MÉRNÖK-INFORMATIKUS és MŰSZAKI INFORMATIKA
szak záróvizsga-tételei
Érvényes 2009. január 1-től
„A” tételek
1. A processzor felépítése, utasításkészlete. Utasítások szerkezete, címzési módok. Utasításszámláló és utasítás-regiszter. Az utasítás-feldolgozás elemi lépései.
A CPU felépítése

 [image: image76.png]Alakzat

hely: Location
méret: Size

kirajzolas ()

mozgatas (GjHely: Location)
nagyitas ( faktor: Real )
forgatas ()





[image: image2.jpg]processzer oldal adasin




A processzor a számítógép egyik legfontosabb eleme. A CPU egyetlen,nagy integráltságú lapkán tárolófelület, vezérő-, illetve input-output funkciókat ellátó elemeket tartalmaz.  
A PC-k ben a processzor az alaplapon található meg a központi tárral egyetemben. Az alaplapon ezekhez az elemekhez kapcsolódik az adatforgalom számára szükséges un. buszvonal és a perifériák illesztője. Sokféle mikroprocesszor struktúra ismert, de mindegyikre jellemző a három  fő egység, a vezérlő egység, az aritmetikai egység és a különböző funkciójú regiszterek megléte. Az egyes részegységek feladatai az alábbiakban foglalhatók össze:
 A mai processzoroknak alapvetően két nagy csoportja van : 
CISC - Complete Instruction set Computer   
  pl. Intel 8086  
  különbözo hosszúságú, több processzorciklusú utasítások  
  
RISC - Reduced Instruction Set Computer  
  pl. Intel 80486  
 csökkentett utasítaskészletu processzorok 
 CACHE (gyorsítótár, előtároló)

Kisméretű, gyors elérésű, speciális memóriaegység, amely az információáramban a memória és processzor között helyezkedik el, és ezen egységek műveleti sebessége közti különbséget egyenlíti ki. Ha nincs CACHE a gépben, az akár nagyságrendekkel lassíthatja a program végrehajtását. elsődleges gyorsító memória: az a célja, hogy ne kelljen minden esetben a processzorhoz képest lassabb memóriához fordulni, és ne lassuljon le emiatt a processzor működése. Ez az elsődleges cache általában nem elegendő, ezért másodlagos cache memóriát is tartalmaz a számítógép (256 vagy 512 kB, vagy még több).

Vezérlő egység (CU): 
A processzor vezérlő egységének feladata a program utasításai, vagy külső kérések (periféria megszakítási kérelme, sín igénybevételi kérése) alapján, vezérlő jelek segítségével a gép részeinek irányítása.
Aritmetikai - logikai egység (ALU) : 
A processzornak azon része, mely a számolási, összehasonlítási, logikai műveleteket végzi.
Feladata: 
- Adott adatokkal vezérlõ jelek alapján végrehajtja az aritmetikai logikai mûveleteket (+,-,*,/,AND,OR,NOT,stb.) 
- Saját regisztereik (akkumolátoraik) lehetnek. 
- Aritmetikai mûveletek: 
a)Komplementálás. 
b)Összeadás. 
- Logikai mûveletek: a)AND. 
b)OR. 
c)NOT. 
- Léptetõ mûveletek: Jobbra adott pozícióval;Balra adott pozícióval;Ösz-szehasonlítás.
Regiszterek: 
A processzorok ideiglenes adattárolási céljaira szolgálnak. A regiszterek a belső sínrendszeren keresztül tartanak kapcsolatot a processzor más részeivel. A legfontosabb, legtöbb processzornál meglévő regiszterek a következők: 

[image: image3.png]


Utasítás számláló regiszter
[image: image4.png]


Utasításregiszter
[image: image5.png]


Báziscím regiszter
[image: image6.png]


Indexregiszter(ek)
[image: image7.png]


Állapotregiszter(ek)
[image: image8.png]


Veremmutató regiszter
[image: image9.png]


Pufferregiszter(ek)

 Jellemzők:
A processzor hajtja végre és vezérli a műveleteket. A végrehajtás előtt  neki kell megvizsgálni és feldolgozni minden utasítást.
A processzor teljesítménye alatt azt az időt értik, amelyre a processzornak szüksége van egy bizonyos feladat végrehajtásához. A processzornak két lényeges jellemzője, amelyek utalnak a teljesítményre: az egyik a szóhossz (bitszám, vagy bitszélesség), a másik az órajel frekvencia. Mindkettő azt a sebességet határozza meg, amellyel adatokat lehet feldolgozni.
A szóhossz 
A számítógép teljesítményének szempontjából alapvető jelentősége van annak, hogy mekkora az a szóhossz, amivel a számítógép dolgozik. A szó hosszát, amellyel a processzor dolgozik, belso szóhossznak nevezzük.

Ezek a következők lehetnek: 

· 8 bites processzorok = 1 byte 

· 16 bites processzorok = 2 byte 

· 32 bitesek = 4 byte 

· 48 bitesek = 6 byte 

· 64 bitesek = 8 byte 

A belső szóhossz mellett, amellyel a processzor dolgozik, fontos még a buszrendszer szóhossza is: 

· az adatbusz bitszélessége, 

· a címbusz bitszélessége. 

Az adatbusz szélessége azt mutatja, hogy a processzor hány bitet tud egyidejűleg a hozzá kapcsolt perifériákra küldeni. A címbusz közvetíti azokat a jeleket, amelyek a tárolóhelyek eléréséhez szükségesek. A címbusz szélessége határozza meg a közvetlenül megcímezhető címtartomány nagyságát. Az Intel 8086 például 16 bites adatbusszal és 20 bites címbusszal dolgozik.

Az órajel-frekvencia 
Egy számítógép teljesítményét az órajel-frekvencia is meghatározza. Az órajel-frekvenciát a vezérlőkvarc (órajeladó) hozza létre, amely vagy közvetlenül integrálva van a processzorba vagy azon kívül helyezkedik el. Az órajel a PC munkaüteme és Megaherztben ( MHz) mérik. Egy Herzt az a frekvencia, amely 1 másodperc alatt egy rezgést végez. A 8 MHz tehát azt jelenti, hogy a kvarc másodpercenként 8 milliószor rezeg. Ez a rezgés határozza meg az utasítások végrehajtásának gyorsaságát. Általában azt lehet mondani, hogy minél magasabb az órajel, annál gyorsabban tud a számítógép dolgozni.

MIPS (Million Instruction Per Second)
Millió utasítás másodpercenként. A processzor teljesítményét jellemzi.

1MIPS=1000000 utasítás/ másodperc. 
Utasításkészlet, utasítástípusok

Az utasításkészlet alatt a processzor számára értelmezhető utasításokat értjük. Az utasításkészletek tartalmaznak különböző aritmetikai, logikai, adatmozgató, karakterlánc és vezérlésátadó utasításokat, melyek segítségével a processzorok alkalmasak a legkülönfélébb feladatok végrehajtására.

Az utasítások szerkezete meghatározza a processzor számára, hogy a gépi utasítás mely részét hogyan értelmezze. A gépi utasítások három részből épülnek fel:

[image: image10.png]miveleti jelrész]

cmrész

Gidosito rész





Az utasítások három fõ részre bonthatók: 

-  Műveleti rész: a processzor számára az elvégzendő feladatot határozza meg. 
-  Módosító rész általában a műveleti rész és a cím rész értelmezéséhez ad kiegészítő információt.
- Címrész, amely a művelet végrehajtásához szükséges adatok helyét határozza meg a számítógép tárolójában.
Az utasítástípusok a következőképpen csoportosíthatók:

· átviteli utasítások: tároló, veremkezelő (PUSH/POP), periféria

· műveleti utasítások: aritmetikai (ADD) és logikai műveletek (AND), léptetés

· vezérlő utasítások: a program végrehajtását, a gép működését befolyásolják; feltétel nélküli, és feltételes ugrás (JMP, JNZ), szubrutinhívás (CALL), megszakítás engedélyezés/tiltás
Címzési módok
SYMBOL 183 \f "Symbol" \s 10 \h Abszolút: Közvetlen tárcímet adok meg

SYMBOL 183 \f "Symbol" \s 10 \h Relatív: Adott tárcímhez való eltolást adom meg

SYMBOL 183 \f "Symbol" \s 10 \h Direkt: A megadott címen operandust találok

SYMBOL 183 \f "Symbol" \s 10 \h Indirekt: A megadott címen egy újabb címet találok

SYMBOL 183 \f "Symbol" \s 10 \h Direkt regiszteres címzés: a regiszterben a cím található

SYMBOL 183 \f "Symbol" \s 10 \h Indirekt regiszteres címzés: a regiszterben adatcím van , ahol a címet találjuk

Címmódosítások :

· Bázisregiszteres címzés: Valódi cím = Bázisregiszterben megadott cím + eltolási érték 
(a cím helyett csak az eltolási érték az operandus, így jelentősen lerövidül az utasítás)

· Indexregiszteres címzés: Valódi cím +Bázisregiszterben megadott cím + indexregiszterben megadott cím + eltolási érték.
(olyan utasításoknál, ahol több egymást követő adatot mozgatunk az indexregiszter automatikusan növekszik)

Utasításszámláló regiszter (PC v. IP):

[image: image11.jpg]VO egység





Ez a regiszter mindig a soron következő utasítás memóriabeli címét tartalmazza, a kezdő értékét, azaz a program első utasításának tárbeli helyét, kívülről (pl.: az operációs rendszertől) kapja, a program indítása előtt. 

Utasítás regiszter:

A vezérlő egység fontos része, amely a tárból kikeresett (lehívott) utasítást fogadja be arra az időre, amíg a vezérlő egység az utasítás hatására a műveletet elvégzi, és elindítja a végrehajtást vezérlő mikroprogramot. Korszerű processzoroknál az utasítás feldolgozó módszer miatt ez a regiszter ilyen formában már nem található meg.
Az utasítás-feldolgozás elemi lépései:
Utasításvégrehajtás normál gépi ciklusban történik.Neumann elvû számítógépek esetében az utasítások és az adatok ugyanabban a tárban helyezkednek el. Ennek következtében az utasítás és az adat elõkeresése csak egymás után történhet, ezt nevezik soros utasítás-feldolgozásnak. Más architektúrákban, ahol külön program- és külön adattároló van tárolónként külön sínrendszerrel, egy utasítási ciklusban történik a teljes utasítás feldolgozása - párhuzamos utasítás-feldolgozás. 
[image: image12.png]operandus chvasis |5 vesbilés

et cvacks 3

Neumann-elvii gép soros utasitasfel dolgozasénak vizlata




A processzor mûködésének lényege a programutasítások feldolgozása. Ezen utasítások lépésekre történõ felbontás segíti a mikroprogramozás, valamint az átlapolt végrehajtás lényegének megértését. Egy utasítás végrehajtása alapvetõen az alábbi részekbõl tevõdik össze: 

Utasításelõkészítés, utasításlehívás.A processzor ebben a fázisban a következõ utasítás memóriacímét, amelyet az utasításszámláló regiszter (PC) tartalmaz, átviszi a memória címregiszterébe (MAR). Amennyiben nem rendelkezik ilyennel, a PC tartalma a címsínt vezérlõ cím-pufferregiszterbe kerül. A processzor ez alapján keresi ki a tárból az utasítást, amely az utasításregiszterbe (IR) kerül. 

Utasításszámláló regiszter tartalmának növelése. A PC tartalmának automatikus növelésével elõáll a következõ utasítás tárolóbeli helyének memóriacíme. A PC tartalma az utasításhossznak megfelelõ számmal nõ. Az operációs rendszer állítja be az utasításszámláló kezdõ értékét. 

Mûveleti kód értelmezése, az operandus címének meghatározása. A processzor a mûveleti jelrész dekódolásával meghatározza, hogy milyen utasításokat kell végrehajtania, valamint az utasítás címrésze alapján meghatározza a mûvelethez használandó operandus(ok) címét. Amennyiben az utasítás nem igényel operandust (vezérlés), a processzor a végrehajtási fázisra tér át. 

Adatok elõkészítése a mûvelet elvégzéséhez. A központi egység az elõzõekben kidolgozott cím alapján kikeresi az operandus(ok)at a memóriából és az utasítás által meghatározott helyre, amely az esetek többségében az aritmetikai egység akkumulátora (AC), de lehet más regiszter is. 

Végrehajtás. Megtörténik az utasítás által kijelölt feladat elvégzése az elõkészített operandussal. Vezérlésátadó utasítások esetén a processzor az utasításban levõ címet - amely meghatározza, hogy a program honnan folytatódjék - beírja a PC-be. 

Az eredmény elhelyezése. A központi egység a kapott eredményt elhelyezi az elõírt helyre, amely többnyire az akkumulátor. Ezután újrakezdi az utasításfeldolgozást.

Rövidebben:

A gépi utasítások végrehajtásának elemi lépései a következők:

Utasításelőkészítés vagy lehívás

Az utasításszámláló regiszter tartalmának növelése. 

Az utasítás dekódolása

A művelet végrehajtásához szükséges adatok kiolvasása a főtárból, előkészítése a végrehajtáshoz.

A műveleti kód alapján értelmezett művelet végrehajtása az előkészített operandusokkal. 

A művelet eredményét a processzor beírja az utasításban előírt tárolóhelyre.

2. A verem fogalma és működése, a veremmutató regiszter. A vermet kezelő utasítások. A verem alkalmazása szubrutinok kezelésében. A szubrutinra vonatkozó utasítások.
A verem
[image: image13.jpg]BUSHEE a0
IR Ble————

- Legfiatalabb
- Legid6sebb

18.12. dbra. Verem




A számítástechnikában a verem (angolul stack) a számítógép memóriájának egy része, amelybe a processzor azokat a memóriacímeket menti el, ahova egyes eljárások befejeztével visszatér. A verem olyan adatstruktúra, amelyből a benne utoljára eltárolt adat olvasható ki először.

Általában az alprogramok, eljárások, függvények kezelését segíti elő, de használják az aritmetikai műveleteknél az operandusok és részeredmények tárolására.

Veremkiíratás az a folyamat, amikor az informatikus a verem értékeit kiíratja monitorra vagy nyomtatóra.
Működése
A stackben többnyire regiszterek tartalmát tároljuk (mentjük el), átmenetileg. Ennek oka az, hogy a mikroprocesszor leggyorsabban a belső regiszterekkel tud műveleteket végezni. A regiszterek száma viszont korlátozott. Pl. gyakran előfordul, hogy az összes regiszter már olyan információt tartalmaz, amely még nem felülírható, de az adott részfeladat elvégzéséhez szükség van további regiszterek használatához. Ekkor valamely regiszter(ek) tartalmát ideiglenesen a stackbe tudjuk kivinni (majd később a stackből a regiszter tartalmát vissza tudjuk állítani) és a regiszterbe már aktuálisabb tartalmat tudunk betölteni. Ez a művelet általában gyorsabb és kényelmesebb, mint a memóriába írni a regisztertartalmat. Hiszen ilyenkor meg kellene választani a címzést, meg kellene jegyezni a tárolási címet és a tárolt adat hosszát.

Régebbi mikroprocesszoroknál ún. belső stack létezett, vagyis a processzoron belül volt a verem, ami jelentősen korlátozta a processzor kapacitását. Ma minden processzornál a RAM-ban elhelyezhető 'külső stack' található.

Veremmutató regiszter (SP):
 A verem legfelső elemét jelöli ki. A veremtároló egy speciális tároló, amely elsősorban az alprogramok kezelését segíti. A verem nem része a belső regisztereknek, általában a főtárolóban kerül kialakításra. Szervezése LIFO (Last in first out) jellegű, ami azt jelenti, hogy az utoljára bekerült adat vehető ki először, és amit legelőször tettünk be, azt vehetjük ki utoljára (Több szintű verem létezhet, több SP is lehet). A "verem instrukciók" (PUSH, POP) automatikusan hivatkoznak az SP-re és automatikusan állítják. 

