e.g. tamper)
MP 	 Snow ploughs
MS 	 Section cars (e.g. fairmont)
MX 	 Freight equipment (for MoW traffic)
MW 	 Weed spray

O 	 ORGANISM
OA 	 Animal Kingdom
OH 	 Human
OHD	 Locomotive Driver

P 	 PASSENGER & MAIL CARS
PA 	 Suburban/short haul (no W.C.)
PB 	 Baggage cars
PC 	 Coach/chair cars
PD 	 Dome cars
PH 	 Bar/cafeteria cars
PL 	 Lounge cars
PM 	 Mail cars
PO 	 Observation cars
PP 	 Power cars
PR 	 Buffet/dining/restaurant cars
PS 	 Sleeping cars
PU 	 Special cars (e.g. Gaming Cars)
PV 	 Private cars
PX 	 Composite passenger cars

R 	 RAILCARS & MULTIPLE UNIT SETS
RA 	 AC electric
RC 	 DC electric
RD 	 Diesel & diesel electric
RH 	 Diesel hydraulic
RP 	 Petrol
RS 	 Steam

S 	 SPLINES
SF 	 Fences
SR 	 Roads
SP 	 Platforms
SS 	 Structure
SV 	 Vegetation

T 	 TRACK
TB 	 Bridge
TR 	 Rails
TT 	 Tunnel
TF	 Fixed Track

V 	 VEHICLES
VA 	 Air
VL 	 Land
VS 	 Sea

W 	 WAYSIDE
WA 	 Signalling
WS 	 Trackside signage
WX	 Accessories

X 	 FREIGHT CARS

XA 	 Auto transporter
XAA 	 Open sides
XAB 	 Auto box car

XB 	 Box car/covered van
XBD 	 Dangerous goods
XBG 	 General service
XBI 	 Insulated

XF 	 Flat
XFA 	 Articulated
XFC 	 Intermodal
XFD 	 Depressed center

Version 3.0   399   Trainz Railroad Simulator - The Content Creator’s Guide

XFH 	 Heavy duty
XFM 	 General service

XG 	 Gondola/open wagon
XGB 	 Bottom dumping
XGC 	 Combination bottom/end/side dumping
XGE 	 End dumping
XGR 	 Rotary dumping
XGS 	 Side dumping
XGT 	 Covered

XH 	 Hopper
XHB 	 Bottom dumping
XHC 	 Combination bottom/end/side dumping
XHE 	 End dumping
XHR 	 Rotary dumping
XHS 	 Side dumping
XHT 	 Covered

XI 	 Foundry
XIB 	 Bottle/torpedo cars
XIT 	 Tipper/slag cars

XL 	 Livestock
XLA 	 Single deck
XLC 	 Multiple deck and convertible
XLH 	 Horse box

XR 	 Refrigerated
XRI 	 Ice chilled
XRM 	 Mechanically chilled

XS 	 Special
XSN 	 Novelty
XSU 	 Unclassified

XT 	 Tanker
XTA 	 Domeless
XTS 	 Single dome
XTM 	 Multiple dome

XV 	 Ventilated car/louvred van
XVG 	 General service
XVP 	 Produce service

Y 	 MAPS & SCENARIOS
YM 	 Map
YS 	 Scenario
YP	 Profile/Session
YR	 Rule
YD	 Driver Command
YH	 HTML-Asset

Z 	 TRAIN PARTS
ZB 	 Bogie/Truck
ZE 	 Enginespec
ZH 	 Hornsound
ZI 	 Interior
ZP	 Pantographs
ZS 	 Enginesound
ZX 	 PaintShed-Template

Version 3.0  4 00   Trainz Railroad Simulator - The Content Creator’s Guide

REGION CODES

Region codes are a single or multiple code that is
included in the config.txt file. The codes are used in
Trainz as a sort and selection criteria. For content that
exists in multiple areas, select approriate codes in CCP.

For example, a locomotive that was available in the
United States and Canada would be specified as follows:

category-region US;CA

The region codes that are recognized by Trainz are as
follows:

AD 	 Andorra
AE 	 United Arab Emirates
AF 	 Afghanistan
AG 	 Antigua and Barbuda
AI 	 Anguilla
AL 	Albania
AM 	Armenia
AN 	 Netherland Antilles
AO 	 Angola
AQ 	 Antarctica
AR 	 Argentina
AS 	 American Samoa
AT 	 Austria
AU 	 Australia
AW 	 Aruba
AZ 	 Azerbaidjan
BA 	 Bosnia-Herzegovina
BB 	 Barbados
BD 	 Bangladesh
BE 	 Belgium
BF 	 Burkina Faso
BG 	 Bulgaria
BH 	 Bahrain
BI 	 Burundi
BJ 	 Benin
BM 	Bermuda
BN 	 Brunei Darussalam
BO 	 Bolivia
BR 	 Brazil
BS 	 Bahamas
BT 	 Buthan
BV 	 Bouvet Island
BW 	Botswana
BY 	 Belarus
BZ 	 Belize
CA 	 Canada
CC 	 ocos (Keeling) Isl.
CF 	 Central African Rep.
CG 	Congo
CH 	 Switzerland
CI 	 Ivory Coast
CK 	 Cook Islands
CL 	 Chile
CM 	Cameroon
CN 	 China
CO 	Colombia
CR 	 Costa Rica

CS 	 Czechoslovakia
CU 	 Cuba
CV 	 Christmas Island
CY 	 Cyprus
CZ 	 Czech Republic
DE 	 Germany
DJ 	 Djibouti
DK 	 Denmark
DM 	Dominica
DO 	Dominican Republic
DZ 	 Algeria
EC 	 Ecuador
EE 	 Estonia
EG 	 Egypt
EH 	 Western Sahara
ES 	 Spain
ET 	 Ethiopia
FI 	 Finland
FJ 	 Fiji
FK 	 Falkland Isl.(Malvinas)
FM 	 Micronesia
FO 	 Faroe Islands
FR 	 France
GA 	 Gabon
GB 	 Great Britain
GD 	Grenada
GE 	 Georgia
GH 	Ghana
GI 	 Gibraltar
GL 	 Greenland
GP 	 Guadeloupe (Fr.)
GQ 	Equatorial Guinea
GF 	 Guyana (Fr.)
GM 	Gambia
GN 	Guinea
GR 	Greece
GT 	 Guatemala
GU 	Guam (US)
GW 	Guinea Bissau
GY 	 Guyana
HK 	 Hong Kong
HM 	Heard & McDonald Isl.
HN 	 Honduras
HR 	 Croatia
HT 	 Haiti
HU 	 Hungary
ID 	 Indonesia
IE 	 Ireland
IL 	 Israel
IN 	 India
IO 	 British Indian O. Terr.
IQ 	 Iraq
IR 	 Iran
IS 	 Iceland
IT 	 Italy
JM 	 Jamaica
JO 	 Jordan
JP 	 Japan
KE 	 Kenya
KG 	 Kirgistan Ex-USSR
KH 	 Cambodia
KI 	 Kiribati
KM 	Comoros

Version 3.0  4 01   Trainz Railroad Simulator - The Content Creator’s Guide

KN 	 St.Kitts Nevis Anguilla
KP 	 Korea (North)
KR 	 Korea (South)
KW 	Kuwait
KY 	 Cayman Islands
KZ 	 Kazachstan
LA 	 Laos
LB 	 Lebanon
LC 	 Saint Lucia
LI 	 Liechtenstein
LK 	 Sri Lanka
LR 	 Liberia
LS 	 Lesotho
LT 	 Lithuania
LU 	 Luxembourg
LV 	 Latvia
LY 	 Libya
MA 	 Morocco
MC 	Monaco
MD 	Moldavia Ex-USSR
MG 	Madagascar
MH 	Marshall Islands
ML 	 Mali
MM 	Myanmar
MN 	Mongolia
MO 	Martinique (Fr.)
MR 	Mauritania
MS 	Montserrat
MT 	 Malta
MU 	Mauritius
MV 	Maldives
MW 	Malawi
MX 	Mexico
MY 	Malaysia
MZ 	 Mozambique
NA 	 Namibia
NC 	 New Caledonia (Fr.)
NE 	 Niger
NF 	 Norfolk Island
NG 	Nigeria
NI 	 Nicaragua
NL 	 Netherlands
NO 	Norway
NP 	 Nepal
NR 	 Nauru
NT 	 Neutral Zone
NU 	 Niue
NZ 	 New Zealand
OM 	Oman
PA 	 Panama
PE 	 Peru
PF 	 Polynesia (Fr.)
PG 	 Papua New Guinea
PH 	 Philippines
PK 	 Pakistan
PL 	 Poland
PM 	St. Pierre & Miquelon
PN 	 Pitcairn
PT 	 Portugal
PR 	 Puerto Rico (US)
PW 	Palau
PY 	 Paraguay
QA 	Q atar

RE 	 Reunion (Fr.)
RO 	Romania
RU 	 Russian Federation Ex-USSR
RW 	Rwanda
SA 	 Saudi Arabia
SB 	 Solomon Islands
SC 	 Seychelles
SD 	 Sudan
SE 	 Sweden
SG 	 Singapore
SH 	 St. Helena
SI 	 Slovenia
SJ 	 Svalbard & Jan Mayen Is
SK 	 Slovak Republic
SL 	 Sierra Leone
SM 	San Marino
SN 	 Senegal
SO 	 Somalia
SR 	 Suriname
ST 	 St. Tome and Principe
SU 	 Soviet Union
SV 	 El Salvador
SY 	 Syria
SZ 	 Swaziland
TC 	 Turks & Caicos Islands
TD 	 Chad
TF 	 French Southern Terr.
TG 	 Togo
TH 	 Thailand
TJ 	 Tadjikistan Ex-USSR
TK 	 Tokelau
TL 	 East Timor
TM 	 Turkmenistan Ex-USSR
TN 	 Tunisia
TO 	 Tonga
TR 	 Turkey
TT 	 Trinidad & Tobago
TV 	 Tuvalu
TW 	Taiwan
TZ 	 Tanzania
UA 	 Ukraine
UG 	Uganda
UK 	 United Kingdom
UM 	US Minor outlying Isl.
US 	 United States
UY 	 Uruguay
UZ 	 Uzbekistan Ex-USSR
VA 	 Vatican City State
VC 	 St.Vincent & Grenadines
VE 	 Venezuela
VG 	 Virgin Islands (British)
VI 	 Virgin Islands (US)
VN	 Vietnam
VU 	 Vanuatu
WF 	Wallis & Futuna Islands
WS 	Samoa
YE 	 Yemen
YU 	 Yugoslavia
ZA 	 South Africa
ZM 	 Zambia
ZR 	 Zaire
ZW 	Zimbabwe

Version 3.0  4 02   Trainz Railroad Simulator - The Content Creator’s Guide

ERA CODES
Era codes are used in Trainz as a sort and selection
criteria. For content that exists in multiple eras list each
era in CCP. Multiple choices appear on one tag line in the
config.txt file.

For example, a locomotive that was available in the
1960s and 1970s would be specified as follows:

category-era 1960s;1970s

The era codes that are recognized by TRS are as follows:
	 1800s
	 1810s
	 1820s
	 1830s
	 1840s
	 1850s
	 1860s
	 1870s
	 1880s
	 1890s
	 1900s
	 1910s
	 1920s
	 1930s
	 1940s
	 1950s
	 1960s
	 1970s
	 1980s
	 1990s
	 2000s
	 2010s

Version 3.0  4 03   Trainz Railroad Simulator - The Content Creator’s Guide

Appendix B - Kinds and Containers

This is a tabulation showing the Kinds and their dependant Containers, as a quick reference. Please refer
to Chapter 6 for a complete description of the Containers and dependant Tags used in TC.