[image: image14.jpg]cim-4

cim-3

®
2
E

cim-2
cim-1

cim





A vermet kezelő assembly utasítások:

-  PUSH op (a 2 byte-os operandust a verembe írja, (az SP értéke 2-vel csökken). Tele verembe nem lehet.

-  PUSHF (a STATUS verembe íródik. Ez az utasítás a flag-ek mentésére szolgál.)

- POP op (a 2 byte-os operandus felülíródik a verem tetején lévő (WORD) szóval, az SP által címzett szó átmásolódik, majd az SP 2-vel megnő.). Üresből kivenni nem lehet. Kiolvasás és törlés.

- POPF (a verem tetején lévő szó felülírja a STATUS-t. Ezzel az utasítással tudjuk a flag-ek tartalmát helyreállítani.)

Ezek az utasítások fő haszna az, hogy a szubrutinok az általuk használt regisztereket elmenthetik, majd futásuk befejezésekor visszaállíthatják anélkül, hogy erre statikus memóriaterületet kellene igénybe vennünk. Figyelni kell a visszaállítás sorrendjére (fordított) is. Minden PUSH-nak kell lennie egy POP párjának is mert különben hibásan dolgozhat a program. 

Szubrutin

Olyan programrész amelyek a feladatban többször előforduló, ismétlődő folyamatokat takar (alprogram). Olyan utasítások sorozata, melyet a program több részéről elérhetünk, és csak egyszer kerül tárolásra. Tehát az utasítássorozatok redundanciájának feloldását oldja meg. A hívás visszatérési címe a veremben tárolódik. Ez alkalmat ad az úgynevezett rekurzív szubrutinok alkalmazására, melyek önmagukat hívják meg. Ez a módszer a bonyolultabb (matematikai-rendezési) problémák feloldását segíti elő. 

Szubrutinhívási és visszatérő utasítások

- CALL  op - Az utasításszámláló pillanatnyi értéke a veremre kerül, majd az  utasításszámláló felülíródik az operandussal, mely lehet direkt cím vagy tetszőleges címzési móddal elért regiszter- vagy memória operandus. Lehet rövid (szegmensen belüli) vagy hosszú (szegmensközi) szubrutinhívás.)

- RET  [konstans]

-Konstans megadása nélkül: A verem tetején lévő értékkel felülírja az utasításszámlálót és így a program visszatér a szubrutin hívása utáni sorra és onnan fut tovább a program.

-Konstans megadásával: ugyanúgy működik mint a RET de a visszatérési cím kiolvasása után az veremmutatót a konstans értékével megnöveli. Ezzel a módszerrel lehet a szubrutinnak paramétereket átadni és a szubrutin végrehajtása után a paramétereket a parancs automatikusan kiveszi a veremből. 

Egyes megszakítások is ide sorolhatók mivel a megszakítás végrehajtása után a rendszer onnan folytatja a program végrehajtását ahol a megszakítás történt. A különbség az, hogy a szubrutinhívást a programozó előre betervezte, a megszakítás hívása nem előre tervezett, hanem valamilyen esemény bekövetkeztének a hatására jön létre. 

3. A Neumann-elvek. Utasítás- és adatfolyam (SISD, SIMD, MISD és MIMD architektúrák). Adatok számítógépes ábrázolása (fixpontos, lebegőpontos, BCD, vektoros adatok, karakterek).
Neumann elvek:
· Teljesen elektronikus számítógép

· Kettes számrendszer alkalmazása
· Aritmetikai egység alkalmazása (univerzális Turing-gép)
· Központi vezérlőegység alkalmazása
· Belső program- és adattárolás
Neumann-elven működő számítógépek:


[image: image15]
1. A számítógép legyen soros mûködésû: 

A gép az egyes utasításokat egymás után, egyenként hajtja végre

2. A számítógép a kettes számrendszert használja, és legyen teljesen elektronikus: 

    A kettes számrendszert és a rajta értelmezett aritmetikai ill. logikai mûveleteket könnyû megvalósítani kétállapotú áramkörökkel 
(pl.: 1- magasabb feszültség, 0 - alacsonyabb feszültség)

3. A számítógépnek legyen belsõ memóriája: 

    A számítógép gyors mûködése miatt nincs lehetõség arra, hogy minden egyes lépés után a kezelõ beavatkozzon a számítás menetébe. A belsõ memóriában tárolhatók az adatok és az egyes számítások részeredményei, így a gép bizonyos mûveletsorokat automatikusan el tud végezni.

4. A tárolt program elve: 

    A programot alkotó utasítások kifejezhetõk számokkal, azaz adatként kezelhetõk. ezek a belsõ memóriában tárolhatók, mint bármelyik más adat. Ezáltal a számítógép önállóan képes mûködni, hiszen az adatokat és az utasításokat egyaránt a memóriából veszi elõ.

5. A számítógép legyen univerzális: 

    A számítógép különféle feladatainak elvégzéséhez nem kell speciális berendezéseket készíteni. 
    Ugyanis, Turing angol matematikus bebizonyította, hogy az olyan gép, amely el tud végezni néhány alapvetõ mûveletet, akkor az elvileg bármilyen számítás elvégzésére is alkalmas.

Számítógép architektúrák
· SISD(Single Instruction Stream Single Data Stream), azaz egyetlen utasításfolyam és egyetlen adatfolyam feldolgozása. Az ilyen gépek egy vezérlő egységgel és több aritmetikai egységgel rendelkeznek, egyidőben egyetlen utasítás végrehajtására alkalmasak. Ebbe a kategóriába tartoznak a hagyományos, Neumann-elvű szám(tógépek.

· SIMD(Single Instruction Stream Multiple Data Stream), azaz egyetlen utasításfolyam, többszörös adatfolyam feldolgozása. Ezek a gépek egy vezérlő egységgel és több aritmetikai egységgel rendelkeznek és egyidőben egy és ugyanaz az utasítást hajtja végre több adaton. Ebbe a körbe sorolhatók a vektor- és tömbprocesszoros gépek.

· MISD(Multiple Instruction Stream Single Data Stream), azaz több utasításfolyam alapján egyetlen adatfolyam feldolgozása.  Ilyen típusú gépek tulajdonképpen nincsenek, bizonyos esetekben ide sorolják az un. pipeline feldolgozást alkalmazó szám(tógépeket.

· MIMD(Multiple Instruction Stream Multiple Data Stream), azaz több utasításfolyam és több adatfolyam feldolgozása. Ebbe a csoportba tartozó gépek különböző multiprocesszoros szám(tógépek. 

Adatok számítógépes ábrázolása
· Általánosan használt számrendszerek:

· kettes (jelkészlet: 0,1)

· tízes (jelkészlet: 0,1,2,3,4,5,6,7,8,9)

· tizenhatos (jelkészlet: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Ezek a számrendszerek egymás közt konvertálhatók. 

Fixpontos számábrázolás

Ebben a ábrázolási módban a bináris pont helye - ami a bal oldalon található egészeket elválasztja a jobb oldalon lévő törtektől - rögzített, és a számokat többnyire kettes komplemens kódban ábrázolják. 

[image: image16.jpg]nl

n2

20

elejel

egésmese

thrirész

“Binaris port
(nincs dbrazolva)





A számok ábrázolásának két fontos jellemzője van a felhasználás szempontjából: 

· az ábrázolandó számok nagysága 

· az ábrázolás pontossága 

A két jellemző az alkalmazott regisztermérettől és bináris pont helyétől függ. Ha a bináris pontot balra toljuk el, akkor 

· a számok ábrázolási tartománya csökken 

· az ábrázolás pontossága nő 

· ha bináris pont a regiszter bal szélén van, akkor a szám fixpontos tört. 

Ha pedig a bináris pont jobbra mozdul, akkor 

· a számok ábrázolási tartománya nő 

· az ábrázolás pontossága csökken 

· ha a bináris pont a regiszter jobb szélén van, akkor a szám fixpontos egész. 

A fixpontos ábrázolás előnye a lebegőpontos tárolással szemben, hogy a rögzített tizedeshelynek köszönhetően annál jóval gyorsabb műveletvégzést tesz lehetővé, viszont ábrázolási intervallumba és pontossága meglehetősen korlátos.
	Az ábrázolható számok
	binárisan
	decimálisan

	Ábrázolható számtartomány
	1000 0000 0000 0000 –tól
	– 215 -től

	 
	0111 1111 1111 1111-ig.
	+ 215–1-ig

	legnagyobb nem negatív:
	0111 1111 1111 1111
	+ 32 767

	legkisebb nem negatív:
	0000 0000 0000 0000
	0

	legnagyobb negatív:
	1111 1111 1111 1111
	– 1

	legkisebb negatív:
	1000 0000 0000 0000
	– 32768


Lebegőpontos tárolási forma

A tízes számrendszerbeli számot átváltjuk kettes számrendszerbe. Ezt a következő módon tehetjük meg:

A szám egész részét kettővel osztjuk. Az osztást addig folytatjuk, amíg a hányados nulla nem lesz. Az osztáskor keletkező maradékokat alulról felfelé írjuk le. Az átváltott szám a kapott maradéksor. 

A szám törtrészét kettővel szorozzuk. A kapott érték egész részét leírjuk, a kettővel való szorzást a szám törtrészével folytatjuk. Az átírás addig tart, amíg pontosan 1-et nem kapunk, vagy el nem érjük a kívánt kettedes tört pontosságot. A szorzáskor keletkező egész részek sorát felülről lefelé írjuk le.

számokat ebben az esetben normalizált alakban használjuk. 

[image: image17.jpg]N, =+bs2F




ahol    N2    az ábrázolandó bináris szám 
          M      normalizált mantissza 
          E       karakterisztika 

A mantisszát leggyakrabban előjeles abszolút értékes formátumban tárolják. A normalizálásra kétféle gyakorlat terjed el. 

A lebegőpontos ábrázolás előnye a fixpontos tárolással szemben, hogy mivel esetében a tizedespont a számjegyek között szabadon "vándorolhat", ezért általában jóval nagyobb intervallum ábrázolását teszi lehetővé, miközben kis számoknál is nagy pontosságot biztosít.
BCD (binary coded decimal) ábrázolás: 

BCD kód

A BCD kód a legkönnyebben előállítható, ezért talán a legáltalánosabban használt kód. Ennél a kódnál a számok számjegyeinek a kettes számrendszerbeli értéke felel meg, négy helyi értékre kiegészítve. Előjeles BCD számokat úgy képeznek, hogy ún. vezérlőszó-t tesznek a számjegyek elé. A vezérlőszó tartalmaz egy előjelbitet (pozitív = 0, negatív = 1), az adatszavak számát (0000 = 1 szó, 1111 = 16 szó) és a tizedespont utáni szavak számát.
[image: image18.jpg]BCD

DEC




Máshogy:
(Binárisan kódolt decimális számok)

A kettes számrendszer szerinti adattárolás elsősorban akkor előnyös, ha aritmetikai műveleteket kívánunk végezni a számokkal, tehát a műszaki-tudományos feladatok, számításigényes problémák megoldásakor elsősorban. Ha a számítási munka egyszerűbb, vagy nagytömegű adatot kell beolvasni, vagy kiíratni, akkor célszerű a tízes számrendszer használatát utánozni különböző bináris kódokkal.

Ezekben a kódrendszerekben a tízes számrendszerbeli számok számjegyeit egyenként konvertáljuk át az alkalmazott bináris kódba. Mivel a tízes számrendszerben tízféle számjegyet használunk, ezek ábrázolásához legkevesebb 4 bit szükséges

Minden decimális számjegyet négy biten ábrázolunk.

	2
	4
	7
	9
	1

	0010
	0100
	0111
	1001
	0001


Jellemzői: minden decimális számjegyet négy biten ábrázolja a számjegy bináris alakját. A számot a számjegyek négybites alakjával írjuk fel, megtartva a helyi értékeket. A BCD kódban felírt számokkal a binárisaritmetika szerint végzünk műveleteket. A művelet végzés eredményeként kapott bináris jelsorozatot a szükséges korrekcióval véglegesítjük. A decimális számnak nem a kettes számrendszer béli alakját írjuk fel BCD kódban, hanem egy bináris jelsorozatot írunk fel BCD kódban.

1924=0001‌‌‌‌│1001│0010│0100

Például a 385710 decimális szám megfelelője BCD kódban: 
               385710 = 0011 1000 0101 0111BCD
Vektoros adatok

A számítógépek alkalmazási területeinek egy részénél (tudományos-műszaki, számítások, modellezés, 3D grafika stb.) gyakran kell vektorokkal és mátrixokkal műveleteket végrehajtás. Ezt hatékonyan elvégezni a SMID (egyszeres utasításfolyam, többszörös adatfolyam) architektúrájú gépekkel lehet, melyeket vektorszámítógépeknek hívunk.
Karakteres számkódok

A szám tízes számrendszerbeli alakját kódoljuk, minden számjegyet egy karakterként ábrázolunk.

Műveletek így nem végezhetők az így kódolt számokkal.

Karakterek kódolása
Karakternek nevezzük a betűket, írásjeleket, számjegyeket stb. Ábrázolásuk problémáját is meg kellett oldani, természetesen bináris alakban. Azaz minden karakterhez rendelni kell egy bináris számot. Ma a legelterjedtebb kódolási rendszerekben 1 bájton kódolják a karaktereket, ami 256 féle jel megkülönböztetését teszi lehetővé. Azt a táblázatot, amely leírja ezt a kapcsolatot,

kódtáblázatnak nevezzük. 

Az IBM kompatibilis számítógépek világában a legfontosabb az ASCII kódrendszer, de másfajták is léteznek. Például az EBCDIC vagy a UNICODE stb.
[image: image19.jpg]B ¢ D EF

BRSO |00 h AR =0 = 4

D4 AT G mes Y ARW =

% NEe BT l—an

OF 4 AN S W S W

R DR P e

B R e el
O Ao e LTE L @
e = X s ) AP ©
- o= 53 vz ===
* RBoE D W DameT ol = = X

€ NS ® Do e e o

> Fowa——s .

BERMOB 0 BT =
Oo: omema fowoN - Eo A
DY o= W T R (Fe

S@a e 2 s

a
SEITTITRSIIS=ES




ASCII KÓDRENDSZER

Az ASCII kód az egész világon elfogadott szabvány a karakterek kódolásához. (American Standard Code for Information Interchange).

Eredetileg 7 biten kódolta az amerikai ABC kis- és nagybetűit, a számjegyeket és írásjeleket valamint különböző vezérlőjeleket.

Ezt később más nemzeti karakterek, grafikus jelek ábrázolása miatt 8 bitesre bővítették. A sokféle nemzeti karakter ábrázolhatósága miatt több kódtáblát hoztak létre.
Az első 128 kód mindegyikben ugyanazt jelenti (megegyezik az eredeti kódtáblával), a következő 128 kód országonként változhat. Tartalmazza a nemzeti írásjeleket pl. ékezetes betűket, grafikus jeleket.

Az USA kódtábla a 437-es számot viseli, a 852-es un. Latin II. vagy szláv kódtábla tartalmazza a magyar ékezetes betűket is.

Pl.

GERGŐ SEGÍTS szöveg : 71,69,82,71,153,32,82,69,71,73,84,83 számok bináris alakja az ASCII kód szerint 

Az írásjeleket azok ASCII kódjaival is kiírathatjuk a jobb oldali számbillentyűzetről az <Alt> billentyű lenyomva tartása mellett.

Megjelent az ASCII olyan kiterjesztése, amely az arab, kínai, japán írásjeleket is szabványosan tudja kezelni. Ez az UNICODE kódrendszer. 

A Unicode 16 biten (2 bájton) tárolja a karaktereket, így 65536 karakter leírására alkalmas. A Unicode alsó 128 karaktere egybeesik az ASCII kódolással. Az e fölötti részekben pedig szegmensekben helyezkednek el a különböző nyelvcsoportokat leíró karakterek. 

MÁSHOGY:
ASCII - kódrendszer: (American Standard Codes for Information and Interchange). Az alapszabvány az Amerikai kódolási rendszert, az ASCII kódrendszert használják. Ez a kódrendszer teszi lehetővé azt, hogy a különböző programok képesek legyenek használni pl: a magyar ABC-T. Ez pedig napjainkban elengedhetetlen. Mivel országonként különböző betűkre van szükség az ASCII kódtábla több változatát, használják. Ilyen az amerikai 437-es jelű, vagy a kelet- európai 852-es. Ezek a második 128 jelben térnek el egymástól. Számos olyan nyelv van a világon, amelynek több jele van mint 256. ASCII: két fő fajtája:

1. 128-féle karaktert kódol 7 bites bináris kóddal, és egy paritásbit (amit ellenőrzésre használnak), minden karakternek egy kettes számrendszerbeli szám felel meg, kölcsönösen és egyértelműen. 

2. ASCII 8 bites (1 byte) kiterjesztése már 2*128=256 karakter kódját tartalmazza, az első 128 db karakter az eredeti ASCII kódot, a második 128 db karakter az egyéb karakter, például ékezetes betűk kódjait, tartalmazza. 

Fontos megkülönböztetni a karakter kódját a karakter képétől, grafikai megjelenésétől (ha van ilyen). Hiszen a karakter képe is kódolható bitsorozatokkal, és kódolva is van, különben nem jelenhetnének meg nyomtatáskor. A karakter képe sokkal több byte-on tárolható.

4. Az utasítás-feldolgozás gyorsítása párhuzamosítással. A pipelining lényege, szuperskalár processzorok. Fellépő problémák és kezelésük.
Pipeline

A gyorsítás megoldható a gép működésének ütemezését meghatározó órajel frekvencia növelésével, aminek viszont technológiai korlátai vannak. Ezért kerültek előtérbe azok a módszerek, melyek a számítógép gyorsabb művelet végrehajtását rendszertechnikai eszközökkel biztosítják. 
A rendszertechnikai gyorsítás egyik legfontosabb módszere az utasítás végrehajtás szintjén átlapolt feldolgozás, melyet pipeliningnek neveznek.
Pipeline lényege
Az egyik fázis eredménye a következő fázis induló adatát képezi. Ez az átlapoló megoldás azt eredményezi, hogy egy-egy feldolgozási folyamat végrehajtási időtartama ugyan nem változik, de ugyanannyi idő alatt lényegesen több folyamat fejezhető be. Ezt az átlapolt feldolgozási módszert nevezik pipelining (adatcsatornás, futószalag) feldolgozásnak. A pipeline utasítás-feldolgozást alkalmazó processzorokat utasításszinten párhuzamos működésű (Instruction Level Parallel), vagy ILP processzoroknak nevezzük.

Az ilyen módon  átlapolt folyamatok feldolgozásához tartozó egységek működtetése kétféle módon történhet:

•Aszinkron ütemezéssel, amely esetében az egymást követő fokozatok jelzik egymásnak elemi feldolgozási lépésük elkészültét, illetve azt, hogy készek fogadni a következő utasítás az arra az egységre előirt feladat elvégzéséhez. Mindegyik egység amint befejezte tevékenységét, továbbadja a feldolgozást a következő egységnek, azaz a feldolgozás továbbhaladása folyamatos az adatcsatornán keresztül.

•Szinkron ütemezéssel, amelynél az egyes fokozatok azonos időben kezdik feldolgozási lépéseiket, a feldolgozási folyamat ütemezését mindig a legtöbb időt igénybe vevő egység szabja meg.

Szuperskalár processzorok

A processzoron belül nem csak úgy tudunk párhuzamosítani, hogy a gépi utasításokon belüli elemi lépéseket végrehajtó egységek átlapolva működnek, hanem a végrehajtó hardver egységeket is meg lehet többszörözni. Az erőforrások használatának problémája abból származik, hogy a párhuzamosított folyamatok igen gyakran ugyanazt az erőforrást kívánják igénybe venni feldolgozásukhoz (pl. leggyakrabban a memória okoz ilyen gondot). Ennek egyik lehetséges megoldása az erőforrások többszörözése, amely nyilvánvalóan többletköltséget eredményez. Ezeket a processzorokat szuperskalár processzoroknak nevezzük, ha egy gépi ciklus alatt esetenként több utasítást is képesek végrehajtani, több vezérlőegység. Ennek természetesen feltétele, hogy a processzor a műveletvégző egységekhez vezető, párhuzamos működésre képes belső buszokkal rendelkezzen. 

Fellépő problémák és kezelésük

Pipelining során fellépő problémák kezelése

1. az utasítások elemi fázisainak végrehajtásához szükséges idő igen eltérő lehet

2. az utasítás soros végrehajtását a vezérlésátadó utasítások megzavarhatják, mivel ekkor nem a soron következő utasításokat kell betölteni a „futószalagra”.

3. a megszakítások, kivételek kezelése is megszakíthatja a futószalag folyamatos feltöltését

4. az utasítás végrehajtás során sokszor előfordul, hogy egy utasítás a megelőző utasítás eredményadatára hivatkozik.

Ezek kezelése:

· NOP utasítások (fordítóprg.)
Utasításvárakoztatás NOP=No Operation utasítások beiktatásával.

· Utasítás-átrendezés (fordítóprg.)
Tartalmi megváltoztatás nélkül átrendezi az utasítássorrendet.
· Scoreboarding(hardver)

Minden regisztere könyvelésre kerül. Ha egy további utasítás egy ilyen regiszterhez akar hozzáférni, akkor az késleltetésre kerül.
· Data forwarding (hardver)

Adat előreengedés. Processzoron belüli megfelelő áramkörök biztosítják.

· Harvard architektúra

Az utasításolvasás és az adatkiolvasás, visszaírás ütközéseire jelent megoldást.

· A vezérlésátadó utasítások kezelése

Kiemelt jelentőségű feladat.  (Processzor leállítja a pipeline betöltését amíg az ugrás kimenetele nem egyértelmű. Vagy a processzor megbecsüli az elágazás kiementelét.) Ha ez nem teljesül akkor a pipeline-ban lévő utasítássort törölni kell.

Korszerű processzorok spekulatív elágazás feldolgozása, melynél a processzor megpróbálja megjósolni az utasítás kimenetelét.

· Statikus: fordítóprg. értékeli ki az ugrási feltételeket és meghatározza a legnagyobb valószínűséggel előforduló ugrási címeket és ennek megfelelően szevezi a pipelin-t.

· Dinamikus: a prg. futása közben a processzor egy táblázatban vezeti az ugróutasítások címeit és ezek kimenetét, és ezt felhasználva próbálja megjósolni az elágazások lehetséges kimenetét.
A szuperskalár processzoroknál ezért több problémát kell megoldani

1. Párhuzamos dekódolás, elődekódolás

Az elődekódolás során a dekódolás feladatainak egy része már akkor végrehajtásra kerül, amikor az utasításokat a másodlagos gyorsító tárból vagy a memóriából az L1 szintű gyorsítótárba írják

2. Szuperskalár utasítás-kibocsátás (Utasítás várakoztatás, Regiszterátnevezés, Spekulatív elágazás kezelés)

3. Párhuzamos végrehajtás

Ha a processzor az utasításokat párhuzamosan hajtja végre, akkor az egyes végrehajtó egységek az utasítások eredményeit az eredeti utasítássorrendtől eltérően is előállíthatják. Ezt csak úgy lehet kezelni, ha az eredményadatok átmenetileg tárolódnak és végleges helyükre az eredeti utasítássorrendnek megfelelően kerülnek beírásra. Soros konzisztencia Az eredeti utasítás soros logikájának megőrzése.
5. Az aritmetikai-logikai egység és regiszterei (akkumulátor, flag). Fixpontos és lebegőpontos műveletek, ezek végrehajtásának egységei. Logikai műveletek.
Aritmetikai egység (ALU)

A processzor másik fontos egysége az ALU, amely az utasításokban előírt aritmetikai, vagy logikai műveleteket hajtja végre. Az aritmetikai egység bináris műveletek elvégzésére alkalmas, ha az elvégezendő aritmetikai műveletek száma nagy, vagy lebegőpontos (hatványkitevős) formátumú számokkal kell műveleteket végezni, akkor a főprocesszor mellé elhelyeznek az erre a célra szolgáló matematikai társprocesszort (koprocessort) is. A nagyobb teljesítményű gépek (i486 DX, MC68040, RISC) processzoraiba már eleve beépítik a lebegőpontos rendszert. 

Ez az egység a műveletvégzéshez az operandusok és az eredmények ideiglenes tárolására egy kitüntetett regisztert, az akkumulátor regisztert (AC: Accumulator Regiszter) használja.
ALU fő részegységei:

· összeadó egység, amely két operandus összeadására szolgál

· léptető áramkörök, amelyek a regiszterek tartalmát műveletvégzés közben jobbra, vagy balra léptetik, azaz tulajdonképpen 2-vel osztják, vagy szorozzák azt

· logikai áramkörök a logikai műveletek megoldásához

· regiszterek, az adatok ideiglenes tárolására. Ezek lehetnek az ALU részét képező, kizárólagos használatú regiszterek, mint pl. többnyire az akkumulátor regiszter (AC), vagy a processzor általános célú regiszterei közül egy, vagy több.

Az aritmetikai műveletek végrehajtásakor, az eredményétől függően, az állapotregiszter egyes jelzőbitjeit a processzor beállítja. A műveletek eredményét visszatükröző legfontosabb jelzőbitek a következők:

· átvitel (carry): ha az eredmény legmagasabb helyértékén átvitel keletkezik, 1-es értéket vesz fel

· nulla (zero): ha az eredmény nulla értékű, 1-es értéket vesz fel

· előjel (sign): ha az eredmény negatív, akkor az értéke 1-es lesz

· túlcsordulás (overflow): ha az eredmény nagyobb, mint a tárolható legnagyobb érték, akkor értéke 1-es lesz.
Akkumulátor /AC/
A számítógép megkülönböztetett számítási regisztere. Az aritmetikai és logikai műveletek operandusait, vagyi a műveletek tárgyát képező mennyiségeket, illetve ezeknek az eredményeit a CPU központi regiszterében, az akkumulátorban tároljuk.
Flag regiszterek 

(flagregiszter, amely a processzor működése közben létrejött állapotok jelzőit (igaz, vagy hamis),
Állapotregiszterek, vezérlő regiszterek (Status Regiszter, Flag Regiszter, Control Regiszter) amelyek egy, vagy több regiszteren belül tárolnak vezérlő és ellenőrző jeleket, a műveletek végrehajtásának eredménye alapján bekövetkező állapotjellemzőit adja vissza. 

Ilyen jellemzők, pl.: 
[image: image20.png]


az eredmény nulla (zero flag) 

[image: image21.png]


a számérték túl nagy (overflow flag) 

[image: image22.png]


átvitel keletkezése (carry flag)
Az állapotregiszternek lehetnek olyan bitjei, amelyek valamilyen vezérlési előírást tárolnak (pl.: valamely részegység használatának engedélyezése, memórialapozás engedélyezése, megszakításkérés kiszolgálása letiltása). Ha a funkcióbitek száma nagy, akkor önálló vezérlő regiszter (control register), és állapotjelző regiszter (status, vagy flag register) használata szükséges. 

Az aritmetikai műveletek végrehajtásakor, az eredménytől függően, az állapotregiszter (FLAG register) egyes jelzőbitjeit az ALU beállítja. Általában feltételes elágaztató utasításokkal kérdezhető le, és ettől függően változtatható meg az utasítás végrehajtás sorrendje. A műveletek eredményét visszatükröző legfontosabb jelzőbitek a következők:

1. Átvitel (carry) jelzőbitje: ha az eredmény legmagasabb helyértékén átvitel keletkezik, értéke 1-et vesz fel.

2. Nulla (zero) jelzőbitje: ha az eredmény nulla értékű, 1-es értéket vesz fel

3. Előjel (sign) jelzőbitje: ha az eredmény negatív, 1-es értéket vesz fel. Értéke a numerikus adatokon végzett műveletek eredményének előjele szerint kerül beállításra.

4. Túlcsordulás (overflow) jelzőbitje: ha az eredmény nagyobb, mint a tárolható legnagyobb érték, 1-es értéket vesz fel. Szintén numerikus számokon végzett műveletek eredményeként kerül beállításra (pl. szorzás)

5. Paritásbit: paritáshiba esetén kerül beállításra.

6. Auxilary: közbenső átvitel az alsó 4 bitről a felső 4 bitre

7. Trap: az utasítás végrehajtása után a processzor INT1-es megszakítást hoz létre

8. Interrupt: a hardver megszakításkérelemek letiltása

Fix pontos 
Ezt az ábrázolást a kisebb, kevesebb számjegyből álló számok írásához használják. Fixpontos számtárolási formánál a szám kettes számrendszerbeli együtthatóit tároljuk helyi értékeiknek megfelelően egy rögzített nagyságú memóriaterületen. Ezek leggyakrabban

· 1 bájt méretű, (BYTE)

· 2 bájt méretű szó ( WORD ),

· 4 bájt méretű dupla szó (DWORD).

A fixpontos számoknál fontos kérdés, hogy melyik pozíción helyezkedik el a szám egész- és törtrészét elválasztó jel, melyet a tizedesvessző analógiájára kettedes pontnak nevezhetünk.

Tárolási formája: ±a.b 


Ahol:

· „a” egész számjegy

· „.” Kettedes jegy 

· „b” törtrész számjegyei
Lebegőpontos 
Hatványkitevős tárolásmód, kisebb és nagyobb számjegyek tárolásához, a tárolási formájukat pontosságuk határozza meg (hány biten),  tárterület: 4-6-8bájt

Tárolási formája: ±a·r±p 

· „±” előjel, melyet egyetlen biten tárolunk mindig

· „a” mantissza, vagyis a fixpontos egész

· „r” radix, ez a számrendszer alapszáma, (általában 2-es) ez ami rögzített mindig, ezért ezt már nem kell tárolni

·  „p” karakterisztika vagyis a hatványkitevő

A lebegőpontos ábrázolást az IEEE 754 szabvány rögzíti.

IEEE 754 szabvány: A mantissza előjele 0 ha a szám pozitív és 1 ha negatív, a mantisszában levő fixpontos szám 1-re normalizáltan értendő, azaz 1. a formájú (binárisan-ezért az első egyest nem is tárolják), a szabvány a lebegőpontos műveletvégrehajtáshoz többfajta pontosságot definiál: egyszeres=32bit, dupla=64bit, kiterjesztett=80bit, négyszeres=128bit.