Version 3.0  4 04   Trainz Railroad Simulator - The Content Creator’s Guide

 Kinds

Containers A
ct

iv
ity

B
eh

av
io

r

B
og

ey

B
rid

ge

B
ui

ld
ab

le

C
hu

nk
y-

Tr
ac

k

D
ou

bl
e-

Tr
ac

k

D
riv

er
ch

ar
ac

te
r

D
riv

er
co

m
m

an
d

En
gi

ne

En
gi

ne
so

un
d

En
vi

ro
nm

en
t

Fi
xe

d
Tr

ac
k

G
ro

un
dt

ex
tu

re

H
or

ns
ou

nd

H
tm

l-a
ss

et

In
du

st
ry

In
te

rio
r

Li
br

ar
y

M
ap

M
es

h

M
es

h-
R

ed
uc

in
g-

Tr
ac

k

allowed categories ü ü ü

allowed products list ü ü ü

animation effect ü ü ü ü ü ü

attached track ü ü ü

attached trigger ü ü ü

attachment effect ü ü ü ü ü ü

attachment points ü ü ü

bogeys

cameralist ü

conflicts with queues ü ü ü

consists ü ü

corona effect ü ü ü ü ü ü

driver-settings ü

dynamic brake ü

effects ü ü ü ü ü ü

extensions ü

flowsize ü

junction-vertices ü

kuid table ü

levels

lights

mass ü

mesh table ü ü ü ü ü ü

motor ü

name effect ü ü ü ü ü ü

notches ü

obsolete-table ü

pressure ü

privileges ü

processes ü

queues ü ü ü

signals

smoke ü ü ü

sound ü ü ü ü ü

soundscript ü ü ü ü ü

steam

steam power

string table cn, cz, de,
fr, if, pl, ru

ü ü

texture-replacement
effect

ü ü ü ü ü ü

textures

throttle power ü

thumbnails ü

tracksound ü ü ü ü ü

vertices ü ü ü

volume ü

world origin ü

Version 3.0  4 05   Trainz Railroad Simulator - The Content Creator’s Guide

 Kinds

Containers M
O

C
ro

ss
in

g

M
O

Ju
nc

tio
n

M
O

Si
gn

al

M
O

Sp
ee

dB
oa

rd

Pa
in

ts
he

d-
Te

m
pl

at
e

Pa
in

ts
he

d-
Sk

in

Pa
nt

og
ra

ph

Pr
od

uc
t

Pr
od

uc
t-C

at
eg

or
y

Pr
ofi

le

R
eg

io
n

Sc
en

er
y

Sc
en

er
y-

Tr
ac

ks
id

e

St
ea

m
-E

ng
in

e

Te
xt

ur
e

Te
xt

ur
e-

G
ro

up

Tr
ac

k

Tr
ac

ks
ou

nd

Tr
ai

nc
ar

Tu
nn

el

Tu
rn

ta
bl

e

W
at

er
2

allowed categories ü ü ü ü ü ü ü ü

allowed products list ü ü ü ü ü ü ü ü

animation effect ü ü ü ü ü ü ü ü ü

attached track ü ü ü

attached trigger ü ü ü

attachment effect ü ü ü ü ü ü ü ü ü

attachment points ü ü ü ü ü ü ü ü

bogeys ü

cameralist

conflicts with queues ü ü ü ü ü ü ü ü

consists

corona effect ü ü ü ü ü ü ü ü ü

driver-settings

dynamic brake ü

effects ü ü ü ü ü ü ü ü ü

extensions ü

flowsize ü

junction-vertices

kuid table ü

levels

lights ü

mass ü

mesh table ü ü ü ü ü ü ü ü ü

motor ü

name effect ü ü ü ü ü ü ü ü ü

notches ü

obsolete-table ü

pressure ü

privileges ü

processes

queues ü ü ü ü ü ü ü ü

signals ü

smoke ü ü ü ü ü ü ü ü

sound ü ü ü ü ü ü ü ü

soundscript ü ü ü ü ü ü ü ü

steam ü

steam power ü

string table cn, cz, de,
fr, if, pl, ru

ü ü

texture-replacement
effect

ü ü ü ü ü ü ü ü ü

textures ü

throttle power ü

thumbnails ü

tracksound ü ü

vertices ü ü

volume

world origin

Version 3.0  4 06   Trainz Railroad Simulator - The Content Creator’s Guide

Appendix C - Tags and Containers
This is a tabulation showing the Containers and Tags, as a quick reference, with a brief explanation. Please
refer to Chapter 6 for a complete description of the Containers and dependant Tags used in TC.

Version 3.0  4 07   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

accel float x,float y,float z smoke# { smoke block Acceleration. A vector pointing in
the direction of the sum of all forces
affecting this smoke effect. Essentially,
<z> describes gravity, and <x>, <y>
describe the force of wind. Default is
0,0,0.

adhesion motor { engine Adhesion parameter, the higher the
value, the greater the adhesion.

air-drag-coefficient motor { engine A value for air drag.
alias kuid config.txt general Kuid of the asset to be referenced as a

basis for the new asset. For example
TRS Traincars can reference archived
locomotive mesh assets for use with
custom textures. This process is done
by aliasing the KUID of the archived
traincars.

alias kuid config.txt paintshed-skin the kuid of the paintshed template the
paintshed reskin is based on

allowed-categories { subcontainer //queues-ID {// industry The allowed product categories in this
queue.

allowed-products { subcontainer //queues-ID {// industry The allowed products in this queue.
allows-mixing boolean config.txt product Products with this tag may be combined

in a single queue along with other
products of the same category. Eg.
Lumber and 20ft Container on a flatcar.
By default, allows-mixing is set to 0.
Therefore by default, a queue will only
allow one product-category at a time.
To look at allows-mixing from another
angle, liquid products should never have
allows-mixing enabled. Otherwise you
have the potential to mix petrol with oil
within the same tanker.

altitude config.txt region altitude of this region
ambient boolean //soundscript-ID {// mesh object 0 or 1, default 0 is off. Ambient sounds

have no 3D “position” and may be
stereo. Non-ambient (positional) sounds
are positioned on the object and must be
mono - see attachment above

amount float //inputs-ID {// industry Amount required as input.
amount float //outputs-ID {// industry Amount to output.
angle float list degrees config.txt turntable Specifies the angles at which the

turntable stops. Not used if the turntable
is set up as animation.

angles float list //mesh-table-ID {// interior Rotational boundaries in radians relative
to its attachment point.

anim [path/]filename.kin config.txt pantograph The “anim.kin” animation file for the
pantograph

anim [path/]filename.kin //effects-ID {// animation effect Reference to the animation file (.kin)
anim [path/]filename.kin //mesh-table-ID {// mesh object The animation file (.kin) exported from

3dsmax or gmax.
animated-mesh //mesh-table-ID {// //queues-ID {// industry Animated mesh which changes as the

queue becomes full.
animation-loop-speed float //mesh-table-ID {// mesh object This tag must be here if the asset is to

animate when placed. If this tag is not
here when placed the animation will
not play by default, but may play if
controlled by script. A different value
(e.g. 0.5, 2.0) may be used in the tag to
play the animation at a different speed
from that created in 3dsmax or gmax.

Version 3.0  4 08   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

animdist float config.txt bogey Leave this tag out if the bogey is not
animated. The distance traveled in
meters by the bogeys in 1 second (30
frames) of animation. Bogey animations
(exported from Gmax or 3ds Max) are
called “anim.kin”.

asset-filename string config.txt general Obsolete
atp_on sub container //mesh-table-ID {// interior Indicates that the limitspeed rule has

been loaded in the session and is active
(on).

atp_penalty sub container //mesh-table-ID {// interior Acts in conjunction with the audible
warning device to indicate the speed
limit has been exceeded and it will take
over control of the train speed.

att helper //attached-trigger-
ID {//

industry Attachment point (stored in the mesh
file)

att helper //effects-ID {// //effects-ID {// The effect insertion point. The
attachment point must be orientated
correctly in 3dsmax or gmax.

att helper //mesh-table-ID {// mesh object The mesh (and animation if present)
is inserted at a mesh attachment point
rather than the origin (without this line
the mesh is placed relative to the origin
of the parent model).

attached-track { container config.txt scenery with
track

Auto-generated spline track. Generated
through attachment points located
within the default mesh. Attached-tracks
update automatically to the spline track
connected to it. You may over-ride
this auto-update feature by adding
useadjoiningtracktype 0 Note. Correct
track end attachment orientation is
essential. The Y axis must point ‘out’ at
the correct angle. The Z axis must point
‘up’.

//attached-track-ID {// subcontainer attached-track { scenery with
track

User supplied identifier

attached-trigger { container config.txt industry A Trigger is a point along an attached
track with a specified radius. When
a compatible rollingstock item
enters this radius it triggers a set of
commands,controlled through its script.

//attached-trigger-ID {// attached-trigger { industry User supplied identifier
attachment helper smoke# { smoke block The attachment point (stored in the

mesh file) to place the smoke effect.
attachment helper //soundscript-ID {// mesh object Attachment point on the object to which

the sound is attached. Default: The
sound will attach to the origin of parent
object (not used for ambient sound)

attachment-points { subcontainer //queues-ID {// industry List of attachment points for this queue
on which products are visualised. (Use
this, OR animated-mesh)

att-parent //mesh-table-ID {// //mesh-table-ID {// mesh object The tag tells Trainz in which mesh
the attachment point is located. The
insertion attachment point is located
within the mesh ‘name’ , as listed in the
config.txt.

author string config.txt general Author, contact-email and contact-
website are useful information,
particularly if a user has a question on
your models or would like to offer help
or suggestions.

Version 3.0  4 09   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

autobrakecylinder volume { engine The brake cylinder volume.
autobrakecylinder_start pressure { engine Train brake cylinder pressure on loading

the game.
autobrakecylindervent flowsize { engine Flowsize of the automatic brake

cylinder vent.
auto-create boolean //mesh-table-ID {// mesh object The model is generated automatically

when placed, or when you load a map
which includes the model. In some
instances you don’t want the mesh
visible (as this may be controlled
through script). If auto-create is 0 the
mesh will not be visible when placed.

autoname boolean config.txt general When enabled, automatically assigns
a unique name to this object as it is
placed.

autopilotmode boolean driver-settings { activity AI driver setting. (off, on)
auxreservoir volume { engine The volume of the auxiliary reservoir.
auxreservoir_autobrakecylinder flowsize { engine Flowsize of the auxiliary reservoir

automatic brake cylinder.
auxreservoir_no3 flowsize { engine Flowsize of the auxiliary independent

brake pipe.
auxreservoir_start pressure { engine Flowsize of the auxiliary reservoir

pressure on loading the game.
auxreservoir_trainbrakepipe flowsize { engine Flowsize of the auxiliary reservoir

brake pipe.
auxreservoirvent flowsize { engine Flowsize of the auxiliary reservoir vent.
axle-count motor { engine Resistance axle count.
backdrop boolean config.txt scenery Specifies whether the object is treated

as a backdrop or not. (stays visible even
when far from the camera)

bendy boolean config.txt splines Switches how track is bent on corners,
set as 1 allows the mesh to be deformed
as the spline is bend around corners.

bogey kuid bogeys-ID { traincar Kuid of bogey asset.
bogey kuid config.txt traincar The bogey KUID number (default for

a.bog0 and a.bog1)
bogey kuid tracksound { Tracksound The bogey to which this sound will

apply.
bogey-# kuid config.txt traincar The bogey KUID number for a.bog#

(Used only if different to a.bog0)
bogey-#-r kuid config.txt traincar Used instead of ‘bogey’ and bogey-

1. The bogey will have reversed
orientation. Note: This will cause bogey
animation to play in reverse unless the
attachment point for the bogey is also
rotated 180 degrees in 3dmax/gmax.

bogey-r kuid config.txt traincar Used instead of ‘bogey’ and bogey-
1. The bogey will have reversed
orientation. Note: This will cause bogey
animation to play in reverse unless the
attachment point for the bogey is also
rotated 180 degrees in 3dmax/gmax.

bogeys { container config.txt traincar The bogey container stores the bogeys
used for the loco\rollingstock item.

//bogeys-ID {// subcontainer bogeys { traincar User supplied identifier
boiler-to-piston-flow steam { steam-engine A measure of relative energy.
boiler-volume steam { steam-engine The physical volume of the boiler in

litres - not currently implemented.