±a*2±p   a- mantissza
p- karakterisztika

pl: -654.187*107

	Jellemző
	Egyszeres

[bit]
	Dupla pontosságú

[bit]
	Kiterjesztett pontosságú [bit]
	Négyszeres pontosságú [bit]

	Előjelbit
	1
	1
	1
	1

	Karakterisztika
	8
	11
	15
	15

	Mantissza
	23
	52
	64
	112


A lebegőpontos számokkal végzett műveletek problémája a túlcsordulás és az alulcsordulás megfelelő kezelése. A szabvány ezek kezelésére további adatformátumokat határoz meg. Ezek :

· denormalizált adatformátum:az igen kis számértékek számítógépes kezelését segíti

· nulla számérték (előjel: (; karakterisztika: 0; mantissza: 0),

· végtelen érték, túlcsordulásokat (igen nagy számok) a „végtelen” számmal kezelhetjük

· nem meghatározott számérték (Not a Number: NaN) Az úgynevezett „nem számok” azt a célt szolgálják, hogy programunk akkor se álljon le, ha az elvégzett művelet (például végtelen/végtelen) matematikailag értelmezhetetlen.

Logikai műveletek

Logikai csoport: az AC (akkumulátor) és valamelyik regiszter, vagy memória tartalma között történik logikai műveletvégzés (ÉS, VAGY, KIZÁRÓ VAGY). Ide tartozik a shiftelés művelete is, mely az AC tartalmát lépteti.
Három logikai alapművelet: 

· NEM: egyoperandusos műveletet, eredménye az állítás ellenkezője. A tárolóhelyek tartalmának ellenkező értékre állítására lehet használni.

· ÉS: a kétoperandusos művelet eredménye akkor „igaz”, ha mindkét állítás egyidejűleg „igaz”. E  művelet segítségével lehet kijelölni, „maszkolni” egy tárolóhely tartalmának tetszőleges részét.

· VAGY: a kétoperandusos művelet eredménye akkor „igaz”, ha valamelyik, vagy mindkét állítás  „igaz”. Két tárolóhely összeadására használják.

Alaptörvények:

1. A+(A=1

2. A(A=0

3. (((A)=A


Kettős tagadás

4. ((A+B)= (A(B

5. ((AB)= (A+(B

De-Morgan azonosságok

6. A+0=A

7. A*0=A

8. A+1=1

9. A*1=A

10.  A+AB=A(1+B)=A

A logikai műveletek megfelelői a gépi utasításkészletben is megjelennek, általában az alábbi lehetőséget biztosítva:

· ÉS kapcsolat két tárolóhely tartalma között, maszkoláshoz
· VAGY kapcsolat kér jelsorozat összefésüléséhez, egyesítéséhez
· léptetések, túlcsordulások figyeléséhez.

Ezeket a logikai műveleteket az ALU egyik fő részegysége végzi el, mely logikai áramkörökből áll.
6. A vezérlőegység feladata és jelei, vezérlési pontok. Huzalozott és mikroprogramozott műveleti vezérlés. CISC és RISC processzorok.

A Vezérlőegység feladata (CU)
A vezérlőegység működése során vezérlőjeleket ad ki a teljes számítógép irányítására.

Ezek lehetnek:

· a processzor belső vezérlőjelei, melyek a processzoron belüli részegységek működését irányítják pl. az aritmetikai egység és a processzor régiszterei közötti adatátvitelt,

· a processzoron kívüli egységek irányítását szolgáló külső vezérlőjelek, melyek a processzor és a memória, a processzor és az input/output eszközök közötti adatátvitelt, illetve a megszakításkezelést és a sínvezérlést irányítják.

CU: Biztosítja, hogy a megfelelő adatok a megfelelő helyen és időben rendelkezésre álljanak. Irányítja az áramkörök működését. Az utasításszámláló regiszter segítségével kiolvastatja a memóriából annak a memóriarekesznek a tartalmát, amely a soron következő utasítást tárolja. Az utasítás műveleti kódrésze alapján meghatározza, hogy sorrendben milyen műveletet kell végrehajtani. Az utasítás alapján értelmezi, hogy milyen címen találhatók a műveletben résztvevő adatok, vezérli ezek kiolvasását, és a megfelelő regiszterbe történő továbbításukat. Az aritmetikai - logikai egységgel végrehajtatja a megfelelő műveletet és beállítja az utasításszámláló új tartalmát. 

A műveleti vezérlés történhet:
· Huzalozott módon (hardver): az utasítás elemi lépéseinek sorrendjének vezérlését bonyolult sorrendi, kombinációs áramkörrel oldják meg.

· Mikroprogramozott módon (szoftver): az elemi tevékenységek sorrendjét egy tárolt program, a mikroprogram utasításai vezérlik. A vezérlőegység azon részét, mely a műveleti vezérlést oldja meg, mikrovezérlőnek nevezzük. A mikroutasítások feladata az adatutak engedélyezése/tiltása. Az utasítások két részből állnak: a következő mikroutasítás tárbeli címéből és a vezérlési mezőből, amely az engedélyezett vezérlési pontokat határozza meg. 
Általában az egyszerű utasítások huzalozottak, az összetettek mikro programozottak.

Struktúrák: 

· Horizontális mikroprogramozás esetén a vezérlési mező minden egyes bitje egy-egy vezérlési pontot engedélyez/tilt.

· Vertikális mikroprogramozáskor a mikroutasítások csak egy-egy elemi művelet végrehajtását eredményezik.

CISC-vezérlés:  az utasítások feldolgozása egy mikroutasításokkal megvalósított értelmezőrendszer igénybe vételével történik. Teljes utasítás készletű számítógép.
RISC-vezérlés: a felhasználói programot egy egyszerű utasításokból álló gépi kódra fordítják, mely nem igényel értelmezőrendszert. Csökkentett utasítás készletű számítógép.
Bővebben
Műveleti vezérlés 

Mûködés szempontjából az utasítás-végrehajtás lépései további elemi mûveletek sorozatára bonthatók fel. Ezek a mûveletek adatútvonalak kapuzását, bizonyos állapotok beállítását eredményezik. Az operációs kód alapján történõ vezérelhetõség csak lépésenkénti vezérlési lehetõség, valamint az adatutak kapuzásának (engedélyezés/tiltás) lehetõsége alapján valósítható meg. 

Az elemi mûveletek végzésére kétféle lehetõség van: 

Hardver mód (huzalozott) 

Az elemi tevékenységek sorrendjének vezérlését bonyolult sorrendi, kombinációs áramkörrel oldják meg. Ez a szükséges sorrendben adja ki az egyes kapuk mûködtetésére szolgáló vezérlõ jeleket, amely gyors működést eredményez, de költséges megoldás. 

Egyszerűbben kezelhető a programozható logikával történő megvalósítás. Ezek az áramkörök programozható ÉS és VAGY kapukból állnak. Huzalozott módon gyors mûködés érhetõ el, de viszonylagos drágasága miatt elsõsorban RISC processzoros gépeknél alkalmazzák, ahol fontos a nagy sebesség. 

Szoftver mód (mikroprogramozott) 

Tárolt program, egy úgynevezett mikroprogram vezérli az elemi lépések sorrendjét, mely program utasításait mikroutasításoknak nevezik. Ez a tárolt program a ROM tárban helyezkedik el. A mikroprogram kezdõcímét a makroprogram operációs kódja adja meg. 

Lehetõség van a mikroprogram cseréjére. Ekkor a mikroprogramot a gép RAM - jában kell tárolni, így a gépen egy teljesen más utasításkészlet emulálható. Ez a módszer hatékonyabb és olcsóbb, mint a huzalozott megoldás és a hozzáértõ felhasználó számára is több lehetőséget nyújt a rendszer fejleszthetõségének terén. 

A processzorok mûveleti vezérlése kétféle struktúrában oldható meg. Ezek a horizontális struktúra és a vertikális struktúra. A különbség az utasításfeldolgozás párhuzamosítási fokában mérhető, amely vonatkozik: 

- az utasítás és adatelőkészítésre 

- az operációs kód kiértékelésére 

- a művelet végrehajtására 

A mikroutasítások szerkezetileg hasonlítanak a gépi kódú utasításokhoz. Két részbõl állnak, az egyik a következő mikroutasítás címe a tárolt mikroprogramban, a másik a vezérlési mezõ, amely meghatározza az engedélyezett vezérlési pontokat. Ezen vezérlési pontok engedélyezése teszi lehetõvé elemi mûveletek végzését. Egy utasítás elemi lépéseinek vezérlése sok ilyen pont meghatározott sorrendben történõ vezérlését jelenti. A mikrovezérlő egy mikrocímregisztert is tartalmaz a következõ mikroutasítás címének nyilvántartására. 
CISC és RISC processzorok
Kezdetben a számítógépek gépi kódban programozták, majd az Assembly nyelv vált elterjedté.
CISC (komplex utasításkészletű számítógépek)
· egyre több és bonyolultabb utasítást tartalmazott az utasításkészlet

· ezek hardver megvalósítását mikroprogramvezérelt kellett megoldani, azaz egy gépi utasítás végrehajtása több elemi lépésr felbontották és az ezekre vonatkozó adatokat a számítógép csal olvasható memóriájában (ROM) tárolták)
RISC (redukált utasításkészletű számítógépek)

A mikroprogramvezérelt utasítás végrehajtás komoly korlátává vált a számítógépteljesítmény növelésének. Ezért olyan architektúrát terveztek, melynél,
· csak gyakori „egyszerű” utasítások szerepeltek az utasításkészletben,

· lehetővé vált a mikroprogramozás kiküszöbölése, azaz magas szintű programnyelvről fordítás lényegében a korábbi mikroutasítások szintjére történt.

[image: image23.jpg]CISC processzorok

Osszetett wasitdsok, melyek végrehajtasa
10bb gépi ciklust igényel.

RISC processzorok

Egyszeri utasitdsok, melyek vigrehajidsa
1 gépi ciklust igényel.

Barmely, erre alkalmas utasitds igénybe
veheti @ drolst,

Csak a LOAD/STORE utasitisok fordulhat-
nak a memdridhoz.

A futgszalag (pipelining) feldolgozds kis-
mértéki.

Erdteljes futdszalag (pipelining) feldolgozds.

Valtoz6 hossaisdgii uasitdsok.

Rogaitent wiasitdshossz.

Sokféle utasitds és cimaési méd.

Kevés utasitds és cimaési mdd.

‘Bonyolult mikroprogram, egyszerd fordité-
program.

Bonyolult forditéprogram, egyszerii
mikroprogram.

Kis szimi pegiszrer.

Nagy méreti regisztertdr.

Tdroldvédelem hardver iiton,

Tarolvédelem szoftver segitségével.

15

sz. dbra

RISC és CISC processzorok jellemzdi




7. A központi tár szerepe, áramköri megvalósítása. ROM és RAM áramkörök típusai. Dinamikus RAM belső felépítése. Átlapolt memóriakezelés.
Központi tár (memória)
Központi tár, főtár

A tárolóegység tárolja a program utasításait, és az adatokat. A tárakba való íráshoz ill. olvasáshoz meg kell adni a keresett tároló hely címét, amit a tárolóhoz tartozó címregiszter (MAR: Memory Address Register) fogad be és ennek tartalma vezérli a memória kiválasztó áramköreit. Az adatok számára a tároló bemenete ill. kimenete az adatregiszter (MDR: Memory Data Regiszter), amely a beírandó, vagy kiolvasott adatot ideiglenesen befogadja. 

Memória: szavanként címezhető tárolóegység, melynek rekeszei tárolják az utasításokat és az adatokat egyaránt. Az, hogy egy rekesz tartalma adat vagy utasítás, csak értelmezés kérdése, hiszen az ábrázolás módja azonos. A memóriáknak gyorsan olvashatónak és írhatónak kell lenniük, hiszen hozzáférési idejük alapvetően meghatározza az utasítássorozat végrehajtásának sebességét. 

Legfontosabb erőforrás a processzor mellett. A tárolóban található a végrehajtás alatt levő program és a feldolgozásban használt adatok.

A legkisebb tárolási egysége az egy bináris jel, a bit. Fizikailag legkisebb egységként kezelt tárolóterület a rekesz (1 byte). Minden rekesz címmel rendelkezik, amely alapján a tárolóhelyet a processzor ki tudja választani, és abban adatot tud elhelyezni vagy kiolvasni. A rekeszek címet 0-val kezdődő, szigorúan növekvő sorszámok alkotják.

ROM és RAM áramkörök típusai
RAM (írható és olvasható)

- dinamikus RAM (DRAM) – alacsony teljesítményigényű, tartalmát rövid idő alatt elveszti, ezért annak tartalmát ciklikusan fel kell újítani. Kis mérete miatt (1 tranzisztor) nagy méretű tárakat lehet  belőle kialakítani.

- statikus RAM (SRAM) – gyors működési sebességű, nem igényli az állandó adatújítást (=bistabil multivibrátor)

ROM (csak olvasható)

- csak egyszer tölthető fel a gyártás során (ROM)

- a felhasználó által egyszer feltölthető (PROM)

- speciális módon törölhető és programozható (EPROM)

- felhasználó által újraírható (FLASH ROM)

Dinamikus RAM belső felépítése

[image: image24.jpg]DRAM

‘Régebben a szimitistechnikiban csak egyfajta RAM tipust haszndliak a
fotirolaban, ezt hivtik egyszerlien RAM-nak. A statikus RAM-ok megicle-
nését kvetien ezt a RAM tipust meg kellett kilonbsztetn, ekkor kapta a
dinamikus jelz61, ami arra uta, hogy ennck a memriatipusnak a tartlma
adottidén belll megsemmisil, ha nem frissiguk fel.

A DRAM miixszervezésii azaz oszlopokbal és sorokbal épal fel, me-
ek, metszésponsjdban” taldlhatd egy memdriacella. (A memoriacelldban
az informiciét egy elemi kondenztor tirolja) Az elvi felépitést mutatja
Kivetkez? ibra:

L FRISSHTO ARAMKOROK ]

[]

Ty
i
7200 e
A DRAM logha e

‘Ezek szerint a memdriacelldt megeimezni két épesdben lehet:
 eldszor a mtri gy sord cimezzitk meg, ezt Koverden
+ a sorbdl kivdlasztjuk az adott oselophoz tartozé celldt.




[image: image25.jpg]Ebbdl kovetkezik, hogy a DRAM dramkomek egyszerrc nincs saiiksége
a teljes ciimre, hanem eloszbr 8 sorcimet, majd az oszlopeimet kel rendelke-
zésére bocsitani. Ezért a processzor dlal megadott cimet gy hardver egy-
ségael két résare, sor és oszlopcimre kell szétvlasriani

'A processzorok telesitménye oz clmilt évtizedben rohamosan nt, ez-
26l & memdridk egyre nehezebben tudiak [épést tatani. A processzorhoz ké-
pest lassii memoria okozta problémit eldszor az L1 és L2 cache tdrolokkal
prébiltik megoldani, de rovidesen cz is kevésnek bizonyult. Ez vezetet az
egyre tjabb és djabb DRAM memdriatipusok ifejlesztéséhez.




Átlapolt memóriakezelés
(MEMORY INTERLEAVING)

Memory Interleaving (gyorsítás átlapolt memóriakezeléssel): a memóriát egymástól függetlenül címezhető és olvasható részekre, úgynevezett memóriabankokra osztjuk fel. Feltételezve, hogy a proci általában a memóriát címfolyamatosan olvassa, a 0-ik memóriabankból kiolvasott adat hozzáférése alatt az 1. memóriabankban lévő következő címen lévő adat már megcímezhető. Ez kissé leegyszerűsítve azt jelenti, hogy címfolyamatos olvasás esetén az adatok kiolvasása kb. kétszeres.

8. Gyorsító (cache) tárak feladata és működési elve. Cache tárak felépítése és típusai. Helyettesítési és adataktualizálási stratégiák.