Version 3.0  41 0   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

bptrainbrakecylinder_needle2 subcontainer //mesh-table-ID {// interior Enables a second instrument for in-cab
display, used for a second digital or
analogue display for the function.

bptrainbrakepipe_needle2 subcontainer //mesh-table-ID {// interior Enables a second instrument for in-cab
display, used for a second digital or
analogue display for the function.

brakefull pressure { engine Brake pipe pressure after full service
reduction (for self lapping brakes).

brakeinitial pressure { engine Brake pipe pressure after initial service 		
reduction (for self lapping brakes).

brakepipe pressure { engine Brake pipe pressure when fully charged.
brakeratio motor { engine Brake force for pressure reduction.
bridgetrack kuid config.txt splines Kuid of the track type to be used.
buffer-speed float metres/second config.txt trackside Used for buffers; specifies the

maximum speed up to which the buffer
will stop a train.

burn-rate steam { steam-engine The coal consumption (burn) rate.
burn-rate-idle steam { steam-engine The coal consumption rate when the

engine is at idle.
cabinsway float config.txt traincar Cabin sway multiplier. Eg -2.
cabsignal_limited sub container //mesh-table-ID {// interior An in-cab display to represent a

trackside signal condition.
cabsignal_medium sub container //mesh-table-ID {// interior An in-cab display to represent a

trackside signal condition.
cabsignal_normal sub container //mesh-table-ID {// interior An in-cab display to represent a

trackside signal condition.
cabsignal_restricted sub container //mesh-table-ID {// interior An in-cab display to represent a

trackside signal condition.
cameradefault integer config.txt interior The in-cab camera view Trainz defaults

to when entering the cab.
cameralist { container config.txt interior List of camera viewpoints
camera# float list cameralist { interior A camera contains 5 numeric

coordinates that determine the
placement and orientation of the
camera. These are: 0,0,0,0,0 =left/
right, front/back, up/down, yaw, pitch
To determine these variables add -
freeintcam to the trainzclassicoptions.
txt. Pan around the interior using
arrow keys and mouse. Co-ordinates
are displayed at bottom-left of screen.
industry asset’s script file.

car# kuid config.txt map Each of these tags stores the kuid of a
car to be used on the roads.

car# kuid config.txt region Each of these tags stores the kuid of a
car to be used on the roads.

carrate float seconds config.txt splines Defines traffic density on road
(minimum seconds between each car
generated). 0 = No traffic. Number must
be greater than 3.

casts_shadows boolean config.txt splines Toggles whether the shadow model is
displayed.

category-class class code config.txt general The class code for this asset.
category-era era code config.txt general Era code list.
category-era-n era list config.txt general Era code.
category-keywords keyword list config.txt general Keyword list
category-region region list config.txt general A list of REGION codes or REGION

GROUP codes,

Version 3.0  411   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

category-region-# region code config.txt general A REGION codes or REGION GROUP
code.

changeability 0/1/2 driver-settings { activity Propensity for weather to change.
(none, periodic, extreme)

chunky_info float list config.txt splines These values (in metres) define the
shape of the mesh created for the track.

chunky_mesh folder config.txt splines Name of texture to apply to rail. The
texture must be within a directory of
the same name (ie. “textureName\
textureName.texture.txt”). The chunky_
mesh value will simply be the name of
this directory (ie. “textureName”).

class string config.txt general This refers to the class of asset within
the script file (the class must match that
stated in the script).

clutter-mesh kuid config.txt groundtexture Ground textures can now reference a
mesh and insert the mesh automatically
as the ground is painted. Painting
over a clutter-mesh ground texture
effectively deletes clutter meshes and
texture. The mesh it refers to is can
be standard scenery object kind mesh.
Clutter-meshes must have only one Max
material assigned to it only. Polycounts
must be very low.

collate-meshes config.txt trackside Enables clutter-mesh support (eg. fast
trees)

collision-parent //mesh-table-ID {// //mesh-table-ID {// interior For collision-proxy meshes in an
interior mesh-table, this specifies the
parent object to be proxied. is 3.

color rgb value smoke# { smoke block The R,G,B colour value of the effect.
company string config.txt traincar The Locomotive or car owner
compressor flowsize { engine The compressor flow size.
compressor pressure { engine The compressor maximum pressure,

gms/m3.
conesize smoke# { smoke block Defines the size of the smoke cone

along the x y z axis.
conflicts-with queues { subcontainer //queues-ID {// industry This queue and the conflicting queue(s)

cannot be used simultaneously.
consists { container config.txt industry The consists tag stores information on

consists that can be generated by the
industry.

//consists-ID {// subcontainer consists { industry User supplied identifier
//consists-vehicle-ID {// subcontainer consists-ID { industry User supplied identifier
contact-email string config.txt general Author, contact-email and contact-

website are useful information,
particularly if a user has a question on
your models or would like to offer help
or suggestions.

contact-website string config.txt general Author, contact-email and contact-
website are useful information,
particularly if a user has a question on
your models or would like to offer help
or suggestions.

controlmethod 0/1 driver-settings { activity Driver control setting. (dcc, cabin)
coupling-mask boolean //consists-ID {// industry Coupling mask that applies to the

consist. 0 will block off all coupling
activity while “1” will mean you can
couple with a vehicle.

Version 3.0  41 2   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

critical-animation boolean //mesh-table-ID {// mesh object When enabled, this forces the animation
to continue playing when off screen.
Impacts performance when enabled.

custom-attachments //queues-ID {// industry Not used.
decoupling-mask boolean //consists-ID {// industry Coupling mask that applies to the

consist. 0 will mean you can’t decouple
vehicles in the train while 1 means you
can decouple vehicles.

default { subcontainer mesh-table { mesh object Main mesh of the asset
defaultjunction kuid config.txt region Default type of junction in this region.
default-mesh kuid //effects-ID {// attachment

effect
The KUID of the attached mesh.

default-night { subcontainer mesh-table { mesh object ‘Main’ night window mesh on scenery
and industry and traincar assets.
Modeled to the same 3d space as the
default mesh and is inserted at the
default mesh origin.

default-night-forward { subcontainer mesh-table { mesh object The name for a submesh attached to a
locomotive, to show a beam of light for
example, in the direction of movement
of the locomotive. Trainz recognises
the name and turns on the correct mesh
depending on the running direction.

default-night-reverse { subcontainer mesh-table { mesh object The name for a submesh attached to a
locomotive, to show a beam of light for
example, in the direction of movement
of the locomotive. Trainz recognises
the name and turns on the correct mesh
depending on the running direction.

deraillevel 0/1/2 driver-settings { activity Derail setting. (none, arcade, realistic)
description string config.txt general Description of the asset.
description-## string config.txt general Translated description of the asset.
digital-dial-prs kind //mesh-table-ID {// interior display Specifies a digital display for a pressure

display (compared with an analogue
dial display).

digital-dial-spd kind //mesh-table-ID {// interior display Specifies a digital display for a speed
display (compared with an analogue
dial display).

dighole float length, width config.txt scenery Specifies the number of grid segments
(length, width) to be removed from
the surveyor grid to accommodate the
turntable pit.

direct-drive boolean config.txt bogey When direct-drive is present, the bogey
animation is linked to the steam piston
and physics system. If this tag is not
included the piston and steam sounds
will not work!

direction vector smoke# { smoke block The vector at which the smoke travels.
directional boolean //effects-ID {// corona effect The default for coronas is to be

aligned to the attachment point to face
the NEGATIVE Z direction. This is
especially useful for Traincars.

disable-extra-track-sounds boolean config.txt traincar Disables the “click-clack” tracksounds.
(0, 1)

distance min, max metres //soundscript-ID {// mesh object 2 numbers (meters) 1st number is the
distance at which the sound is played
100% 2nd number is the cut-off
distance. Doesn’t affect the volume of
the sound (Default: 50m, 150m)

Version 3.0  41 3   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

ditch_color rgb value config.txt traincar RGB ditch light colour. Eg.
255,255,255.

divider folder config.txt splines Name of the model to use as the middle
bridge section. Placed in subfolder with
same name.

don’t-flip-terminator boolean config.txt splines Terminator model isn’t mirrored on one
side.

driver-settings { container config.txt activity Specify the settings of this scenario,
similar to Driver’s settings screen

duration float //process-ID {// industry Length of time (in seconds) that the
process runs for.

dynamic-brake { container engine Deceleration variables while dynamic
braking in cabin mode.

effects { subcontainer //mesh-table-ID {// //mesh-table-
ID {//

Optional mesh-table variations

effects { subcontainer //mesh-table-ID {// mesh object Optional mesh-table variations
//effects-ID {// subcontainer effects { effects { User supplied identifier
enabled boolean smoke# { smoke block Specifies whether the effect is enabled.
endcolor rgb value smoke# { smoke block The final colour the smoke effect shifts

to.
endlength float metres config.txt splines Length in meters of the initiator and

terminator models.
engine boolean config.txt traincar States type of traincar. 0 for Rolling

stock, 1 for Locomotive.
enginesound kuid config.txt traincar References the KUID number for the

traincar’s sound.
enginespec kuid config.txt traincar References the engine KUID number.

This specifies the driver physics
boundaries for the traincar.

epreservoirpipe flowsize { engine Flowsize for electro pneumatic braking.
epreservoirpipe volume { engine For electro pneumatic braking, not

currntly used.
epreservoirpipe_autobrakecylinder flowsize { engine Flowsize for electro pneumatic braking.
epreservoirpipe_start pressure { engine For electro pneumatic braking, not

currntly used.
equaliser volume { engine Equalising reservoir volume.
equaliser_mainreservoir flowsize { engine Flowsize for electro pneumatic braking.
equaliser_start pressure { engine Equaliser reservoir pressure on loading

the game.
equaliservent flowsize { engine Flowsize for electro pneumatic braking.
equaliserventemergency flowsize { engine Flowsize for electro pneumatic braking.
equaliserventhandleoff flowsize { engine Flowsize for electro pneumatic braking.
[ExtensionsContainer extensions {] container config.txt all Asset specific data.
faces camera/motion/

down
smoke# { smoke block The direction the smoke effect faces.

face-texture [path/]filename.
texture

config.txt drivercharacter This is the driver icon used in TRS.
Must be 64x64 pixels

facing boolean //consists-vehicle-
ID {//

industry Indicates the direction of the vehicle.

file [path/]filename.tfx smoke# { smoke block The twinkle file to be used (optional).
firebox-efficiency steam { steam-engine The atmospheris leakage - a measure of

efficiency. 1 = no leakage.
firebox-to-boiler-heat-flow steam { steam-engine The rate of heat flow from the firebox to

boiler and vice-versa.
firebox-to-boiler-heat-flow-idle steam { steam-engine The rate of heat flow from the firebox to

boiler when the locomotive is idle.

Version 3.0  414   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

firebox-volume steam { steam-engine Physical volume of the firebox in litres.
flash-scale float config.txt traincar Specifies the flash rate for ditch lights.

1 (default) = normal speed, 0.5 = half
speed, 2 = double speed.

flowsize { container config.txt engine A container for pipe flow sizes.
font string //effects-ID {// scenery Specifies the font type to be used.

Available fonts are: arial, console,
comic_sans, courier, cordia, century_
gothic, garamond, helvetica, impact,
sans_serif, swiss, tahoma, times_new_
roman, verdana. Default size is 24
points.

fontcolor rgb value //effects-ID {// corona effect The colour of the sign text in r.g.b.
fonts integer config.txt traincar Indicates how many types of numbering

fonts used.
fontsize float //effects-ID {// corona effect The size of the sign text, as a factor of

the default font size -0 .1 = 10% of the
default size.

fonts-path folder config.txt traincar Replaces asset-filename usage for
‘fonts’.

frame-rate float frames/second config.txt turntable Generally make this 30 (frames per
second)

frequency float per second //effects-ID {// corona effect This variable specifies the frequency in
Hz (or ‘flashes’ per second). e.g. 1 for
once per second, 0.5 for once every 2
seconds, 2 for twice per second.

fuel mass { engine The fuel level, not currently used.
fuel-energy steam { steam-engine The relative energy of the fuel in

kilojoules per kilogram of coal.
function ‘TrackSignal’ config.txt trackside Must be set to ‘TrackSignal’
grounded float metres config.txt splines Height in meters for the road to be

offset from terrain.
height negative metres config.txt scenery Height from the track level to the base.

Should be negative.
height float metres config.txt splines Height from the track level to the base.