A cache tárak 

Az adatok kiolvasásakor az adatok nem ugorhatnak át szinteket, így például a háttértárról beolvasandó adatnak át kell haladnia mindazon szinten, ami a CPU-hoz vezet. Mivel azonban a szinteket alkotó eszközök működési sebességében igen nagy különbségek is lehetnek, nem egyenletes az adatáramlás. Ennek kiküszöbölésére a szintek közé pufferelési célból ún. cache tárak lettek közbeiktatva. Ezek az adatok és utasítások átmeneti tárolására szolgáló, viszonylag kisméretű (pár 100Kb), gyors működésű (4 ns) tárolók, melyek a felhasználó számára láthatatlanok. Cache tárak a CPU és a főtár, illetve a főtár és a háttértárolók közt találhatók.

A cache az elhelyezkedését tekintve lehet L1 (on chip) vagy L2 (off chip) cache.

L1 cache: a CPU-n belül találhatók, kapacitása 8-32 Kb.

L2 cache: a CPU-n kívül található, kapacitása 128-512 Kb. 2048 Kb
Cache tárak típusai működésük alapján:

Teljesen asszociatív

A főtárból beolvasott blokkok bárhova elhelyezhetők, bármelyik sorba kerülhetnek. Hogy melyik sorba kerülnek, a helyettesítési algoritmus feladata eldönteni. 

Közvetlen leképzésű

A blokk a cache csak egy konkrét sorába kerülhet. A közvetlen leképzésű cache tárolók olcsók és gyors visszakeresést biztosítanak.

N-utas csoport asszociatív cache

Ez a tárolótípus tulajdonképpen átmenetet képez a teljesen asszociatív és a közvetlen leképzésű cache tárolók között. A tároló n sorból álló részre, csoportokra van osztva. A tárolón belül minden egyes csoport viszont teljesen asszociatív tárolóként működik, ugyanis a csoport bármely sorába bekerülhet a blokk, ezt a helyettesítési algoritmus határozza meg.

Cache-tárak felépítése

[image: image26.jpg]A cache tirak dlaldnos flépitését a 60. sz. dbra mutatia be.

CACHEVEZERID.
AcacHE
SORAI
Climtes  Vestlp i Aduirtsz
Todaek vagy g
60,52 dbra

A cache tirak dltaldnos felépitése




Cache-tárak típusai

Cache. Speciális gyorsítótárak, amelyek hihetetlen sebességük miatt közkedveltek. Általában

olyan információkat szokás benne tárolni, amelyekre a lehetõ legrövidebb elérési idõ

alatt szükség lehet. Típusai:

· Csoport asszociatív cache. A teljesen asszociatív- és a közvetlen leképezésû cache

közötti átmenet (késõbb szó lesz mindkettõrõl). Maga a memória meghatározott számú

sorból álló csoportokra van osztva, amely csoportok önmagukban úgy mûködnek mint

88

a teljesen asszociatív cache tárak. A legtöbb jó tulajdonságot hordozza, ugyanis

rugalmas, kis számú összehasonlító áramkör szükséges hozzá és viszonylag gyors.

· Közvetlen leképezésû cache. Egy-egy adatblokk csak meghatározott helyre kerülhet. A

meghatározásért egy úgynevezett sorindex felelõs. Betöltése kötött a blokkhelyek

merevsége miatt, ám visszakeresése rendkívül gyors, hiszen a sorindex útmutatást ad a

processzornak.

· Szelektor leképezésû cache. A csoport asszociatív cache-hez közelítõ megoldású tár.

Ma már egyre ritkábban használják, ugyanis a processzor az adatcsoport helyét jelöli ki

asszociatív módon.

· Teljesen asszociatív cache. A beolvasott adatblokk bárhová elhelyezhetõ benne, ennek

helyét egy úgynevezett helyettesítési algoritmus határozza meg. Betöltése rugalmas, ám

visszakereséséhez pontosan annyi keresõáramkörre van szükség, ahány sor található

benne (ugyanis a processzor sorról-sorra haladva keresi az adott információkat).
Helyettesítési eljárások:  A cache-tárak hatékonyságát az biztosítja, ha kevésszer kell a tartalmukat cserélni. Erre  a legkevésbé használt blokkok cseréjének stratégiáját alkalmazzák. Ez megvalósítható számláló regiszterek, léptető regiszterek használatával, valamint megelőzési mátrix alapján.
Aktualizálás: a cache-tár tartalmának módosítása után a memóriában is aktualizálni kell a tartalmat, hogy a program az aktuális értékkel dolgozzon.

· azonnali átíráskor a módosított byte azonnal beírásra kerül a memóriába. Ha a módosított byte-hoz tartozó blokk a cache-ben van, ennek tartalma is aktualizálódik.

· visszaírási, visszamásolási eljáráskor ha az adott byte-hoz tartozó blokk a cache-ben van, a főtárat csak a blokk cseréjekor aktualizálja. Ha a blokk nincs a cache-ben, a blokkot beolvasás után aktualizálja.

9. A virtuális tárkezelés fogalma és legfontosabb eljárásai (lapozás és szegmentálás, a virtuális cím leképezése, TLB, lapcsere stratégiák).
	Az alábbi ábra a virtuális tárkezelést szemlélteti. Az operációs rendszer betölt egy lapot a mágneslemezről, és egy rég nem használtat kiír a mágneslemezre.

	[image: image27.png]Meméria

lap.
betdltése

Migneslemez

lapok






Virtuális tárkezelés

A virtuális tárkezelés a modern operációs rendszerek elengedhetetlen képessége. Lényege abban áll, hogy az operációs rendszer felbontja a megindított programot lapokra - page. Ez a felosztás a mágneslemezen történik meg. Egy lap mérete 4 KB. Az operációs rendszer a lapokat megszámozza, és a lemezen elfoglalt helyüket egy laptáblázat-ban tartja nyilván. Az operatív memória jóval nagyobb méretű, mint egy lap. A program indításakor betölti az első néhány lapot. Ezek megkezdik működésüket. Amikor egy még a mágneslemezen lévő lapra van szükség, akkor a már betöltött lapok közül a legrégebben használt lapot kimásolja a lemezre, és helyébe másolja azt a lapot, melyre a program futásához szükség van. A lapcserék a lapok kis mérete miatt nagyon gyorsan hajtódnak végre. A program által gyakran használt lapok a memóriában maradnak - rezidens rész.
Lokalitás elve: a programok végrehajtásuk során legtöbbször egy korlátos memóriaterületen belül dolgoznak

Gyakoriság elve: egyes programrészek között igen nagy eltérések lehetnek abból a szempontból, hogy a programvégrehajtás során milyen gyakran van rájuk szükség. PL. hibakezelő rutinok ritkán használatosak.

[image: image1.jpg]Utasitas dekodolo es elorendezo egyseg
 Vezérigegység

ALY
Regiszterek

Kéd-cache
Ferritgydrdi

_ Végrehaité
egység

32 bites

buszok

Lebegdpontos
P Adat-cache egység
64 bites busz

Busz csatoléegységE Sodleges cache




Lapozás

A programhoz több, a tárban szétszórtan elhelyezkedő blokk tartozik, az op. rendszer pedig gondoskodik arról, hogy futás közben szükség esetén a vezérlés az egyik blokkból a másikba kerüljön. A blokkokat lapoknak, a módszert pedig lapkezelésnek, vagy lapozásnak nevezzük. Lapozásnál minden blokk mérete azonos, a memóriacímek egy lapcímre és egy eltolásra bonthatók. Az operációs rendszer egy laptáblát kezel, mely a lapok memóriabeli kezdőcímeit tartalmazza.

[image: image75.png]prve Asimantst protokon
] Apou
Mesiiniesi protokan
— Prou
-
Eoytumar spou

“" 369 (hos)

5. dbra: Az OSI modell





Szegmentálás

Szegmentálás esetén a memória blokkok különböző méretűek, így a program egész moduljait lehet a memóriába tölteni, ami csökkenti a háttértárhoz fordulást. Külön kezelhetjük a program kódot, az adatokat, a verem tartalmát.
A szegmensek főtárba való betöltése történhet:

•
Az első szabad helyre
•
A következő szabad helyre, azaz az utolsónak betöltött szegmenstől vizsgáljuk az első szabad helyet

•
A legjobb helyre, ami azt jelenti, hogy kiválasztjuk a szabad tárterületek közül azt, amelyikbe ha betöltjük a szegmenst, a lehető legkisebb szabad hely marad.

•
A legrosszabb helyre, aminek célja az, hogy a betöltést követően a szegmens mellett a lehető legnagyobb szabad terület maradjon.


Szegmentált virtuális tárkezelés lapozással

Ebben az esetben a szegmentáláson belül alkalmazzák a lapozásos virtuális tárkezelést, azaz a virtuális tár szegmensei lapokból épülnek fel.. Ez a fajta virtuális tárkezelést használják a Pentium CPU-k védett üzemmódban.


Virtuális cím leképezése

A szg-en aktuálisan futó programfolyamatok utasításai a vituális címeket, mint logikai címeket tartalmazzák. Tehát a programok a virtuális tárat úgy látják, mintha az a központi tár része lenne. A virtuális tárterület megcímzése virtuális címekkel történik. A virtuális címet a virtuális tárterület megfelelő blokkjának sorszámából illetve egy relatív címből képezzük. A virtuális címzéssel elvileg megcímezhető memóriaterületet virtuális címtartománynak nevezzük.

Lapozásnál minden folyamat saját laptáblával rendelkezik. Memória hivatkozásnál a címnek azt a részét, amely a laptábla rekeszére mutat ki kell cserélni a rekesz tartalmával és készen áll a hivatkozott cím.

Szegmentált címzés esetén a címszámítás legfontosabb eszköze a szegmensleíró tábla: a tábla címe + a szegmens sorszáma megadja a szegmens fizikai címét, amelyhez a szegmensen belüli eltolást hozzáadva megkapjuk a hivatkozott memóriarekesz címét. A szegmenstábla további információkat is tartalmaz a szegmensekről: a szegmens a memóriában van-e, megváltozott-e, és használatban van-e. Minden folyamatnak önálló szegmenstáblája van, ami megakadályozza, hogy egymás címeire hivatkozzanak. Címszámításnál az eltolást összehasonlítják a szegmens hosszával, ami további védelmet nyújt.

TLB
A TLB a leggyakrabban használt lapok lapcímfordításhoz szükséges adatait tartalmazza.

A lapozás gyorsítását szolgálja a TLB (Translation Lookaside Buffer) cache, amely a 32 leggyakrabban használt lap adatait (deszkriptorát) fogadja be.
Lapcsere stratégiák

Azonban el kell dönteni, hogy a lap a memórián belül hova kerüljön beírásra. Ennek megvalósítására több lapcsere algoritmus létezik.

A lapcserére többféle stratégia létezik: 

· FIFO – azt a lapot kell lecserélni, amelyik a legrégebben van a memóriában

· Optimális – Azt a lapot kell lecserélni, amelyre a legkésőbb lesz szükség (elméleti stratégia, szimulációkhoz használják)

· Második esély – a lecserélendő lapok közül azt választjuk, amely az előző lapcsere óta nem módosult vagy nem hivatkoztak rá

· az LRU (Least Recently Used)  Legrégebben használt A virtuális tárkezelésnél ezt alkalmazzák. Az eljárás megvalósításához nyilván kell tartani, hogy egy lapot mikor használtunk. Tehát azt a lapot kell lecserélni, amelyre a legrégebben hivatkozott a folyamat. Ezt a módszert csak hardver támogatás segítségével oldható meg hatékonyan, megfelelő gyorsasággal, mivel a hivatkozás időpontját is szükséges eltárolni.  Ez az eljárás kevés laphibát eredményez, viszont cserébe igen nagy mértékben megnöveli az adminisztrációs feladatokat.

· Mostanában nem használt Az LRU módszer enyhített, könnyebben megvalósítható változata. Az operációs rendszer, ha a folyamat egy lapra hivatkozik, a laptábla egy bites mezőjét igazra állítja. Lapcsere esetén azok közül a lapok közül kell választani, amelyek „használ” bitje nulla. Ha egy laphoz már legalább egyszer fordultak, a jelzőbit állapota igaz. Hogy egy lap ne maradhasson örökre a tárban, a lapcsere algoritmus lapcserekor az összes lap jelzőbitjét nullázza

10. Az adatrögzítés elve a mágneses háttértárolókon. A merevlemez fizikai felépítése (szektor, sáv, cilinder) és logikai felépítése (klaszter, FAT, bootszektor). A merevlemezes egység teljesítményjellemzői (elérési idő, adatátviteli sebesség).
A számítógépek megjelenése óta többféle háttértár típust fejlesztettek ki. Mindegyik tároló célja olyan mennyiségű adat tárolása, mely meghaladja az operatív tár méretét, és nem veszti el tartalmát a tápfeszültség megszűnésekor. A jelenleg alkalmazott tárolók közül a legjelentősebbek a mágneslemezes tárolók (winchester és floppy lemez).

A merevlemezek ( winchester, Hard Disk Drive - HDD) 
[image: image28.jpg]ir6-olvasé fej

sév
Lemezek
Szektor





A leggyakrabban alkalmazott, leguniverzálisabban használható háttértároló eszközök. Segítségükkel nagy adatátviteli sebesség (2-40 Mbit/s) érthető el, igen nagy kapacitásúak (1-400 GB) és viszonylag olcsók. 

A mágneslemezes tárolók esetén az információ hordozója egy nem mágnesezhető alapanyagon lévő vékony, mágnesezhető réteg, illetve annak mágnesezettségi iránya és szintje.  Közös tulajdonságuk, hogy mágnesezhető réteggel borított, 1,5-5,25 coll átmérőjű korongokból állnak melyet a meghajtó 5400-7200 fordulat/perc sebességgel forgat. 

A lemezen, a koncentrikus körök, a sávok (track) mentén tárolt adatokat sugárirányban mozgatható olvasó/író fejek olvassák, illetve rögzítik. Az állandó forgás miatt a fejek nem érnek hozzá a lemezekhez, hanem a keletkező légpárna miatt pár mikron távolságra vannak azok felületétől (ezek a repülő fejek). Legtöbbször egy tengelyen több lemez is található. 

[image: image29.png]



Az egymás alatt elhelyezkedő sávokat együttesen cilindernek nevezzük (hajlékonylemeznél kettő, a merevlemeznél 8-10 vagy több),. A lemezeket teljesen zárt doboz védi a legapróbb szennyeződésektől is. 

A sávokon kívül egy-egy lemezoldal — mint egy torta szeletei — szektorokra is oszlik. A szektorok logikai felépítése két részre tagolja azt: a fej- és adatrészre. A fejrész az azonosításhoz szükséges információkat, valamint a szinkronizáláshoz szükséges jeleket tárolja. Az adatrész magát a tárolandó adatsort, valamint a megbízhatóság növelése érdekében az ún. ellenőrző összeget foglalja magában. A szektor egyes részeit, valamint a szektorokat üres részek választják el egymástól.

A sávok és szektorok metszéspontjánál kialakuló ívekben, a blokkok jelentik a legkisebb átvihető adatmennyiséget. A blokkok tipikus mérete: 0,5- 64 KB.  A szektorok és blokkok előkészítése, ellenőrzése szoftver úton, a formázás során történik. A blokkok címzéséhez három adatra van szükség: lemezoldal, sáv, szektor sorszámok.