Must be a negative value in order to
raise the bridge above the ground.

height integer //thumbnails-ID {// all Image height
height-range min,max metres config.txt scenery height-range min, max eg: height-range

–10, 100. Where min and max are
values in meters.

hidden boolean config.txt splines Prevents the spline from being rendered.
highspeedexhauster pressure { engine Pressure for vacuum braking, not

currently used.
highspeedexhauster_
vacuumbrakepipe

flowsize { engine Flowsize for vacuum braking, not
currently used.

hornsound kuid config.txt traincar References the KUID number for the
traincar horn sound.

icon0 kuid config.txt general Window preview icon - see information
box

icon1 kuid config.txt general Window preview icon - see information
box

icon2 kuid config.txt general Window preview icon - see information
box

icon3 kuid config.txt general Window preview icon - see information
box

Version 3.0  415   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

icon-texture [path/]filename.
texture

config.txt product The in-game representation of the
product when specifying the load type
for a compatible rollingstock item
(driver) Should be a 64x64 TGA.

image [path/]filename //thumbnails-ID {// all Image filename
indbrakefull pressure { engine Brake cylinder pressure for independant

brake service.
independantbrakecylinder volume { engine The engine brake cylinder volume.
independantbrakecylinder_start pressure { engine The engine brake cylinder volume on

loading the game.
info-page [path/]filename.

html
config.txt profile Filename of the HTML information

page for the session.
inherit-velocity smoke# { smoke block For a smoke cone or steam emitter,

tells the particle that it will inherit the
velocity of the emitter.

initial-boiler-temperature steam { steam-engine This allows the engines to be at an
almost ready to go state when the
session starts.

initial-count integer //queues-ID {// industry The initial number of items in the
queue.

initiator folder config.txt splines Name of the model to use at the start of
bridge, placed in subfolder with same
name.

inputs { subcontainer //processID {// industry Input process list
//inputs-ID {// subcontainer inputs { industry User supplied identifier
instance-type ‘instance’/

’resource’
config.txt product Instance-type: ‘resource’ is used when

there is no mesh, or one only mesh is
referenced in the mesh table (Ie Liquids,
Bulk loads etc). ‘instance’ is used when
more than one mesh is in the mesh table
Ie: Passengers, General Goods. 200
max.‘size’ per Asset.

interior kuid config.txt traincar References the KUID number for the
traincar interior cab view.

interpolate smoke# { smoke block Used for a steam emitter.
invisible boolean config.txt splines Specifies whether the object is invisible.
isfading boolean config.txt enginesound For electric locomotive engine sounds.

1= sound fades to zero when speed is
reduced, and plays no sound at zero km
per hour.

isfreeway boolean config.txt splines Boolean function that when set to true,
allows road traffic to flow in the same
direction in multiple lanes of the one
road spline.

isramping boolean config.txt enginesound Determines if an engine sound
is a single sound file for electric
locomotives or uses stepped sound file
for diesel or steam locomotives. 0 =
winds up the sound, for electric. 1 =
plays different sound files for the notch
steps for steam or diesel locomotives.

isroad boolean config.txt splines Isroad/Istrack. Two boolean tags
detailing the behavior of the bridge.
If the isroad is set to true, then cars
are placed on the bridge. Both values
should not be set to true.

Version 3.0  416   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

isspeed float config.txt enginesound Soecifies the playing speed of a single
sound file for an electric locomotive.
1 = plays the sound at twice speed, 2
(default) = plays the sound at three time
speed, 4 = plays the sound at 5 times
speed for example.

istrack boolean config.txt splines Isroad/Istrack. Two boolean tags
detailing the behavior of the bridge.
If the isroad is set to true, then cars
are placed on the bridge. Both values
should not be set to true.

junction-lever-mesh subcontainer //junction-vertices-
ID {//

fixed track The mesh (selected from the mesh
table) to be used as a junction lever.

junction-vertex helper //junction-vertices-
ID {//

fixed track The attachment point (located in mesh
file) at which to place the lever.

junction-vertices { container config.txt fixed track The Junction-Vertices Container
contains the tags needed to handle the
lever portions of a fixed track.

//junction-vertices-ID {// container junction-vertices { fixed track User supplied identifier
keyframes integer list config.txt turntable Specifies where on the animation the

turntable is to stop.
kind kind config.txt general Asset kind.
kind ‘animation’ //effects-ID {// //effects-ID {// This effect is used when a mesh has

a variety of animations. Usually the
animations will be controlled by a script
related to the asset.

kind ‘attachment’ //effects-ID {// //effects-ID {// In TRS we now have the ability to
attach a mesh into another mesh
by referencing it’s KUID through a
meshtable.

kind ‘corona’ //effects-ID {// //effects-ID {// A corona is a ‘glow’ light effect. It
is a simple texture that is inserted at
an attachment point within the mesh.
Coronas can be added to any asset that
uses a meshtable.

kind ‘name’ //effects-ID {// //effects-ID {// Some assets may have editable signs.
When you set an asset’s name in
surveyor through the Edit Properties
icon (‘?’ icon) the signage can be set-up
to automatically update. The variables
can be set for each sign.

kind ‘texture-
replacement’

//effects-ID {// //effects-ID {// This effect was created for rolling stock
items to swap the visible texture of bulk
loads (such as coal or woodchips).

kind interior object kind //mesh-table-ID {// interior The type of interior object the particular
mesh is. Affects the behavior of the
mesh in game. Kinds: lever (Levers,
switches, dials etc), animated-lever
(Animated Levers etc Eg. in steam
cabs), collision-proxy (Mouse collisions
for animated levers), needle (Gauge
needles, Speedo, brake pres.), pullrope
(Pull rope horn as in the F7), light
(Wheelslip light)

kuid kuid config.txt general Asset kuid
kuid-table { container config.txt all List of all required dependencies.
//kuid-table-ID {// kuid kuid-table { all User supplied identifier
latitude config.txt region The latitude of this region
left-passenger-door { subcontainer mesh-table { mesh object Predefined submesh identifier. Left side

passenger doors.
length float metres config.txt splines Length of track segment in meters

Version 3.0  41 7   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

levels { subcontainer tracksound { Tracksound Relative sound levels. The sound
is silent until 0.1 m/s, ramping up
in volume until 10.0 m/s, constant
maximum after that. Note, a value
below 0.1 will not play a sound.

licence string config.txt general User licence details
lifetime float smoke# { smoke block Time in seconds that smoke particles

exist for. Default is 3.
light boolean config.txt scenery Sets lighting to be used for object to be

ambient or directional. 0 sets ambient
lighting and object is light by general
light value, 1 sets directional light
which is affected by the position of the
sun.

light boolean //mesh-table-ID {// mesh object Sets lighting to be used for object to be
ambient or directional. 0 sets ambient
lighting and object is light by general
light value, 1 sets directional light
which is affected by the position of the
sun.

light_color rgb value config.txt traincar RGB headlight colour. Eg. 255,255,255.
lights { container config.txt mosignal Signal lighting container. A list of

coronas attached to each light point.
Coronas are stored in each signal
object’s directory alongside it’s textures.

//lights-ID {// subcontainer lights { mosignal Light point identifier.
limits float list //mesh-table-ID {// interior Mathematical boundaries Trainz uses

determine the objects function. These
values vary as different objects use
different mathematical units.

longitude config.txt region longitude of this region
loop float seconds smoke# { smoke block Time in seconds to loop the smoke

sequence. Only valid if mode is set to
time.

loopdelay float seconds smoke# { smoke block Delay (in seconds) before the effect is
played again.

looped boolean //effects-ID {// animation effect Looped 1 (optional) Use only if the
animation is looping (repeating).
Default 0 (i.e. not looped).

looping boolean config.txt turntable specifies that the turntable can go all the
way around, rather than stopping at a
certain point.

low-beam-value float config.txt traincar Specifies the intensity or size of
lowbeam headlights for locomotives. 1
= normal size or intensity, 2 (default) =
half size, 0.5 = twice size.

mainreservoir pressure { engine The main reservoir pressure.
mainreservoir volume { engine The main reservoir pressure.
mainreservoir_ep flowsize { engine Flowsize of the electro pneumatic main

reservoir.
mainreservoir_start pressure { engine Pressure of the main reservoir on

loading the game.
main-reservoir-volume steam { steam-engine Main reservoir volume in litres,

currently not used.
map-kuid kuid config.txt profile Kuid of the map attached to this session.
mass float kg config.txt product The physical mass of the product.

For Containers and Passengers this is
calculated in kilograms/unit, while for
Liquid and Bulk loads this is calculated
in kilograms/litre.

Version 3.0  418   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

mass integer kg config.txt traincar Mass in kilograms
mass { container config.txt engine A container for the locomotive mass.
max-accel motor { engine A parameter for DCC acceleration &

deceleration.
max-coupler-gap float metres config.txt traincar The maximum gap expected between

couplers of this type
max-decel motor { engine A parameter for DCC acceleration &

deceleration.
max-distance float tracksound { Tracksound Maximum distance at which the sound

is played. Eg 1000
max-fire-coal-mass steam { steam-engine The maximum mass of coal the firebox

can take in kilograms.
max-fire-temperature steam { steam-engine The maximum heat obtainable from the

firebox.
maximum-volume steam { steam-engine The boiler maximum volume to be

used, this volume should be 90% of the
boiler-volume and simulates the steam
space left over the top of the water.

maxrate float smoke# { smoke block The maximum rate at which particles
are emitted.

maxsize float smoke# { smoke block The end size of smoke particles, default
= 3.

maxspeed motor { engine Maximum speed for DCC for an engine,
expressed in metres per second.

maxspeedkph float smoke# { smoke block For a cone emitter, this will set the
maximum velocity of the particles, in
kph.

maxvoltage motor { engine Maximum voltage, not currentlu used.
mesh kuid config.txt drivercharacter This refers to the kuid of the mesh asset

inserted in to the locomotive mesh at
a.driver0 (when in the Driver Module).

mesh [path/]filename.im //mesh-table-ID {// mesh object The mesh name. This may include
a sub-path. ie: mesh nightwindows/
nightwindows.im, where the file
nightwindows.im has been placed in the
subdirectory nightwindows.

mesh [path/]filename.lm //mesh-table-ID {// mesh object The mesh name. This may include
a sub-path. ie: mesh nightwindows/
nightwindows.im, where the file
nightwindows.im has been placed in the
subdirectory nightwindows.

mesh [path/]filename.pm //mesh-table-ID {// mesh object The mesh name. This may include
a sub-path. ie: mesh nightwindows/
nightwindows.im, where the file
nightwindows.im has been placed in the
subdirectory nightwindows.

mesh-table { container config.txt mesh object This is the new and preferred method
of asset mesh placement for most
mesh asset types. It gives huge control
over mesh placement and animations.
There are some asset types that cannot
use a meshtable. These include all
Bridges, Tunnels, Rails, Pantographs
and other Spline Objects (eg. Fences or
Catenaries).

//mesh-table-ID {// subcontainer mesh-table { mesh object User supplied identifier
//mesh-table-ID {// subcontainer mesh-table { interior User supplied identifier
min-distance float tracksound { Tracksound Minimum distance at which the sound

is played. Eg 0.

Version 3.0  419   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

minimum-volume steam { steam-engine The minimum volume represents the
working low water level in the boiler.
minimum-volume. This value should be
90% of the maximum-volume.

minrate float smoke# { smoke block The minimum rate at which particles
are emitted.

minsize float smoke# { smoke block The start size of smoke particles, default
0.

mode speed/anim/
timeofday/time

smoke# { smoke block Describes the mode or type of this
smoke effect. This affects how start and
period are interpreted. (time | speed |
anim | timeofday).

mode0 { subcontainer mesh-table { trackside Mesh showing lever in first position
mode0 { subcontainer mesh-table { mesh object Predefined submesh identifier. Mesh

showing lever in first position
mode1 { subcontainer mesh-table { trackside Mesh showing lever in second position
mode1 { subcontainer mesh-table { mesh object Predefined submesh identifier. Mesh

showing lever in second position
motor { container config.txt engine A container to define motor

characteristics for an engine.
mousespeed float //mesh-table-ID {// interior This controls the use of the mouse

on screen. Use this to control the
mouse speed and push/pull direction
for levers and dials. • mousespeed -1
Inverts mouse direction. • mousespeed
2 Doubles mouse speed in default
direction. • mousespeed -0.5 Inverts
mouse direction and halves the speed.

moving-friction-coefficient motor { engine Friction coefficient when moving.
name ‘name’ //effects-ID {// name effect When name name is specified, it uses

the asset’s changeable name. Changed
through the Edit Properties icon (the ‘?’
icon) in Surveyor.

name string //effects-ID {// name effect The default text when placed. If name
Graceland (for example) was used, the
sign would never be able to be changed
even though the user may have changed
the asset’s name in Surveyor.

name <blank> //effects-ID {// name effect Leave blank to allow the name to be
inserted by script without an initial
default.

night [path/]filename.tga config.txt environment Name of image file for night sky. File
should be 256 x 256 pixel 24bit tga. The
file extension should be excluded here,
ie “QLD_Sky” rather than “qLD_Sky.
texture.txt”.

night-mesh-base //mesh-table-ID {// //mesh-table-ID {// mesh object The mesh to which ‘default-night’ is
linked. If the ‘night-mesh-base’ is
hidden then ‘default-night’ will not be
displayed.

nightmode home/lamp/constant config.txt scenery Only add this tag if you reference a
default-night mesh in the mesh-table.
Values: home, lamp or constant.

no3pipe flowsize { engine Flowsize for the independant brake
pipe.

no3pipe volume { engine Volume for the independant brake pipe,
not currentoy used.

no3pipe_autobrakecylinder flowsize { engine Flowsize of the independent automatic
brake pipe cylinder.

no3pipe_mainreservoir flowsize { engine

Version 3.0  4 20   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

no3pipe_start pressure { engine Pressure for the independant brake pipe
when the game is loaded.

no3pipevent flowsize { engine Flowsize for the independant brake pipe
vent.

no4pipe flowsize { engine Flowsize for the bail pipe.
no4pipe volume { engine Volume for the bail pipe, not currentoy

used.
no4pipe_start pressure { engine Pressure for the bail pipe when the

game is loaded.
normal [path/]filename.tga config.txt environment Name of image file for normal sky. File

should be 256 x 256 pixel 24bit tga. The
file extension should be excluded here,
ie “QLD_Sky” rather than “qLD_Sky.
texture.txt”.

nostartdelay boolean //soundscript-ID {// mesh object 0 or 1, default 0 If not set, the sound
will have a short delay before playing,
this stops flanging (flanging is a really
nasty sound caused when several copies
of the same sound are played at once).

notches float list //mesh-table-ID {// interior The position of notches within the angle
boundaries. These are represented as
decimal points between and including
0 and 1.

notchheight float list //mesh-table-ID {// interior The size of the notches specified.
numlanes float config.txt splines Specifies the number of lanes to be

generated as a freeway for road traffic.
object-size float metres //effects-ID {// corona effect Size of the corona on the object when

viewed up close Defaults to 0.15 (i.e.
0.15m).

obsolete-table { container config.txt all The obsolete-table describes the asset’s
revision history.

ontheright boolean config.txt region Cars drive on the right side of the road.
opacity 0..1 //mesh-table-ID {// mesh object Controls the opacity of the mesh. Zero

(invisible, not recommended) or one
(solid).

opacity 0..1 //mesh-table-ID {// interior Usually used for the window mesh to
give transparency (and the impression
of reflection).

organisation string config.txt general Organisation name will show in Trainz
in Railyard as the organisation for the
model, for instance if you use Joe’s
Trainz or Cripple Creek Logging
Company.

origin string config.txt traincar The Country Abbreviation.
outputs { subcontainer process-ID { industry Output process list
//outputs-ID {// subcontainer outputs { industry User supplied identifier
paintshed-skin-used kuid config.txt paintshed-skin Kuid of the paintshed skin used. (if

applicable)
paintshed-skin-used kuid config.txt paintshed-

template
Kuid of the paintshed skin to be used
for this template.

paintshed-template-used kuid config.txt paintshed-skin Kuid of the paintshed template used. (if
applicable)

pantograph kuid config.txt traincar The pantograph kuid number inserted at
a.pant0, a.pant1, etc. Use this tag only
when needed.

passenger-height float metres config.txt industry This value sets the height of the
passenger asset in metres, to suit the
platform model height. (Doesn’t work)

Version 3.0  4 21   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

passenger-queue boolean //queues-ID {// industry Defines this as a passenger station
queue.

period smoke# { smoke block The usage of period depends on the
value of the mode tag. If the mode is set
to time, period is the duration of time
this effect will remain active.

permit-commit boolean privileges { all Allows the end-user to commit changes
to this asset.

permit-edit boolean privileges { all Allows the end-user to open this asset
for editing

permit-listing boolean privileges { all Allows the end-user to view this object
in the surveyor pickers (if it is of an
appropriate kind.) Does not affect the
visibility of the asset within the CMP
asset list.

piston-angular-offsets steam { steam-engine Determines the number of power
impulses a locomotive has for each
wheel revolution, thus simulating the
prototype.

piston-area steam { steam-engine The cross section of one piston in m2. It
is assumed there is one piston only on
each side of the locomotive.

piston-to-atmosphere-flow steam { steam-engine Atmospheric leakage from piston.
Nominal hole size.

piston-volume-max steam { steam-engine The volume of the space in the cylinder
ahead of the piston at the start of a full
stroke.

piston-volume-min steam { steam-engine The volume of the space in the cylinder
ahead of the piston at the end of a full
stroke.

pressure { container config.txt engine A container for the pressure values for
an engine.

preview-mesh-kuid kuid //mesh-table-ID {// mesh object The mesh to be used in the surveyor
preview area. This is useful when an
asset has a large bounding box. Ie the
“Airport” with it’s jet animation.

preview-scale float //mesh-table-ID {// mesh object Scale of the preview mesh.
priority float, 0 = highest tracksound { Tracksound The priority of the sound versus other

sounds to be played. Lower values
indicate a higher priority.

privileges { container config.txt all Limited content protection applies only
to built-in (JArchived) assets.

processes { container config.txt industry Processes (required) The input and
output settings of the industry. You can
specify the amount of input and output
for each queue referenced product as
well as the duration (or rate) in seconds
for that process to take place. All queues
and processes are linked through the
industry assets script file.

//process-ID {// subcontainer processes { industry User supplied identifier
product-category kuid config.txt product Kuid of applicable category for this

product
product-id config.txt paintshed-skin For paintshed support.
product-kuid kuid //queues-ID {// industry The product type used to fill ‘initial-

count’
product-texture [path/]filename.

texture
config.txt product The texture to be used with load

‘texture-replacement’. Ie When a
hopper loads woodchips instead of it’s
default load of coal.

product-type config.txt paintshed-skin For paintshed support.

Version 3.0  4 22   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

product-version config.txt paintshed-skin For paintshed support.
pulllever kind //mesh-table-ID {// lever A spring loaded lever used typically

for a horn. The lever returns to the
start position after being released after
operating.

queue //queues-ID {// //inputs-ID {// industry Queue from which to take input.
queue //queues-ID {// //outputs-ID {// industry Queue in which to place output.
queues { container config.txt industry The queues container states which

product or products the industry can
use. It contains the size of each product,
the initial count when placed, and can
refer to it’s visual load state whether
through a load animation or attachment.

//queues-ID {// subcontainer queues { industry User supplied identifier
radius float //attached-trigger-

ID {//
industry Radius (in meters) of the trigger.

radius float //mesh-table-ID {// interior The notch position relative to the
attachment point.

random-color-high-hsb hsb value config.txt scenery For clutter-mesh objects, specifies a
color range for tinting purposes. HSB
color space.

random-color-low-hsb hsb value config.txt scenery For clutter-mesh objects, specifies a
color range for tinting purposes. HSB
color space.

rate float particles/
second

smoke# { smoke block The rate of emission in particles per
second for modes time, speed, and
timeofday, or the number of particles
to emit over the animation period for
anim mode. Default is 4.

region region code config.txt general The country region to which this asset
belongs. This should be one of the
Auran-supplied region names

repeat-delay random [min,max]
seconds

//soundscript-ID {// mesh object 1 or 2 numbers (min, max, in sec)
time to delay between the end of the
sound playing, and playing it again
randomised between(min .. max)
default min is 0, default max is equal to
min Notes: Repeat-delay now has two
values rather than one. When upgrading
old assets, make sure there is a repeat
delay for both values or the sound will
loop endlessly when triggered.

repeats integer config.txt splines The number of times the mesh is placed
between spline points

resistance motor { engine Power figure for DCC, a higher
resistance value equals less power.

reversed boolean bogeys-ID { traincar Affects the direction of the bogey.
rgb rgb value config.txt splines This value should be left as default.
right-passenger-door { subcontainer mesh-table { mesh object Predefined submesh identifier. Right

side passenger doors.
rollstep float degrees config.txt scenery Where n is a value in degrees. Used

in conjunction with rotate-yz-range,
rollstep lets you specify the step size
of roll angles for this object. Other
example values are 1, 5, 20 etc. The
default rollstep is 1.0.

rotate boolean config.txt scenery Where n is 0 or 1 (default). This lets
you disable rotation on a scenery object.
0 to disable, 1 to enable (default).

Version 3.0  4 23   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

rotate-yz-range min,max degrees config.txt scenery Where min and max are values in
degrees. This tag lets you set the roll
/ yz rotation range (normal object
rotation is an xy rotation). If you want
your scenery object to support rolling
then use this tag to set the minimum and
maximum roll range. By default, objects
have a min/max roll range of 0 to 0.

rotstep float degrees config.txt general Where n is a value in degrees. This lets
you specify the step size of rotation
angles for this object. Other example
values are 1, 10, 20, 90, 180 etc. The
default rotstep is 1.0

running-number string //consists-vehicle-
ID {//

industry Running number of the vehicle.

safety-valve-high-flow steam { steam-engine Higher pressure valve release. Nominal
hole size.

safety-valve-high-pressure steam { steam-engine When boiler pressure hits this value in
kPa the safety-valve-high-flow release
is initiated.

safety-valve-low-flow steam { steam-engine Lower pressure valve release. Nominal
hole size.

safety-valve-low-pressure steam { steam-engine When boiler pressure hits this value in
kPa the safety-valve-low-flow release is
initiated.

scale smoke# { smoke block For a smoke (particle) emitter is the
scale of the emitter or the scale of the
particle.

scale mass { engine Multiplies fuel mass by given value,
generally 	leave this setting.

scale pressure { engine Multiplies pressure by given value,
generally 	leave this setting.

scale volume { engine Multiplies volume by given value,
generally 	leave this setting.

script [path/]filename.gs config.txt general This refers to the name of the script file.
search-limit config.txt trackside Not required. For internal use only.
shadow { subcontainer mesh-table { mesh object Predefined submesh identifier. Shadow

mesh.
shadows config.txt splines Undocumented, leave as default.
shift smoke# { smoke block Speeds up the age of the smoke particle

(how old they are which makes them
die/disappear faster).

shovel-coal-mass steam { steam-engine The amount of coal in one shovel.
showhelp boolean driver-settings { activity Show Driver Help. (off, on)
show-in-consist-menu boolean //consists-ID {// industry Boolean flag that dictates whether

this train appears in the consist menu
(0 - false, 1 - true). The consist menu
was along the bottom of the screen in
the original Trainz and UTC but is no
longer present. It effectively stopped a
user from getting access to an AI train.
Redundant for most uses except for
legacy/scenario usage.

signals { container config.txt mosignal Sets out which aspects the signal is
capable of displaying, and also which
light points are activated when each
state is displayed.

//signals-ID {// subcontainer lights { mosignal Signal point identifier.
size integer //queues-ID {// industry Size of queue.
smoke_fastlife float config.txt traincar Longevity of smoke particles at normal

speed.

Version 3.0  4 24   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

smoke_fastspeed config.txt traincar Not documented.
smoke_height float config.txt traincar How hard particles are pushed out of

the stack.
smoke_random float config.txt traincar Level of particle excitation.
smoke_shade float config.txt traincar Smoke opacity. (0 - 1)
smoke_slowlife float config.txt traincar Longevity of smoke particles at low

speed.
smoke { container config.txt smoke block A container for smoke values.
snapgrid float metres config.txt scenery Where n is a value in meters. This lets

you specify the size of the grid the
object snaps to. We recommend factors/
fractions of 720 as this is the size of a
base board and the positioning may do
funny things across section borders. e.g.
1, 2, 5, 10, 20, 30, 40, 45, 60, 80, 90,
120, 180, 240, 360, 720. The default
snapgrid is 10.

snapmode 0/1/2 config.txt scenery Where n is either 0 (default) , 1 or 2.
Use snapmode to enable snapping of
a scenery object to the snap grid. 0
will disable grid snapping (default),
1 will enable grid snapping, 2 will
enable an offset grid snapping. Offset
grid snapping will cause objects to be
snapped to the grid but will also offset
the objects position by ½ the grid size  
essentially positioning the object in
between the normal grid lines.

sound { subcontainer //soundscript-ID {// mesh object List of .wav files to play (randomly
picked)

soundscript { container config.txt mesh object Controls the looping sound made by the
object.