Egy blokk átviteléhez szükséges időt három tényező befolyásolja:

•
fejmozgási idő (seek time): kb.10ms, a fej eléri a kívánt sávot;

•
elfordulási idő (latency time): kb. 10ms, a kiválasztott szektor fej alá kerülésének ideje;

•
adatátviteli sebesség (transfer time) a blokk adatainak átviteléhez szükséges idő;

Minden merevlemez egy fizikai partícióból áll, mely mérete azonos a lemez teljes területével. Ezt a területet több logikai részre, partícióra lehet osztani. Kétféle logikai partíciót különböztetünk meg: elsődleges és másodlagos partíció. Az operációs rendszerek esetén a DOS és a Win95 csak az elsődleges partícióról képes elindulni, valamint csupán négy elsődleges partíció kezelésére képesek. A partíciókkal kapcsolatos információkat a merevlemezen el kell tárolni, hogy azokat az operációs rendszer képes legyen felismerni és kezelni. Erre a célra szolgál a merevlemez partíciós táblája, mely a lemez legkülső sávja. A partíciós tábla mindig a 0. számú logikai szektor, a 0. sávon a 0. fejjel elérhető 1. fizikai sorszámú szektor. 

A merevlemezes egységeknek többféle változatát használják, így pl. a beépített, cserélhető és hordozóható lemezek használatosak. Ezek kapacitása napjainkra fokozatosan növekszik (több GB), míg a méret csökken. 

Betöltő szektor (boot sector)

A lemez partícionálásáról szóló információk a lemez elsõ szektorában (azaz az elsõ lemezfelület elsõ sávjának elsõ szektorában) tárolódnak. Ez a legelsõ szektor a lemez master boot record-ja (MBR); ezt a szektort olvassa be a BIOS és indítja el tartalmát, amikor a számítógép elindul. Az MBR egy kis programot tartalmaz, mely beolvassa a partíciós táblát, ellenõrzi, melyik partíció az aktív (azaz boot-olható), és beolvassa annak az elsõ szektorát, amit boot szektornak nevezünk. Ez a boot szektor egy másik kis programot tartalmaz, mely beolvassa az operációs rendszer elsõ részeit az adott partícióról (ha boot-olható), és elindítja azt. A MBR-ból csak egy van minden merevlemezen, míg a Boot Record megtalálható minden egyes partíció legelején. Ha van három partíciónk, akkor van egy MBR és három BR. Amennyiben a kettes partíció az aktív akkor a MBR a kettes partíció BR-t indítja el.

Klaszter
A logikai lemezkezelés alapegysége a több szektorból álló szektorcsoport, a klaszter (angolul cluster). A fájlok a lemezen klaszterekre vannak osztva, így az operációs rendszer írni és olvasni a merevlemezt csak klaszterenként tudja. Egy klaszterben található szektoroknak a száma a lemez kapacitásától függ, de mindig 2-nek valamelyik hatványa.
FAT (File Allocation Table)

A lemezek állománykezelési táblázata szolgál arra, hogy az operációs rendszer nyilvántartsa, és nyomon kövesse azt, hogy a lemez mely szektorai szabadok, vagy foglaltak. A foglaltság nyilvántartása nem szektoronként történik, hanem nagyobb egységenként, klaszterenként (cluster) 

A FAT a különböző file részek pontos helyét láncolt formában tárolja: a táblázatnak ugyanannyi eleme van, mint ahány blokk a lemezen és minden rekesz tartalma a file következő blokkjára mutató sorszám, amennyiben van. Ha nincs következő blokk, akkor ennek értéke nulla. 

A FAT mérete igen nagy lehet, és szerepe döntő. Mivel sűrűn kell használni, ezért folyamatosan a memóriában kell tartani, ami szűkösebb mint a háttértár. A FAT sérülése esetén a ketté szakadt file-okat visszaállítása szinte lehetetlen, ezért a láncolási módszert alkalmazó operációs rendszerek (DOS, Windows) a biztonság kedvéért két ilyen táblázatot tartanak fenn. 

Amikor egy program file írását vagy olvasását kéri, az operációs rendszer a kontroller segítségével a FAT fölé mozgatja az író/olvasó fejeket. A rendszer innen állapítja meg, hogy a keresett file hol kezdődik, illetve adat beírás esetén azt, hogy hol található az első üres hely a létrehozandó állomány számára. 

Hajlékonylemez
[image: image30.png]4




Kiskapacitású, közepes elérési sebességű eszköz, amelynek azonban nagy előnye, hogy a meghajtóval ( az író/olvasó fejjel) nincs egybeépítve, ezért könnyen cserélhető és szállítható. Szállításnál vigyázni kell, hogy mágneses mező közelébe ne kerüljön, mert akkor elveszti az információ tartalmát (pl. bekapcsolt mobiltelefon, villamos). Kezdetben az 5,25 collos lemezeket használtak, manapság már csak elvétve találkozhatunk ezzel a típussal. Jelenleg a 3,5 collos lemezek vannak inkább forgalomban. 
Megjelent egy új generáció is, az LS-120-as elnevezésű hajlékony lemez. Külsőre egy 3,5 collos lemezhez hasonlít, azonban a meghajtó az író/olvasó fejet sokkal pontosabban tudja pozícionálni, ezzel csökkent a sávok szélessége és a közöttük lévő távolság, vagyis egy sávban több adatot lehet tárolni. A meghajtója képes 720 Kbyte-os, illetve 1,44 Mbyte-os lemezek olvasására. 
Hagyományos hajlékonylemezek egyik fajtája még a Zip-lemez. Tárolókapacitása 25-100 Mbyte között van. A Zip-meghajtót párhuzamos portra lehet csatlakoztatni. 
A tárkapacitást s a méreteket a kövektező táblázat foglalja össze (az első oszlopban a dobozokon olvasható jelölések találhatók): 

	
	Magyarul
	3,5 collos
	5,25 collos 

	Single Density (SD)
	Egyoldalas
	nincs
	100-200 Kbyte

	Double Density (DD)
	Dupla oldalas
	720 Kbyte
	360 Kbyte

	High Density (HD)
	Magas felbontású
	1,44 MByte
	1,2 MByte 

	Laser Servo (LS-120)
	Lézeres felbontású
	120 MByte
	Nincs



A táblázatból is kiderül, hogy kisebb kapacitásának is köszönheti eltű nését az 5,25 collos (un. nagy lemez). Ezeket a lemezeket írásvédetté a kövekezőféleképpen lehet tenni: 

5,25 collos: a nyílást kell leragasztani 

3,5 collos: a lemez bal alsó sarkában lévő ablakot kell nyitottá tenni 

Másképp:
Az adatok tárolására a vékony műanyag hordozóra felvitt mágnesezhető réteg szolgál, melyet merev tokban helyeznek el. Az adatok a lemez felületén levő koncentrikus körök, sávok (track) mentén helyezkednek el. A sávok szektorokra vannak felosztva. A szektorok és sávok metszéspontjában alakul ki a blokk, a tipikus blokkméret 512 KB. A meghajtóba helyezett lemezt a berendezés 360 fordulat/perc fordulatszámmal forgatja, és az olvasófej a lemez felületéhez hozzáérve írja/olvassa a tárolt adatokat. A lemez behelyezésének pillanatában a hardver érzékeli azt, és egy-két fordulat segítségével felméri annak állapotát. A folyamatos forgatás csak akkor indul be, ha a felhasználó az adott meghajtót használni kívánja. Emiatt ez a lemezfajta eléggé lassú (max 500 kbit/s). A lemez tartalma a felülírástól mechanikusan védhető (eltolható műanyag retesz). Kétfajta méretben készül, 5,25 ’’, és 3,5’’ Kapacitása: max 1.44 Mbájt
A merevlemezes egység teljesítményjellemzői (elérési idő, adatátviteli sebesség)
A merevlemez jellemző adatai:
· kapacitása 4-150 Gbájt; 

· forgási sebessége 5400, 7200, 10 000, 14 000 fordulat percenként; 

· lemezátmérője 5-30 cm; 

· hozzáférési ideje (napjainkban) 4-8 msec. 

A mágneslemez hozzáférési ideje (Disk Access Time) alatt egy adatblokk kiolvasásának idejét értjük. Ez nyilvánvalóan csak átlagértékként értelmezhető, mivel ez nagyon függ az olvasófejnek a kiolvasás megkezdése előtti helyzetétől, amint a következő képletből is kiderül:

Hozzáférési idő = Pozicionálási idő átlaga + Forgási idő + Adatátviteli idő + Vezérlési idő.
11. A megszakítási rendszer (megszakítások típusai, a megszakítás kiszolgálása, vektortáblázat) és alkalmazásai. A megszakítás-vezérlő feladatai.
Megszakítások

A számítógépek munkájának összehangolásában segít a gépek megszakítási rendszere. Igen gyakran keletkeznek olyan események amelyek a feldolgozás szempontjából váratlanok. Ezeket az eseményeket is kezelni kell, úgy, hogy a feldolgozás egészét a legkevésbé zavarja. 

Kiváltójuk lehet:

· a szoftver - valamilyen futás közbeni hibával (osztás nullával, túlcsordulás stb.). Ezek szinkron események, kezelésére a processzor egy kiszolgáló rutint indít el

· vagy a hardver - pl. valamelyik periféria kezdeményezi adatátvitel lebonyolításának idejére. Ezek aszinkron események.

Esemény csoportosítása keletkezés szerint:

· szinkron (várható) események - meghatározható helyen, időpontokban ugyan ott keletkeznek pl. adatbeolvasás, kiírás.

· aszinkron várható események - program futása során várható, de időpontjuk szempontjából ismeretlen, váratlan események  pl. DMA adatátvitel.

· aszinkron váratlan események - időpontjuk ismeretlen. Például: áramkimaradás, hardverhiba.

Az ilyen események kezelésére szolgál a megszakítási rendszer. A megszakítási kérelem egy jelzés a processzornak valamely esemény bekövetkeztéről. A megszakítás a futó folyamat felfüggesztése a megszakítás kérelem hatására, annak kiértékelésére, kiszolgálására. A kiszolgálásra egy hardver-szoftver együttes szolgál, amely együttesen végzi el a szükséges tevékenységeket. Ez a megszakítás kérelem kiszolgálása.


Maszkolás

Egyes eszközök esetében a megszakítás lehetősége engedélyezhető vagy tiltható. Az engedélyezés vagy tiltás egy regiszter bitjeinek a beállításával történik. Ezt nevezzük maszkolásnak. Vannak maszkolható (kiszolgálásuk letiltható) és nem maszkolható (nem tiltható le, ezek mindig érvényre jutnak) megszakítások. (NMI - Non Maskable Interrupt - nem maszkolható megszakítás)

Két forrása lehet a megszakítási kérelemnek: 

- szoftver: a megszakítás kérelmek programból lettek kezdeményezve, ezek nem maszkolhatóak 

- hardver: a megszakítás kérelmek többsége maszkolható, de vannak nem maszkolhatóak is, például valamilyen súlyos hardverhiba esetén 


A megszakítások kiszolgálásánál több kérdés van, amit meg kell oldani:

· keletkezési hely megállapítása, melyik eszköz kezdeményezte

· megszakítás lehetőségek szabályozása, megszakítások maszkolások

· több egyidőben történő megszakítási kérelem prioritásának a szabályozása

· a többszörös megszakítás-kiszolgálás megoldása, az időközben érkező újabb kérelmek kezelése


A megszakítási kérelem keletkezési helyének megállapítására két fő rendszer alkalmazható: 

-Szoftver módszerek: egy rutin sorra megvizsgálja a megszakítás kérelem szempontjából szóba jöhető eszközök állapotjelzőjét, és ahol szükség, ott elindítja a megfelelő kiszolgáló programot. Ezt nevezik lekérdezéses megszakításnak. polling

-Hardver módszerek: egy megszakítás-vezérlő szabályozza - programmal vagy anélkül- a beérkező kérelmek kiszolgálását. 


A mikroszámítógépek megszakítás rendszerei, vezérlői egy vagy több megszakítás vezetékkel rendelkeznek.

Egy megszakítás vonal esetén a keletkezési hely meghatározása történhet szoftver úton, lekérdezéses módszerrel. A hardver úton történő meghatározás sorosan történik. 

Több megszakítás vonal esetén minden eszköz saját megszakítást kérő vezetékkel rendelkezik, ezzel a kérelem helye egyértelműen megállapítható.

Vektoros módszer alkalmazása a legáltalánosabban használt forma. A megszakítását kérő eszköz a kiszolgáló rutin kezdőcímét határozza meg az alábbi módok valamelyikével:

-a megszakítást kérő eszköz egy sorszámot ad át a processzornak, amely a kiszolgáló rutinok kezdőcímeit tartalmazó táblázatban kijelöli a megfelelő kiszolgáló rutin kezdőcímét. Ez a módszer a vektoros megszakítás kiszolgálás a legelterjedtebb módszer. A rutinok kezdőcímeit tartalmazó táblázatot megszakítási vektortáblának nevezzük. A megszakítási vektortábla a memóriában a 00000h - ás címen kezdődően van tárolva, tehát a memória kezdetén. 

- ugyanaz az eljárás mint az előző esetben, annyi különbséggel, hogy a vektortáblát a processzor tárolja. Ez az autovektoros eljárás.


A megszakítási rendszer lehet egyszintű vagy többszintű:

-Az egyszintű megszakítás rendszerben nincs lehetőség a kiszolgáló rutin megszakítására egy újabb megszakítás által, 

-többszintű megszakítás rendszerekben a megszakítást kiszolgáló rutin is megszakítható, de csak bizonyos szabályok betartásával:

· A kiszolgáló rutin a vele egyező, vagy nála alacsonyabb prioritású kérelmeket letiltja

· A kiszolgáló rutin a folyamat kezdetekor ideiglenesen alacsonyabb prioritási szintre sorolja magát

· A kiszolgáló rutin ideiglenesen új prioritásokat rendel az egyes eszközökhöz, és így a kiszolgálás alatt más prioritási rend érvényesül


Az INTEL processzorok alaphelyzetben kétszintű megszakítási rendszerrel rendelkeznek: egy maszkolható (INT) és nem maszkolható (NMI) megszakítási vonallal. Mivel ez a két megszakítási lehetőség a gyakorlati felhasználásban nem elegendő, ezért külön megszakítás-vezérlőt használnak amely 8 (illetve 2 darab vezérlő esetén 16) megszakítási kérelmet tud feldolgozni. A megszakítás bemenetek sorrendje egyúttal prioritási sorrendet is jelent. A processzorok valós üzemmódban a vektortábla, míg védett üzemmódban a megszakítási rutinok deszkriptorait tartalmazó megszakítási deszkriptor tábla (IDT) alapján dolgozzák fel a megszakítási kérelmet.