//soundscript-ID {// subcontainer soundscript { mesh object User supplied identifier
speed float //effects-ID {// animation effect Speed factor of the animation. Default

1, 2 for double speed, 0.5 for half speed
speedlimit float metres/second config.txt trackside This value is the maximum speed

allowed in meters per second
start smoke# { smoke block The usage of stard depends on the

value of the mode tag. If the mode
is set to time, start is a set of time
values in seconds after the creation of
this effect’s parent object when this
phase of the effect will start. If the
mode is set to speed, start is a speed
in meters per second (m/s) and period
is not used. (Note: 1 m/s = 3.6 km/hr.)
All other sequence attributes (rate,
velocity, lifetime, minsize, maxsize)
are interpolated so there are smooth
transitions between phases. If the mode
is set to anim, start is a value from 0.0
to 1.0 which describes the start time
into the object’s animation cycle. If the
mode is set to timeofday, start is a value
from 0.0 to 1.0 which describes the
time of day when this effect will start.
Values range as follow: 0 - midnight,
0.25 - 6am, 0.5 - midday, 0.75 6pm, 1.0
- midnight.

start-enabled boolean process-ID { industry Specifies whether the process starts
enabled.

Version 3.0  4 25   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

startingtime 0..1 driver-settings { activity Time of day. Range is from 0 to 1 (0.5
- midday).

steam { container config.txt steam-engine A container for steam settings.
storm [path/]filename.tga config.txt environment Name of image file for stormy sky. File

should be 256 x 256 pixel 24bit tga. The
file extension should be excluded here,
ie “QLD_Sky” rather than “qLD_Sky.
texture.txt”.

string-table { container config.txt all The string table stores a list of text
strings to be used by the industry script.

string-table-## { container config.txt all These alternative string tables store
translated strings

supports-null-driver-character boolean config.txt drivercommand Command can be executed without a
driver present in the selected loco.

surface-area motor { engine
surveyor-name-label boolean config.txt general Specifies whether this item has floating

name label text.
surveyor-only boolean config.txt general Adding this means the attached mesh

will only be visible in Surveyor and not
Driver.

surveyor-only boolean //effects-ID {// attachment
effect

Adding this means the attached mesh
will only be visible in Surveyor and not
Driver.

tender boolean config.txt traincar Specifies that the traincar is a tender.
terminator folder config.txt splines Name of model to use at end of bridge,

placed in subfolder with same name.
test-collisions boolean //mesh-table-ID {// interior Mouse cannot be used for this mesh.

Collision mesh used instead. Ie
animated-levers.

texture [path/]filename.
texture

config.txt general An image texture file.

texture [path]/filename.
texture

//effects-ID {// texture-
replacement
effect

Texture reference denoting the texture
file to be swapped by this effect.

texture kuid smoke# { smoke block Kuid of the texture to be used for the
effect.

texture-kuid kuid //effects-ID {// corona effect Add this tag only when you want to
specify your own texture for the corona.
It specifies the KUID of a kind texture
asset. See KIND TEXTURE.

texture-kuid <blank> //effects-ID {// corona effect If the texture-kuid tag is not present
the corona will use the default yellow/
orange texture in TRS.

textures { container config.txt texturegroup The textures container stores a list of
additional textures to be used in the
texture group.

three-part boolean config.txt hornsound Specifies that the hornsound has a
beginning, middle and ending sound.

throttle-notches motor { engine The number of notches for the throttle.
throttle-power { container config.txt engine A container for throttle settings.
thumbnails { container config.txt all Any asset may specify a thumbnail or

preview image.
//thumbnails-ID {// subcontainer thumbnails { all User supplied identifier
timerate float driver-settings { activity Time progression. (1 - real-time, 2 -

double speed etc.)
track kuid //attached-track-ID

{//
scenery with
track

Kuid of the track to be used.

Version 3.0  4 26   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

track trackID //attached-trigger-
ID {//

industry The track name which the train must be
on to trigger.

track kuid tracksound { Tracksound The track type to which this sound will
apply

trackdirections boolean config.txt splines Specifies the direction of traffic flow for
freeway spline models.

trackmark boolean config.txt trackside Specifies that the object is a trackmark.
trackoffsets float list, metres config.txt splines Distance in meters the rail/s are attached

to the center of the spline. Any number
of tracks can be attached to the spline,
only splines with the same track offsets
can be connected together.

track-parent kuid tracksound { Tracksound The parent (eg. bridge/industry/tunnel)
of the track to which this sound will
apply.

trackside float metres config.txt trackside This is a value that is the distance in
meters the object is placed relative to
the center of the track. Negative values
will put the object on the left side of the
track, and positive values will appear on
the right.

track-sound kuid tracksound { Tracksound The kuid of the tracksound object to be
used.

tracksound { container config.txt Tracksound A sound asset that is referenced by track
or bogeys to play a different sound
from the default track/train sound (for
example when a train travels over a
bridge or through a tunnel).

trainbrakepipe flowsize { engine Flowsize for the brake pipe.
trainbrakepipe volume { engine Volume for the brake pipe.
trainbrakepipe_reservoir flowsize { engine Flowsize for the brake pipe reservoir.
trainbrakepipe_start pressure { engine Brake cylinder pressure on loading the

game.
trainbrakepipevent flowsize { engine Flowsize for the brake pipe vent.
trainz-build build code config.txt general The Trainz build is the version number

for which this asset was created.
trigger boolean config.txt trackside Specifies that the object is a trigger.
trigger string //soundscript-ID {// mesh object A trigger may be used in an event file

(.evt) associated with an animation.
It plays at selected key frames of
animation as defined in the event
file. Sound files may triggered in this
manner, and from scripting. Used in
the mojunction example (switch lever)
the “toggle” action is automatically
triggered when the lever is operated and
the sound plays.

turntable { //mesh-table-ID {// mesh-table { turntable Predefined submesh identifier
turntable { subcontainer mesh-table { mesh object Predefined submesh identifier.
two-part boolean config.txt hornsound Indicates that the Railyard and Driver

hornsounds are different. The Driver
hornsound is looping. If this tag is not
present, the hornsound defauts to UTC
equivalent non-looping format.

type string config.txt scenery Specify a type for the model that will be
used in the Surveyor menu drop down
menu for Track or Object type.

Version 3.0  4 27   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

uncached_alphas boolean config.txt splines This is used in certain situations to
improve alpha sorting. This should only
be set to 1 for tracks that use an alpha
texture and are always placed flat .

unit_mesh folder config.txt splines For mesh-reducing track, the filename
of the long mesh, which must be
placed in a subdirectory of the same
name as the mesh. Only the file name
is entered, not the directory name nor
the file extension. For example, the full
pathname and extension is “rockwall/
rockwall.im”. Enter only “rockwall” in
the text input box.

upright boolean config.txt splines Specifies whether the bridge “legs”
point vertically, or perpendicular to the
spline.

useadjoiningtracktype boolean //attached-track-ID
{//

scenery with
track

Indicates whether the track type should
change to match that of the first track
joined to the object.

use-gradient-track boolean config.txt scenery This means to use the spline gradient
rather than following the ground height.

use-parent-bounds boolean mesh-table { mesh object Specifies that the mesh should use the
bounds of the parent object for visibility
culling. Use with caution.

username string config.txt general The human-readable English name of
this asset.

username-## string config.txt general The human-readable translated name of
this asset.

vacuumbrakecylinder volume { engine Not currently used.
vacuumbrakecylinder_start pressure { engine Not currently used.
vacuumbrakecylinder_
vacuumbrakepipe

flowsize { engine Flowsize of the vacuum brake pipe
cylinder.

vacuumbrakepipe volume { engine Not currently used.
vacuumbrakepipe flowsize { engine Not currently used.
vacuumbrakepipe_start pressure { engine Not currently used.
vacuumbrakepipereleasevent flowsize { engine Flowsize of the vacuum brake pipe

release vent.
vacuumbrakepipevent flowsize { engine Flowsize of the vacuum brake pipe.
vacuumbrakereservoir volume { engine Not currently used.
vacuumbrakereservoir_start pressure { engine Not currently used.
vacuumbrakereservoir_
vacuumbrakepipe

flowsize { engine Flowsize of the vacuum brake pipe
reservoir.

value-range min,max time of
day

//soundscript-ID {// mesh object 2 numbers, currently used only for
day/night sound effects. Midnight is 0.5,
midday = 0.0 or 1.0 Where the numbers
are not the same, this sets the start and
end times for the sound to play. Default
0,0 (off)

vehicle kuid //consists-vehicle-
ID {//

industry The kuid of the vehicle to be used.

velocity float smoke# { smoke block The initial speed of emitted smoke
particles. Default is 1.

vertices { subcontainer //attached-track-ID
{//

scenery with
track

Attachment points at which to place
track.

visible-on-minimap boolean config.txt splines Specifies whether the object\track is
displayed on the minimap.

volume 0..1 soundscript-ID { mesh object Gain of the sound Default 1.0 = 100%
volume { container config.txt engine A container for the soze of pipes and

appliances for an engine.

Version 3.0  4 28   Trainz Railroad Simulator - The Content Creator’s Guide

TAG OR CONTAINER DATA TYPE PARENT
CONTAINER

APPLIES
TO

DESCRIPTION

water kuid config.txt map Undocumented
watercolor rgb value config.txt region RGB colour value of the water for the

region.
water-injector-rate steam { steam-engine The water injection rate into the boiler

in Litres/second.
wave-shift //effects-ID {// corona effect Affects the flashing intensity pattren on

the corona.
weather 0..7 driver-settings { activity Weather setting. (clear, cloudy, drizzle,

rain, stormy, light snow, medium snow,
heavy snow)

westinghouse-volume steam { steam-engine The Westinghouse volume in litres.
width float metres config.txt splines Width of track mesh in meters.
width integer //thumbnails-ID {// all Image width
workingscale float config.txt map Sets the working scale of the map. 0 =

Real Scale, 1 = G Scale, 2 = 1/2 Scale,
3 = #1 Scale, 4 = O Scale, 5 = S Scale,
6 = OO Scale, 7 = HO Scale, 8 = TT
Scale, 9 = N Scale, 10 = Z Scale

workingunits boolean config.txt map Sets the working units of the map - 0 =
metric, 1 = imperial

Version 3.0  4 29   Trainz Railroad Simulator - The Content Creator’s Guide

Appendix D - New Functions in Trainz
Classics
A number of new functions have been introduced in TC, relevant to content creators. The following list summarises the
new features:

• New Freeways feature supporting and including one way and multi-lane roads
• Flashing ditch-lights
• Headlight dimmer system
• Remodelled roadway traffic featuring working head lights
• New sound functions for better representation of electric traction
• Train controlled sounds, lights and boom gates at build-in road crossings
• Automatic Train Protection options
• Computerised in-cab displays
• Improved Heads-Up-Display options
• Flexible Cab Signalling system
• Improved session-design options

username		 “Road_Freeway_01”
grounded		 0.4
region		 “Britain”
length		 5
width			 7.9
bendy			 1
kind			 “track”
type			 “Roads”
uncached_alphas	 1
carrate		 25
asset-filename	 “road”
kuid			 <kuid:523:100082>
istrack		 0
isroad		 1
isfreeway		 1
numlanes		 2	

multi lanes in one direction.

numlanes
The number of lanes to be generated. Default lane
spacing is 3.4 metres. Note that for kind track, traffic will
flow in one direction for all lanes.

carrate
This is required to actually generate cars. It defines traffic
density on the road (minimum seconds between each car
generated). 0 = No traffic. The number must be greater
than 3 for traffic to flow.

For a freeway with lanes flowing in both directions, a Kind
bridge has to be used. This asset calls up a freeway road
model by kuid to be used on the bridge.

The following example uses a Kind bridge to generate a
four lane road, calling up the two lane freeway asset in
the previous example.

Freeways - one way and multi-lane
roads
There are two kinds that support the creation of freeway
model, Kind Track and Bridge. The Kind track is used to
specify a road freeway asset. For example, a two lane
road mesh is used for the lanes of the freeway and tags
in the config.txt file specify lane configuration.

The example below is for a freeway with 2 lanes.

username		 “Road_Freeway_02”
grounded		 0.4
region		 “Britain”
length		 5
width			 7.9
bendy			 1
kind			 “track”
type			 “Roads”
uncached_alphas	 1
carrate		 25
asset-filename	 “road”
kuid			 <kuid:-22:1003>
trackoffsets	 -3.5,3.5
trackdirections	 0,1
height		 0
rgb			 255,200,0
istrack		 0
isroad		 1
isfreeway		 1
numlanes		 4
bridgetrack		 <kuid:523:100082>	

istrack
Specifies if this is rail track or not,
1 = traincars to use the asset,
0 = turns off this option.

isroad
Specifies that this is a road,
1 = generate traffic,
0 = suppress traffic. See also the carrate tag.

isfreeway
1 = asset will be a freeway model allowing the use of

Version 3.0  4 30   Trainz Railroad Simulator - The Content Creator’s Guide

carrate
This is required to actually generate cars. It defines traffic
density on the road (minimum seconds between each car
generated). 0 = No traffic. The number must be greater
than 3 for traffic to flow

trackoffsets
The offsets either side of the bridge centre line where the
attached road will be located. Note for a single road to be
attached on the centreline of the bridge, a small offset of
0.01 must be specified.

trackdirections
Specifies the direction of traffic for each of the road
assets attached to the bridge,
0 = traffic to flow in one direction for the dual lanes
attached at -3.5 metres,
1 = traffic to flow in the opposite direction for the dual
lanes placed at 3.5 metres.

height
This value defines the object use:
0 = the object is double track,
a negative value (-) means the object will be a bridge, the
value -12 for instance is the height from the deck to the
bottom of the bridge foundation,
a positive value(+) means the object is a tunnel, the
height 8 for instance is the height of the tunnel portal.

istrack
Specifies if this is rail track or not,
1 = allows traincars to use the asset,
0 = turns off this option

isroad
Specifies that this is a road,
1 = generate traffic,
0 = suppress traffic.

isfreeway
The asset will be a freeway model allowing the use of
multi lanes in one direction.

numlanes
The number of lanes of freeway traffic.

bridgetrack
The freeway road kuid that is to be used on the bridge -
this is a two lane freeway, placed either side of the bridge
centre line at the specified offsets. This attached road to
be used on the bridge requires the freeway tags, as in
example 1, to function as a freeway - see previous page.

Freeway junctions could be made using Kind buildable
objects. Attachment points would be specified where
necessary for track to be attached to the object.
Additional track attachment points would be specified
to define the track path through the object (a junction
for instance). The required freeway track type object
would be referred in the config.txt file as the track to be
generated on the object.

Flashing ditch lights
Operating ditch lights now function for locomotives. The
usual attachment point conventions apply for a point
placed in the mesh in 3dsmax or gmax.

a.ditch0, a.ditch1 etc

The odd numbered light points flash together, alternating
with the even numbered light points.

The flashing rate can be changed in the traincar config.txt
file, by adding the following tags:

flash-scale
1 = (default) 1 normal speed,
0.5 = half speed,
2 = double speed

Ditch lights are toggled in Driver using the ; key

Headlights - low and high beam
Locomotives can run with normal or dimmed lights (high
or low beam), use the Shift + L key in Driver.

The intensity of the light may be varied by adding the
following tag to the traincar config.txt file:

low-beam-value
1 = normal size or intensity
2 = (default) half size or intensity
0.5 = twice size or intensity

Operating lights on roadway traffic
Cars driving on roads can have operating head and tail
lights. Use the nightmode tag in the config.txt file for a car
and in the mesh table, include the default-night tag and
night mesh file that you create for the vehicle.

The following tags show the entries in the config.txt file.

nightmode
lamp = the car lights will be displayed when the car is a
static scenery object.

nightmode		 “none”

mesh-table {
 default {
	 auto-create		 1
	 mesh	“hilux_blue.im”
	 }
 default-night {
	 mesh	“night/gondwana_night.im”
	 night-mesh-base	 “default”
	 }
}

Version 3.0  4 31   Trainz Railroad Simulator - The Content Creator’s Guide

none = the car lights will not be displayed when the car is
used statically as a scenery object, but will be updated to
“lamp” if the car is included in road traffic by modifying a
Kind region.

Use the Content Creator Plus Module (CCP) to modify a
Region Kind to add cars to road traffic.

Sound functions for electric
locomotives
New functions to better represent electric locomotive
sounds have been implemented. The options are set in
the config.txt file for the enginesound Kind.

For an electric locomotive, the sound may be considered
a speeding up of one wave form, different from diesel or
steam locomotives where different sound files are used in
“steps”.

The sound used is a single .wav file called engine_loop.
wav and must be placed in the directory with the config.
txt file. TC automatically loads the file of this name.

Normally the .wav file used is the base sound (the sound
used at zero km per hour). With electric engines there
should be no sound at zero speed, and the use of the
isfading tag scales the volume, reducing the sound as the
speed reduces to zero.

To distinguish between usage for diesel or electric the
following tag is used.

isspeed
This is the speed up factor.
1 = play the sound file at twice speed when the engine
speed is at maximum,
2 = (default) play the sound file three times the speed
when the engine speed is at maximum,
4 = play the sound file five times the speed when the
engine speed is at maximum.
From the above, the playing speed is seen to be the
original speed plus the factor (eg 1 plus 4 = 5 times
speed).

Other values may be used in the above tag.

To fade the engine sound when the locomotive
decelerates or stops, the following tag is used.

isfading
1= sound fades to zero when speed is reduced, and

plays no sound at zero km per hour.

isramping
0 = using a single .wav file, winds up the sound, or play
the sound file faster, based on the traincar speed and tag
values, used for electric locomotives,
1 = use different sound files for each “step” throttle
notch, for steam and diesel locomotives.

Playing speed for the electric sound file is defined in the
following tag, and is linked to the maximum locomotive
speed set in the enginespec file, the maxpeed tag.

Traincar interiors
New functions have been added to the interiors to
represent digital displays and heads up displays, for
example. The following example of part of the config.txt
file for the interior for the MN M7 locomotive illustrates the
use of the new tags and script.

Note: Not all the container entries necessary for the asset
are shown in this example, only parts to illustrate new
functions and tags.

kind			 “enginesound”
asset-filename		 “MN M7 enginesound”
kuid			 <kuid:523:100052>
username		 “MN M7 enginesound”
isspeed		 4
isfading		 1
isramping		 0

script		 “SignalInterior”
class		 “SignalInterior

kuid			 <kuid:523:55585>
soundscript {
 warning {
	 distance	 3,100
	 attachment	“a.limfront”
	 trigger	 “Warning”
	 sound {
			 alarm.wav			
		 }
	 }
}
mesh-table {
 default {
	 mesh	“m7_interior.im”
	 auto-create		 1
	 effects {
		 next-station {
		 kind	 “name”
		 fontsize		 0.01
		 fontcolor		 230,177,39
		 att		 “a.station”
		 name		 “AIDAN”
	 value		 “ “
			 }
		 }
	 }
 speedo_needle {
	 kind		 “needle”
	 auto-create	 1
	 mesh		 “speedo_pointer.im”
	 att		 “a.speedo”
	 limits		 0,48
	 }
 reverser_lever {
	 kind		 “lever”
	 mesh		 “reverser.im”
	 att		 “a.reverser”
	 limits		 0,2
	 angles		 2.55,1.55

Version 3.0  4 32   Trainz Railroad Simulator - The Content Creator’s Guide

Script and Class are references to the new script
required for the new interior cab HUD to display the
next station names. The script SignalInterior.gs is
found included with the new models (MN M7 interior for
example).

Additional new scripts for the locomotive also interact
with the interior scripts for cab displays, compare scripts
provided with the M7, FL9 and P32 locomotives. These
scripts are individually tailored to the functions for each of
the locomotives (fl9.gs for the MN FL9 locomotive).

The soundscript container refers to the warning sound
for the new incab sound functions.

distance
The first distance in metres is that which the sound is played at

	 notches	 0,0.5,1
	 notchheight	 3,3,3
	 mousespeed	 1
	 auto-create	 1
	 radius		 0.05
	 }
 bptrainbrakepipe_needle2 {
	 kind		 “digital-dial-prs”
	 mesh		 “brake_needle.im”
	 att		 “a.trainpipe_needle_0”
	 limits		 0,55
	 font		 “arial”
	 fontsize	 0.01
	 fontcolor	 196,196,246
	 auto-create	 1
	 }
 bptrainbrakecylinder_needle2 {
	 kind		 “digital-dial-prs”
	 mesh		 “brake_needle.im”
	 att		 “a.brakecyl_needle_0”
	 limits		 0,55
	 font		 “arial”
	 fontsize	 0.01
	 fontcolor	 196,196,246
	 auto-create	 1
	 }
 speedo_needle2 {
	 kind		 “digital-dial-spd”
	 mesh		 “brake_needle.im”
	 att		 “a.digispeedo”
	 limits		 0,55
	 font		 “arial”
	 fontsize	 0.01
	 fontcolor	 196,196,246
	 auto-create	 1
	 }
 bptrainbrakepipe_needle {
	 kind		 “needle”
	 mesh		 “speedo_needle.im”
	 att		 “a.bpressure”
	 limits		 0,1480
	 auto-create	 1
	 }
 bptrainbrakecylinder_needle {
	 kind		 “needle”
	 mesh		 “red_needle.im”
	 att		 “a.bcpressure”
	 limits		 0,1480
	 auto-create	 1
	 }
 cabsignal_restricted {
 	 auto-create	 0
	 mesh		 “cabsignal_restricted.im”
	 att		 “a.cabsignal”
	 }
 cabsignal_medium {
	 auto-create	 0
	 mesh		 “cabsignal_medium.im”
	 att		 “a.cabsignal”
	 }
 cabsignal_limited {
	 auto-create	 0			
	 mesh		 “cabsignal_limited.im”
	 att		 “a.cabsignal”
	 }
 cabsignal_normal {
	 auto-create	 0	
	 mesh		 “cabsignal_normal.im”
	 att		 “a.cabsignal”
	 }
 atp_on {
	 auto-create	 0
	 mesh		 “atp_operational.im”
	 att		 “a.atp”
	 }

 atp_penalty {
	 auto-create				 0
	 mesh		 “atp.im”
	 att		 “a.atp”
	 }
 horn {
	 kind		 “pulllever”
	 mesh		 “horn.im”
	 att		 “a.horn”
	 auto-create	 1
	 angles		 0,-0.55
	 limits		 0,1
	 mousespeed	 -1
	 radius		 -0.02
	 notches	 0,1
	 notchheight	 0,0
	 }
 throttle_brake_lever {
	 mesh		 “power_handle.im”
	 auto-create	 1
	 att		 “a.power_handle”
	 limits		 0,63
	 angles		 -1,-1.86
	 notches	 0,0.0303,0.0606,0.0909,0
.1212,0.1515,0.1818,0.2121,0.2424,0.2727,0.3
03,0.3333,0.3636,0.3939,0.4242,0.4545,0.4848
,0.5,0.5151,0.5454,0.5757,0.606,0.6363,0.666
6,0.6969,0.7272,0.7575,0.7878,0.8181,0.8484,
0.8787,0.909,0.9393,1
	 notchheight	 1,2,2,2,2,2,2,2,2,2,2,2,2,
2,1
	 att-parent				
“default”
	 kind					
“lever”
	 mousespeed	 1
	 radius		 0.12
	 invert		 1
	 }
 light_switch {
	 kind		 “lever”
	 mesh		 “lightdial.im”
	 att		 “a.lights”
	 limits		 0,1
	 angles		 0,2
	 notches	 0,1,2
	 notchheight	 0,0
	 mousespeed	 -1
	 radius		 0
	 auto-create	 1
	 }
}

Version 3.0  4 33   Trainz Railroad Simulator - The Content Creator’s Guide

full volume and the second distance where the sound plays at half
volume. Outside the second distance the sound is cut off.

attachment	
The attachment point for the sound, in this case the a.limfront of the
traincar.

trigger
The trigger name, in this case “Warning”.

sound
The .wav sound file in this case “alarm.wav”.