A megszakítások típusai prioritás szerint:

NMI – nem maszkolható megszakítás: nem tiltható le, kritikus eseményt jelez - kivétel

IRQ – interrupt request: letiltható hardver megszakítás, külső eszközök kezdeményezik (8-16 db)

INT – szoftver megszakítás: a programban kiadott ’INT sorszám’ utasítással a megszakítást kiszolgáló rutinra ugorhatunk (amit a hardver egység hív IRQ-val) (256 db)

12. Az I/O adatátvitel típusai. A közvetlen memória-hozzáférés (DMA) lényege és végrehajtása. A DMA-vezérlő regiszterei és működése.
Az I/O adatátvitel típusai

Az átvitel fizikailag történhet bitenként, ilyenkor soros adatátvitelről (szimplex,félduplex, 
full-duplex) beszélünk, ill. egyszerre több vezetéken több bit továbbításával, ezt nevezzük párhuzamos adatátvitelnek.
Továbbá az átvitel történhet: 

· szinkron módon, órajellel ütemezve, 

· aszinkron módon pl. handshake-eljárással.
Párhuzamos adatátvitel (PIO – Paralel Input Output)
A párhuzamos adatátvitelnek előnye, hogy gyorsabb a sorosnál, de mivel drágább, jobbára csak a számítógép közelében elhelyezhető perifériák csatlakoztatására használatos (printer) illetve készülékek belsejében elhelyezkedő részegységek, lemezmeghajtók összekapcsolására használják.  Természetesen külön vezeték(ek) (ahány bit annyi vezeték)szükségesek a ADÓ-VEVŐ szinkronizmus megvalósítására is. Ilyen megoldással működnek a számítógépek adat-, vezérlő- és címbuszai, vagy perifériák esetén a nyomtató, szkenner.4-6 m 
A mikroszámítógépes rendszerekben a legnagyobb számban a párhuzamos adatátvitel lehet

- megszakításos,

- közvetlen tároló hozzáféréses (DMA) 

- valamint a programozott I/O átvitel  (nagygépes rendszerek esetében önálló I/O processzor vezérli)
Soros adatátvitel (SIO – Serial Input Output)

Soros átvitel esetén az információs biteket egyenként, sorban egymás után visszük át. Ezért egy kódolt bitcsoport átviteli ideje a párhuzamos átvitelhez képest megnő, de számos előnyt rejt ez a kialakítás: szélső esetben elegendő egy vezetékpár az összeköttetés fizikai megvalósításához, ami jelentős költségcsökkentő tényező. Az információ átvitel sebessége lassabb, de ha növeljük az adatátvitel sebességét (napjainkban folyamatosan ez történik) akkor ez a lassúság nem igazán korlátozó tényező. Manapság egyre nagyobb sebességű soros adatátvitel megvalósítására nyílt lehetőség (USB 11Mb/s, USB 2.0 450Mb/s , IEEE 1394 port)). A soros adatátvitelt alkalmazzák távadat-feldolgozás során a szg. hálózatokban. 50-100 m

Mivel a számítógépen belül az adattovábbítás párhuzamos formában történik, ezért a soros adatátvitelhez előbb szükség van egy párhuzamos-soros, illetve ilyen jelek fogadásakor, egy visszaalakító soros-párhuzamos átalakításra.

A nagyobb távolságra történő adattovábbításhoz, a telefonvonalakat lehet igénybe venni, amelyek használatához a jeleket rá kell “ültetni” egy hangfrekvenciás hordozójelre. Az erre a célra szolgáló eszköz a modem.

A két, modemen keresztül összekötött, berendezés egymással félduplex, illetve duplex üzemmódban tud kapcsolatot tartani. A félduplex üzemmódnál az adattovábbítás mindkét irányban lehetséges, de felváltva (adóvevő pl.). A teljes duplex lehetséges, de egyidőben mindkét irányban lehet adatokat továbbítani. 

A soros adatátvitel lehet aszinkron és szinkron ütemezésű.

Szinkron átvitel: Szinkron adatátvitelnél, az egymást követő jelek ütemezetten, órajellel vezérelve, szinkronizáltan követik egymást. Az adatok átvitele blokkos formában történik, amelyet kiegészítenek még szinkronizáló bitekkel is. Az egyes adatokhoz tartozó jelek csak egy meghatározott alapidőtartam egész számú többszörösei lehetnek (órajel miatt).

Aszinkron átvitel: Az aszinkron ütemezésű adatátvitelnél, a karakterek ütemezés nélkül követik egymást, az átvitt bitek mennyisége változó is lehet. A start/stop bitek miatt a jelsorozat eléggé redundáns, tehát információtartalom szempontjából felesleges jeleket is tartalmaz, ugyanakkor a vevő oldalon nincs szinkronizálva a vétel és emiatt nagyobb sebességű átvitel nem biztonságos. Az aszinkron átvitelnél nem szükségképpen van folyamatos kapcsolat az adó és a vevő között, ezek szinkronban csak az adatátvitel ideje alatt vannak. 110, 300, 1200, 2400, 9600, 19200 (bit/s

Összehasonlítva: A szinkron átvitelnél a redundancia alacsonyabb, de a kapcsolódó hardver bonyolultabb. Az alkalmazható sebesség magasabb, mint az aszinkron átviteleknél.

A közvetlen memória-hozzáférés (DMA) lényege és végrehajtása

Az ún. DMA vezérlő segítségével a processzort kikerülve, közvetlen adatátvitel lehetséges a memória és a periféria között. Ezt nevezik közvetlen memória hozzáférésnek Ennek egyrészt az az előnye, hogy mivel az adatátvitelt egy speciálisan erre a célra kialakított hardver végzi, az többnyire gyorsabb, mintha a CPU végezné (nem kell közben a memóriából utasításokat olvasni és nem kell az adatot a CPU-n keresztül áramoltatni. Másrészt, a DMA-s kezelés tehermentesíti a processzort (egyszerűbb lesz program) A DMA-s kezelést leginkább nagy sebességű, blokkos adatátvitelt igénylő perifériáknál alkalmazzák (floppy disk, winchester).


[image: image31.wmf]MEMÓRIA

PERIFÉRIA

adat

DMA-s periféria kezelés

MEMÓRIA

PERIFÉRIA

CPU

Programozott adatátvitel

adat

adat

a.)

b.)

DMC


Az adat útja DMA-s és programozott kezelés esetén

Az átvitel lebonyolítását az ún. DMA  vezérlő (DMC, DMA Controller) végzi. Ez egy speciális periféria, amely felprogramozása után busz master funkciót képes ellátni (átvenni a CPU-tól). A DMA vezérlő főként a periféria és a memória közötti átvitel CPU-nál gyorsabb elvégzésére készített speciális hardver elem.

A DMA-vezérlő regiszterei és működése

· Címregiszter: mindig az átvitelben szereplő memóriarekesz címét tartalmazza, értéke az átvitel során automatikusan nő.
· Számláló regiszter: az átvitel elején az átviendő szavak számát tartalmazza, értéke az ávitel során automatikusan csökken.

· Állapotregiszter (parancsregiszter): tartalma az átvitel módját és irányát határozza meg.

13. A sín (busz) feladata, logikai felépítése, típusai. Sínvezérlés (szinkron, aszinkron). Master és slave eszközök. Buszarbitráció (soros és párhuzamos sínfoglalás).
A mikroszámítógép sínrendszere (buszrendszere) egy több tucat vezetékből álló vezetékrendszer, amelyen az adatok, vezérlőjelek, eszközcímek meghatározott módon vihetők át. A sínrendszer szabályozott módon köti össze a számítógép különböző részeit. Mivel minden eszköz ugyanarra a sínrendszerre kapcsolódik, az átvitel létrehozásakor:

- meg kell oldani az adatátvitelben résztvevő eszközök kijelölését,

- meg kell határozni az adatátvitel irányát,

- meg kell oldani a kapcsolatban résztvevő eszközök működésének összehangolását.

A sínrendszer használatának előnye, hogy a szabványosított jelhasználat és vezetékkiosztás miatt könnyen cserélhetők a csatlakoztatott eszközök, illetve azok vezérlő kártyái és így gyártótól, géptől függetlenné válik azok használata.

A sínrendszer elhelyezkedése szerint két nagy csoportba osztható:

Belső sínrendszer: a processzoron belüli egységek összekötésére szolgál, órajele megegyezik a CPU órajelével

Külső sínrendszer: a processzor és az azon kívül lévő egységek összekötésére szolgál


Belső sínrendszer

Kialakítását az elérni kívánt teljesítmény szabja meg. Nagyobb teljesítményű processzorok esetében, az átvitel gyorsítása érdekében, 3-sines rendszer kialakítása a célszerű, amelynél a címsín mellett, külön adatsín van írásra és olvasásra. Ezzel a közel egyidejű írás és olvasás megoldható. Egyszerűbb megoldást ad a 2-sines (adat és címsín) rendszer, amely általánosan elterjedt megoldás a processzorok körében. A közös adat és címsín használata csak a nagyon egyszerű, célfeladatokra használt processzoroknál alkalmazott.


Külső sínrendszer 

1. összekapcsolt területek alapján lehet:

- helyi sín (local bus), amely a processzorhoz közvetlenül kapcsolódó részt jelenti, tehát a processzor hajtja meg. Erre kapcsolódnak azok az eszközök (pl. memória, grafikus kártya), amelyek esetében a gyorsaság lényeges; 

- rendszersín (system bus), amely a processzort köti össze egy sínmeghajtó közbeiktatásával a gép egyéb részeivel, elsősorban az I/O eszközökkel; 

- memóriasín (memory bus), amely nem minden esetben képez önálló részt, de nagyobb rendszernél célszerű leválasztani a rendszersínről a memória területét.

2. A sínrendszer felépítése szerint (tartalmilag) három részre osztható:

- címsín, amely az eszközök címzését szolgálja, azok címét továbbítja rajta a processzor, szélessége 32 (esetleg 64) bitnek megfelelően ugyanennyi vezeték;

- adatsín, amelyen keresztül a továbbítandó adatot küldi, vagy fogadja a processzor. Az adatsín szélessége többnyire 32 (vagy 64) bit, illetve ugyanennyi vezeték;

- vezérlősín, amelynek vezetékeit a processzor a vezérlőjelek kiküldésére, vagy azok fogadására használja fel. A vezérlőjelek száma változó, általában 10-15 körül van minimálisan.

- elválasztó sínvezérlő: A sínrendszerhez szorosan hozzátartozik a helyi sínt a rendszersíntől elválasztó sínvezérlő (sínmeghajtó) egység (bus interface), amely szabályozza a sínfoglalásokat.


Sínvezérlés (buszvezérlés) módjai:
- szinkron ütemezésű buszok, amelyek saját órajellel rendelkeznek és ezek ütemei szabják meg a buszon zajló folyamatok, műveletek időbeli lefutását;

- aszinkron ütemezésű buszok, amelyek saját órajellel nem rendelkeznek és a folyamatok és műveletek lefutását, az egymást követő elemi lépések befejezése szabályozza.


Master és slave eszközök

Sínhasználat (buszhasználat):
A sínt egyidőben csak egy eszközpár használhatja. A busz használatát valamelyik eszköz kezdeményezi, amelyet aktív eszköznek (master) neveznek, szemben a kapcsolatban résztvevő másik, passzív eszközzel (slave), amely csak fogadja és végrehajtja az aktív eszköztől származó vezérléseket. 

A mikroszámítógépeknél a busz irányítását megszerző eszköz:

- a processzor, vagy 

- valamelyik DMA-t alkalmazó I/O eszköz lehet.

Minden busztevékenységhez meghatározott időtartam, ütemszám szükséges. Azt az időtartamot, amely egy adatátviteli folyamat lefutásához - egy következő tevékenység megindítási lehetőségéig - kell, buszciklusnak (bus cycle) nevezzük


Buszarbitáció: Sínfoglalás (buszfoglalás - bus arbitration): Az adatátvitelek lebonyolításához egyidőben több aktív eszköz (master) is igényelheti a busz használatát. Ilyenkor valamilyen eljárással el kell dönteni, hogy melyik eszköz kapja meg először a buszhasználat jogát. A buszhasználat jogának eldöntésére szolgál folyamatot nevezik buszfoglalásnak, busz arbitrációnak (bus arbitration).

A sínfoglalás iránti igények kiszolgálása két módon történhet:

-párhuzamos kiszolgálási mód (prioritásos): alkalmazásakor minden eszköz önálló buszkérő és buszengedélyező vezetékkel rendelkezik. A beérkező igényeket a vezérlő logika sorolja, dekódolja és a legmagasabb prioritású eszköz számára engedélyezi a busz használatát.

-soros kiszolgálási mód (lánc): alkalmazásakor az eszközök sorba vannak kötve és a lánc mentén az elhelyezkedésük szabja meg, hogy mikor kaphatják meg a sín használatát. Amelyik eszköz a legközelebb van a vezérlőhöz, annak a prioritása a legmagasabb.

Mindkét esetben a jogosultság megállapítása történhet:

- centralizált módon, amely esetben egy központi prioritásvezérlő logika szabja meg a hozzáférés sorrendjét

- decentralizált módon, amely esetben a priorizáló logika elosztott formában valósul meg, az egyes eszközök vezérlői által

14. Az I/O eszközvezérlők, interfészek feladata, regiszterei, címzése. Soros és párhuzamos port és adatátvitel. Az adó és vevő szinkronizálása.
Az I/O eszközvezérlők, interfészek feladata, regiszterei, címzése

Az I/O eszközök és a processzor kapcsolatát az eszközvezérlőkben található regiszterek biztosítják. Minden egyes eszközvezérlő funkcionálisan legalább a következő típusú átmeneti tárolókat tartalmazza:
· parancs (command) regiszter, mely az eszközvezérlő által végrehajtandó műveletekhez szükséges információkat átrolja.
· állapot (status) regiszter, melyben az eszközvezérlő az I/O eszköz aktuális állapotára vonatkozó információkat tárolja (pl. egy merevlemezre egy blokk kiírása megkezdődött, vagy a nyomtatóból kifogyott a papír)

· az adatkiírás illetve beolvasás pufferregiszterei, melyek a folyamatban lévő I/O műveletek adatait tárolják.

A processzor az eszközvezérlőket alapvetően két módon irányítja (címezheti):
· közvetlen I/O utasításokkal (miútán az állapotregiszter lekérdezésével megállapította, hogy az eszköz az utasítás végrehajtására képes állapotban van), a parancsregiszter beállításával és a pufferregiszterek írásával vagy olvasásával.

· közvetett módon, amikor a címzés úgy történik, mintha az I/O eszköz tárolója a főtár része lenne (memory mapped addressing, ilyen pl. a grafikus memória).
Interfész: Az interfész két funkcionális egység összekapcsolhatóságát és együttműködését biztosító előírások összessége. A számítógép és a perifériák közti információátvitel céljából biztosítani kell az egyes egységek illesztését és a rendszer összehangolt működését. Ezért a számítógép a hardver eszközökhöz vezérlő és illesztő (interfész) áramkörökön keresztül csatlakozik. 

A port (illesztő)
A port olyan interface, mely a perifériális eszközökkel tartja a kapcsolatot, biztosítja a szabványos csatlakozást a CPU és a perifériális egységek között a rendszersín közbeiktatásával. 

Az adatátvitel kétféle lehet: soros és párhuzamos. 

Soros port működése:  A soros (serial) port az egyik legrégebbi, általános célú kommunikációs port. Az interfészt az RS-232C szabvány jelöli, tipikusan az egér és a modem csatlakozik rá. Az adatbitek a vezetéken egymás után kerülnek átküldésre. Egy vezetéken egyirányú átvitel valósítható meg, kb. 30-100 m-ig használható. A PC 4 db soros illesztőt támogat (COM 1-4).

Az adatátvitel szinkron vagy aszinkron módon történhet.

Szinkron átvitel: Szinkron adatátvitelnél, az egymást követő jelek ütemezetten, órajellel vezérelve, szinkronizáltan követik egymást. Az adatok átvitele blokkos formában történik, amelyet kiegészítenek még szinkronizáló bitekkel is.

Aszinkron átvitel: Az aszinkron ütemezésű adatátvitelnél, a karakterek ütemezés nélkül követik egymást, az átvitt bitek mennyisége változó is lehet. A start/stop bitekkel elátott jelsorozatot adatkeretnek nevezzük. Eléggé redundáns, tehát információtartalom szempontjából felesleges jeleket is tartalmaz 

Az USB (Universal Serial Bus) egy újonnan kifejlesztett nagy sebességű csatlakozási port, melyet a soros és párhuzamos portok kiváltására szántak. Egy USB soros csatlakozási rendszer porton keresztül maximum 127 külső periféria csatlakoztatható. Napjainkban a nyomtatók és szkennerek többsége rendelkezik ilyen csatlakoztatási lehetőséggel is. Az USB szabvány továbbfejlesztéseként megjelent a nagyobb átviteli sebességet biztosító USB 2.0. csatlakoztatása Mivel az USB tápáramot is szolgáltat a sínkábelen keresztül, a kis teljesítményű (100 mA alatti) berendezésekhez nem kell tápkábel és hálózati adapter.