The effects container within the mesh table refers to the next-
station effect which allows the approaching station name to be
displayed in the HUD for the interior.

next-station
The name of the effect container.

kind	
The type of effect.

fontsize
Fontsize as a factor of the default font size .

fontcolor
Font colour.

att
Attachment point in the mesh for the effect.

name		
Name of this effect - use Aidan for this effect.

value
A blank value (“ “) initially shows no station names in the
HUD until a station that has been appropriately named is
within range of the traincar. Make sure there is a space
between the quotation symbols.

For incabin levers and digital displays, the speedo_
needle and reverser_lever are the usual containers for
those levers.

The bptrainbrakepipe_needle2 and the
bptrainbrakecylinder_needle2 are for the new digital
display containers. A mix of analogue and/or digital
displays may be used, the addition of “2” to the name
allows for a second display to be separately used and
displayed.

kind
digital-dial-prs is the new kind for the digital display for
pressure.

mesh
A mesh must be used for the container to work, for
example the “brake_needle.im”. This mesh does not
display so any mesh provided will be used to satisfy the
requirement.

limits
For a normal lever these define the lower and upper limits
of the display device (dail for example). For the digital
display they are non-functional but the tag and some
data values still have to be provided to satisfy coding

requirements.

font tags
The settings for these tags select the font type and size.

The speedo_needle2 container defines the digital values
for the speed display, which uses a different kind form
the pressure displays. Again, the referenced mesh is
necessary but not used for display. The “2” in the name is
used when the second display for speed is required (the
first might be an analogue needle, or a digital display, and
a second display is required).

kind
digital-dial-spd is the new kind for the digital display for
speed.

For cab signals displayed in the Heads Up Display
(HUD) there are a number of containers used to define
signal status in the cab. The four state displays (unique
container names) are:

cabsignal_restricted,
cabsignal_medium,
cabsignal_limited,
cabsignal_normal.

Note that these are not automatically created (auto-create
0 tag) when the traincar is generated in Driver. Normally
they display only when required, the locomotive scripts
define if these are turned on (displayed or not) for this
particular cab interior. While the auto_create 1 tag can be
used to display when the mesh is placed in Trainz, the
cabsignal functions should be defined as either all on or
all off. Do not mix the auto_create tag values.

Refer to the fl9.gs script for example, for further
information and use.

The cabsignal values are displayed in the cabin in the
form defined by the .im file created (lights for instance),
displaying the letters R, M, L, N for the in-built models.
These refer to the state of the signals passed on the
route.

Automatic train protection is provided by the atp_on and
atp_penalty containers

By including and loading the limitspeed rule in the
session, the atp_on display indicates that the session
speed rule is provided and therefore turned on for use.

The atp_penalty acts in conjunction with the audible
warning sound to indicate that speed limits have been
exceeded and the limitspeed rule will take control of the
traincar speed.

The horn lever has a new function. Using the kind
pulllever makes the lever return to the default or start
position after in-cab operation - it returns to the original
position (the lower value set in the limits tag) as if spring

Version 3.0  4 34   Trainz Railroad Simulator - The Content Creator’s Guide

loaded. Tags for this kind are as for normal levers.

throttle_brake_lever
This is a new container that combines a throttle with a
brake lever.

limits
Sets the limits for the lever, the upper limit is defined
as: multiply the number of notches by 2 and add 1, for
example, for a throttle with 8 notches:

the upper limit is 8 x 2 plus 1 = 17.

Additional tags for interiors (not used in the above
example) include a cabin muffle sound tag. Adding the
folowing tag sets a reduce sound volume in the cab:

cabin_muffle	 0.4
0.4 defines the factor by which the sound volume is
reduced (40% in this example).

Fonts
Trainz allows the use of text on name sings, for example
a sign used on a station or scenery object, defined by the
a.name point convention for points placed in the mesh, in
3dsmax or gmax.

The name function is defined in the config.txt file for the
object. Refer to Page 12 for information on the usage of
the Effects Kind name container and the orientation of the
a.name points.

TC has added the ability to define the fonts to be used for
the text, alternative to the default font.

The fonts that are available for general use are:

arial
console
comic_sans
courier
cordia
century_gothic
garamond
helvetica
impact
sans_serif
swiss
tahoma
times_new_roman
verdana

All these fonts have a base size of 24 points. This size
is varied by using the fontsize tag (a multiplying factor of
the default font size) in the config.txt file. The following
example shows the use of the new font names.

font
The name of the font - refer to the list of names above.

fontsize
The size of the font as a fraction of the original default
font size, eg. 0.15 is 15% of the default size of 24 points.

There is an additional larger default font size that has
been used in TC which is available for use. This is
referenced by the in-game name, mainmenu_titles, not by
the more usual “font” name Arial. By using this larger font
(80 points) and specifying a font size factor, better quality
may be obtained for the name text on the created asset.

mainmenu_titles

Routes or maps
Two previously undefined tags have now been defined
for a kind map. While these are automatically generated
when you start a map in Surveyor, they can be later
altered in CCP.

workingscale
defines the scale of the map
0 = Real Scale
1 = G Scale
2 = 1/2 Scale
3 = #1 Scale
4 = O Scale
5 = S Scale
6 = OO Scale
7 = HO Scale
8 = TT Scale
9 = N Scale
10 = Z Scale

mesh-table
{
 default
 {
 mesh industry.lm
 auto-create 1
 effects
 {
 0
 {
 kind name
	 font garamond	
 fontsize 0.15
 fontcolor 30,30,30
 att a.name0
 name name
 }
 1
 {
 kind name
	 font swiss
 fontsize 0.3
 fontcolor 30,30,30
 att a.name1
 name name
 }
 }
 }
}

Version 3.0  4 35   Trainz Railroad Simulator - The Content Creator’s Guide

workingunits
0 = Metric units of measurement
1 = Imperial units of measurement
In Surveyor you may use the command:

AMMP (Aidan make me a map please).

This command is typed from the keyboard and generates
a random map (terrain) on the baseboards.

Other useful information
Additional functions not strictly required for content
creation but of interest to creators are:

Surveyor - Height Control

Holding down the LMB while moving the mouse forward
will now raise objects that are height adjustable in
increments of 1.0 units. Conversely, moving the mouse
backwards will lower the object in the same way. Holding
the Ctrl key in conjuction with this move will adjust the
objects height in increments of 0.1 units and holding the
Shift key will change the height by units of 0.05.

Surveyor - Train Controlled Level Crossings

Add a level crossing road/rail junction from the Scenery
Objects Tab in Surveyor, e.g. XING 1 US

Use the Edit Properties dialogue in the Scenery panel to
uniquely name the crossing, e.g. Hobotown

Add the crossing lights to both sides of the crossing and
name those in accordance with the name given to the
crossing,e.g. Hobotownsig1 and Hobotownsig2.

Surveyor - Cab Signals

Add the object “MN Trackside Cabsignal” from the Track
Panel / Trackside Objects. This signal controls the states
that will be shown by the in cab signalling and is only
visible in Surveyor.

Surveyor - Computerised In Cab Display

The computerised M7 cab digitally displays various
technical and safeworking data. It can also display the
next station name. Add a trigger at the point along the
track where you would like the next station name to light
up in the cab. The naming convention is simple. If the
next station is “Hobotown” then name the trigger as:

xxHobotown

The name will be displayed until the train passes another
station-name trigger.

To blank the display add another trigger named xx_

Driver - Automatic Train Protection

Add the “speed_rule” to a session using Surveyor’s “edit
session” dialogue. This limits your train’s speed to within
the limit as imposed by both the trackside speedboards
and the cab signalling system.

Driver - Odometer Trip Meter Display

Add the “Display Custom HUD” rule to a session using
Surveyor’s “edit session” dialogue. A new “Trip Meter”
field will be added to the Custom Heads Up Display
(HUD) which can be reset at anytime by pressing the T
key on the keyboard.

Driver - Headlight Dimmer

Pressing Shift + L will toggle the train headlight from
bright to dim.

Driver - Flashing Ditch Lights

Where ditch lights are modelled, pressing the ; key will
toggle ditch lights from constant to flashing. Headlights
must be on before ditch lights will appear and/or flash.

Scripting
This document does not cover scripting functions and
coding in detail, but may refer to necessary scripts for
correct functionality. Some of the new scripting functions
that have been included in TC include:

setgoodfog, setbadfog
To set the density of fog to be used - can use values
larger than 1.

setdrawdistance
Sets the drawdistance for the ground and scenery items.

worldplaysound
This is a looping waveform to play a sound in a map.

World Day, World Night
Specifies a function may play during daytime or at night.

playvideo
This is a rule to play a video clip.

locomotive and cabin scripts
These have been developed for each individual
locomotive and associated cab, for the in-built models.
Each individual script may not use all the available new
tags for cab displays.

Users would need to modify these scripts for other
uses. Refer to included scripts for the M7, FL9 and P32
locomotives for information. Useful examples are:

signalinterior.gs
acmu.gs
fl9.gs
p32.gs
m7.gs

Version 3.0  4 36   Trainz Railroad Simulator - The Content Creator’s Guide

Station.gs

There is a new station script used in TC to load and
unload passengers. The file is Station.gs, found in
a number of the MN station assets in TC. This script
operates two platforms. A second script, Station3track.gs
will operate three platforms on one station. By comparing
the script differences, modified scripts may be created to
operate more than three platforms.

The script makes the stopping points of trains more
predictable and accurate, provided the following is used
to set trigger points on the station tracks in 3dsmax or
gmax.

Trigger points in 3dsmax/gmax

A track trigger point should be placed at each end of
the platform, and another on the track near the centre
of the platform length, for example a.trig1a, a.trig1d and
a.trigmain. Refer to the diagram above.

Trigger radii are defined in the config.txt file for the
station, and 10 metres is suggested for these three
trigger points.

Additional trigger points need to be placed in between
these three, so the trigger diameters touch along the full
length of the track. Place the a.trig1b and a.trig1c points
equidistant between the already placed points. Calculate
a radius X or Y to suit and enter in the config.txt file for
the station.

A maximum value for X or Y should be 75 metres
for consistent operation. If larger, place additional
intermediate trigger points with reduced radii.

While different names can be used for the triggers, or
track attachment points called up in the config.txt file as
triggers, it is often more convienient to specify separate
trigger points in the 3dsmax/gmax mesh, in order to have

the trigger diameters touch - track attachment points,
particularly for curved stations are not always in the best
locations required for trigger points.

Refer to the above example diagram for suggested
placement.

CMP functions
New functions of interest to Creators are included in the
Miscellaneous screen of CMP.

Suppress Asset Warning in Trainz
This allows you to disable the “Missing Asset Screen”
displayed when launching a route.

Suppress Asset Database Update at Startup
This allows you to disable the DLS update process
every time you start CMP or return to it from Trainz. For
creators this should speed up the process of creating
content when you do not wish to keep checking with the
Download Station updates.

Note this does not suppress the update of the local
assets.tdx file when CMP is loaded.

Built in Objects - Colour Display in Driver
Adding the line -showkuids to the Trainzclassicoptions.
txt file will show the kuid number of any object selected
in Surveyor, in the bottom right of the Surveyor screen. A
built-in object will show the kuid in yellow and a custom
objects will be shown in red.

For more information on the Trainzclassicoptions.txt file,
see Page 386.

Automatic Committal
Modified and imported assets will be committed
automatically when launching TC from within CMP.

Version 3.0  4 37   Trainz Railroad Simulator - The Content Creator’s Guide

CCP updates
Note: At the time of writing, CCP has not been updated
with the new tags covered in this Appendix.

Creators would need to add new tags and containers
manually to the config.txt file.

Version 3.0  4 38   Trainz Railroad Simulator - The Content Creator’s Guide

ACKNOWLEDGEMENTS

We would like to acknowledge the assistance of a number of members of the community, who have made formal
submissions, with comments and suggestions, on the revision of the CCG.

Pencil42 for assistance with map tags, and all other respondents with suggestions and assistance.

The input has been invaluable and has assisted us to address many of the community questions about content
creation. A general thank you is also extended to the wider Trainz community for their forum posts on content creation
issues and suggestions.

Finally, thanks to Ian Manion for the revision to suit the new TC release.

The Brew Crew.
(June 2007)