Napjainkban az IEEE 1394 szabványú soros kommunikációs port - melynek legismertebb változata az Apple FireWire márkanevű terméke - az egyik legnagyobb adatátviteli sebességet biztosító eszköz. Egy IEEE 1394 portra maximum 63 külső eszköz csatlakozhat. Egyik jellemző alkalmazási területe a multimédiás eszközök, például digitális videokamerák számítógéphez történő 


Párhuzamos port működése: A párhuzamos interfész párhuzamos működésű. Általában a nyomtató csatlakoztatását oldja meg, bár lehet akár scanner is a csatlakozó eszköz, esetleg két PC közvetlen kapcsolatát valósíthatjuk meg. (a vezeték nem haladhatja meg az 5 métert) 

Az adatátvitel háromféle lehet:

•
Csak előre irányú

•
Csak vissza irányú

•
kétirányú

A PC 4 párhuzamos port létét támogatja (LPT 1-4). Az LPT 1 port neve PRN.

SPP – (SErial Parallel Port) szabványos párhuzamos port, általában egy irányú

EPP – (Enhanced Parallel Port) bővített párhuzamos port

ECP – (Extended Capability Port) kiterjesztett képességű port (DMA használatra van szükség)


Az adó és vevő szinkronizálása

Az átvitt bitsorozatot használjuk fel az adó és vevő órajelének összehangolásához, szinkronba hozásához. Ez azt jelenti, hogy előírunk egy speciális bitsorozatot , amit szinkronizáló jelnek nevezünk, aminek feladata az adó és vevő működésének szinkronizálása, az órajelképzés időbeli összehangolása.
Szabályrendszer: a szinkronizáló bitmintának mindig meg kell előznie az érdemi adatbiteket.

Másképp:
Annak a pillanatnak a megjelölésére, amelyikben a vevőkészüléknek értelmeznie kell az adatot, órajelet használunk. Az órajel le-, vagy felfutó élét használhatjuk az időpont jelzésére. Egy soros adatot az adó egységnek azelőtt kell létrehoznia, mielőtt a vevőnek értelmeznie kell. Ez az oka annak, hogy az adóoldali, és a vevőoldali órajelfrekvencia azonos, viszont fázisban különböző, mivel az adatjel állapotváltozásához időre van szükség. Soros adattovábbítás lehetséges órajel nélkül is, viszont ekkor gondoskodni kell szinkron vagy aszinkron módon az adatblokkok kezdetének a jelzéséről.

15. Monitorok típusai, paraméterei, működési elve. A monitorvezérlő kártya feladata, felépítése, jellemzői (felbontás, színmélység, képmemória mérete) és működése.
Monitor fajták:

A ma használatos monitorok alapvetően kétféle kategóriába sorolhatóak:

CRT (Cathod Raz Tube - katódsugárcső): hagyományos monitor, működésében a TV-re hasonlít. A képernyő tartalmát egy elektronsugár rajzolja fel a fénykibocsátó réteggel bevont felületre, a képernyő bal felső sarkától kezdődően, jobbra és lefelé haladva, párhuzamos sávokra bontott részekben. Egy teljes képernyő tartalom kirajzolása 1/50 sec-ig tart. A legfontosabb egységük a katódsugárcső, melynek elektronágyúi rajzolja a képet. A képernyő egy elemi monitorpontját vörös-zöld-kék foszforpontok alkotják

LCD (liquid crystal display), TFT (Thin FilmTransistor): működési elvük lényege, hogy az úgynevezett folyadékkristélyok feszültség hatására megváltoztatják kristályszerkezetüket. Mivel a folyadékkristályokat külső elektromos térrel lehet úgy vezérelni, hogy kívánságra tetszőleges mértékben elforduljanak, így eléjük polarizátort, mögéjük fényforrást helyezve az átbocsátott fénymennyiséget szabályozni tudjuk. Mindezek után már csak az kell, hogy elhelyezzünk néhány neoncsövet a képernyő mögött, amelyeket lehetőség szerint nagy frekvenciával (relatíve nagy, 1000 Hz körüli) táplálunk, hogy a villogás ne zavarja a szemet. Kell még egy piros, zöld illetve kék színszűrő, erre egy vezérelhető folyadékkristályos réteg, majd egy polarizátor, és kész is a TFT kijelzőnk. Mivel az LCD technológiánál nincs katódsugár, így a kép nem is tud vibrálni, még kisebb frissítési időnél sem.

A legkevésbé ismert típus a gázplazmás monitor, amelyben a gázok a bennük lévő mozgó elektronok hatására fényt bocsátanak ki. Az ilyen kijelzőkben ionizált neon- vagy argongázt zárnak két olyan üveglap közé, melyekbe vízszintesen és függőlegesen vezetékek vannak beágyazva. Ezen vezetékek metszéspontjai határozzák meg a fényt kibocsátó képpontokat.

Fontos, hogy a CRT-k pixelein változó intenzitással lehet képet megjeleníteni. Tehát ha nem egyezik a képernyő és a megjelenítendő kép felbontása, az nem olyan szembetűnő. A TFT-k esetén egy pixel vagy ki van jelezve, vagy nem, így ha a felbontás nem egyezik, rosszabb minőségű képet kapunk..

A képernyő végigpásztázásában kétféle eljárást alkalmaznak

•Folytonos – egymást követő soronkénti pásztázás (non-interlacing), amely finomabb felbontást, de gyakoribb képfelfrissítést eredményez. A korszerűbb monitorok ezt a megoldást alkalmazzák, mivel a másik esetén villodzó eredményt kaphatunk.

•Váltott soros – először a kép páratlan soronként kerül kirajzolásra, majd a sugár visszafut a kép elejére, és a páros sorok következnek. Finomabb felbontást, de alacsonyabb frissítési frekvenciát eredményez. A váltott soros pásztázásnál félképenként 1/50 sec szükséges, így a teljes kép kirajzolása 1/25 sec alatt történik. 

Pixel: (képpont) a képernyő legkisebb olyan egysége, amelyet a számítógép kezelni tud. 

Felbontóképesség: A képernyőt egyfajta mátrixnak foghatjuk fel, melynek minden egyes eleme egy pixel, amelyek rendszerezetten sorokban és oszlopokban helyezkednek el. A monitor felbontóképessége a képernyőn függőleges, és vízszintes irányban megjeleníthető képpontok, raszterpontok számát határozza meg. 

Képfrissítés azt jelenti, hogy az elektronsugarak másodpercenként hányszor pásztázzák végig a teljes képernyőt. 85 Hz-nél kevesebb képfrissítési frekvencia láthatóan vibráló képet eredményez. Az egy képsor megrajzolásának sebességét „sorfrekvenciának” (horizontal frequency) nevezzük; mértékegysége a ’kHz’. 

Színmélység: Az egyes képpontok mindegyike hordoz a képpont színével kapcsolatos információt, amely mennyisége a számítógép grafikus kártyájától függően változik. A képpont színével kapcsolatos információ mennyisége 1,2,4,8,16,24, vagy 32 bit mennyiségű lehet. Az egy képponton megjeleníthető színek számát nevezzük színmélységnek. A színmélység függ a PC videokártyától, hiszen a grafikus kártya az általa használt memória területén tárolja a képpontok színével kapcsolatos információkat. Minél nagyobb a színmélység, annál nagyobb memória szükséges a képpontok színinformációinak tárolására. 

Jelenleg elterjedt színmélységek:

 8 bit – 256 szín, 16 bit – 65536 szín (High Color), 24 bit – 16 777 216 szín (True Color, 3 szín – 3 bájt)

A monitorok mérete

A képpontok közötti távolság a megjelenített kép pontjai közötti távolságot jelenti. Ezt az értéket a gyártók a monitor adatlapján mm-ben meg szokták adni. Minél kisebb az érték, annál jobb a felbontás, tisztább képe van a monitornak. A mai monitoroknál 0,2 – 0,28 mm.

Egy másik fontos adat a beszerelt képcső átlójának mérete. Itt két értékről is szó van, a valódi fizikai méretről, illetve a valóságban látható méretről. A gyártók által megadott mérték mindig a képcső fizikai átlóját adja meg, nem pedig a megjeleníthető képét. Ennek oka, hogy a képcsövet a műanyag tartóba kell valamilyen módon rögzíteni, ez pedig a képméret csökkenését vonja maga után.

Képváltás: Ahhoz, hogy az emberi szem folyamatos mozgásnak érzékelje a képet, másodpercenként legalább 25 képváltásnak kell lennie. Mértékegysége a frame/sec,  Ha ennél kevesebbszer rajzolódik fel a kép, akkor szaggatottnak érezzük. Ez nem ugyanaz, mint a képfrissítési frekvencia.

Monitorvezérlő kártyák

A monitorok a lehető legkevesebb áramkört tartalmazzák a könnyű bővíthetőség érdekében. A monitorok meghajtásához szükséges további áramkörök egy kártyán találhatók meg, a monitorvezérlő kártyán. 

A videokártya három fő részből áll:

-
a videochip alkotja azokat a jeleket, melyek a monitoron képek formájában megjelennek

-
valamilyen fajta RAM, amely azért szükséges, hogy a kártya a teljes képre emlékezzen minden pillanatban, ne csak annak egy részére. A videokártyákban általában 1, 2 ,4, 8 vagy 256 vagy több Mbyte RAM van. Alapvetően RAM mennyiségétől függ, hogy milyen felbontású és színmélységű képet láthatunk.

-
egy digitál/analóg konverter, mely a digitális jelekből állít elő analóg jeleket. A digitál/analóg konverterre azért van szükség mert a katódsugárcsöves monitorok hagyományos analóg jelekkel dolgoznak.

A videokártya működése így leginkább a processzoréra emlékeztet azzal a különbséggel, hogy a videokártya csak a képelőállítást végzi. Manapság a videokártyák a sokkal nagyobb adatátvitelre képes PCI-buszokra csatlakoznak, vagy a még annál is gyorsabb - kizárólag a videokártyák számára kifejlesztett - AGP buszokhoz.

A videokártyákba manapság egyre inkább integrálva vannak gyorsítókártyák, de sokszor más hasznos funkcióval is rendelkeznek: például televízió-csatornák vételére és megjelenítésére is alkalmasak.

Gyorsítókártyák: A grafikus rendszerek terjedésével a videokártyák sebessége nem volt megfelelő. Az ismétlődő feladatokat (ablak rajzolása, kitöltés színnel, vonal húzása, stb.)hardveresen kellett gyorsítani. A gyorsítókártya átveszi a CPU-tól a képalkotással kapcsolatos műveleteket. A modern gyorsítókártyák egyre több műveletet tudnak végezni, melyhez külön memória áll rendelkezésükre. 2D-s műveletek pl. ablak eltolás, vonalhúzás, kör rajzolás, terület kitöltés, mely során csak a kiinduló koordinátákat kell átadni a gyorsítókártyának.

A videokártyáknak saját memóriájuk van a kártyára integrálva, melynek mérete akár 128MB is lehet. Általában speciális VRAM-ot (Video RAM) hazsnálnak, mely egy időben tud adatot olvasni és írni, mivel 2 csatornája van. Manapság már nagyteljesítményű processzorok is kerülnek a videokártyákra, melyek főként a 3D megjelenítésnél a vektorgrafikus adatok raszteres adatokká való konvertálására szolgál. Mivel ezeket a számításokat nem a központi processzornak kell elvégeznie, hanem az erre specializálódott videoprocesszornak, a megjelenített kép gyorsabb és szebb is.

A mozgókép megjelenítés mértékegysége a frame/sec (frame per sec, FPS), azaz a megjeleníthető teljes képek másodpercenként. 

Vannak speciális videokártyák, melyek a filmek lejátszására szakosodtak (pl. MPEG2 dekódoló kártya, TV-Tuner kártya).

16. Analóg és digitális hírközlési csatornák jellemzése (kapacitás, zajok hatása), átviteli közegek. Vonalak megosztásának módszerei. Digitális jelek kódolása. A paritásbit és a CRC. Modemek feladata. ISDN, ATM, DSL technológiák.
A közlemény,  valamilyen csatornán jut el a címzetthez. A hírközlési csatorna olyan berendezés, amely képes a bemenetelnél információt felvenni, és a kimenetelnél leadni. Fizikai valójukban a csatornák nagyon sokfélék lehetnek: a levegő, a telefonvezeték, az optikai üvegszál, az élőlények idegszálai, a könyv, a videolemez stb. Osztályozni is több szempontból lehet őket. 

-  térbeli csatornák a tér valamelyik pontjából egy­vagy több másik pontjába (telefonvezeték)

-  időbeli csatornák a T időponttól a (T + t) időpontba szállítják az információkat (videolemez)

Természetesen ez a megkülönböztetés csak a lényegi jegyekre vonatkozik, mivel az információnak a térbeli csatornában is időre van szüksége, hogy célba jusson, a szóbeli csatornákon is lehet térben szállítani az információt.

A tér­ és időbeli csatornákat szokás

- késleltetés nélkül, áramkörkapcsolt ( maghatározott sebességgel, késleltetés nélkül szállítják az üzeneteket)
- késleltetéssel működő, üzenetkapcsolt csatornáknak ( tetszőleges ideig tárolják, azaz késleltetik az üzenet továbbadását).

Más szempontból beszélhetünk 

- természetes (idegrost)
- mesterséges csatornákról (telefonkábel), 

Valamint

- analóg (a hanghullámokat hordozó levegő)

- digitális csatornákról (illetve a számítógép adatátvivő csatornái).


Az átvitel célja elsődlegesen a jeleknek a címzetthez való eljuttatása, a jeleknek a címzetthez való eljuttatása átviteli csatornában történik, amit az összeköttetés idejére bocsátanak a hívó és a hívott rendelkezésére. Ezek a jelek lehetnek 

- analóg jelek, ami azt jelenti, hogy pillanatértékük meghatározott frekvencia és amlitúdó tartományban tetszőleges értéket vehet fel.

- digitális jelek, melyek pillanatértékei 0 vagy 1, a két állapot közötti átváltás gyakorisága, a jelátviteli sebesség általában állandó. Az analóg jeleket gyakran digitalizált formában visszük át, visszaalakításuk csak a címzettnél történik.


Adó. A megfogalmazott információt továbbítja a kommunikációs csatornába, annak megfelelően kódolva (modulálva)

Vevő: A kommunikációs csatornából jövő információt dekódolja, továbbítja a feldolgozásra.

Kommunikációs csatorna: A kommunikáció színtere, rajta kommunikál a vevő-adó, hat a csatornára a környezet zavaró hatásokkal, valamint veszteségei is vannak, ezeket az adóban-vevőben kell korrigálni


Az információforrás és a nyelő egymástól rendszerint térben el van választva. A csatorna biztosítja villamos összeköttetést a két pont között.

Az adó által végrehajtott jelfeldolgozási módok legfontosabbja 

-erősítés, 

-szűrés és a 

-moduláció. 

Ezek közül is kiemelkedik fontosságban a moduláció. Egy hírközlő rendszerben a moduláció célja az, hogy az üzenetjel jellemzőit illesszük a csatorna jellemzőihez, hogy csökkentsük a zaj és az interferencia hatását, hogy ugyanazon a csatornán egyidejűleg több jelet is továbbítsunk, vagy úrrá legyünk bizonyos berendezésekből származó korlátokon. Egy hírközlő rendszer sikere nagymértékben az alkalmazott modulációtól függ.
Hírközlő csatorna

A modulációs eljáráson, illetve az információforrás kimenő üzenetének formáján alapulva a hírközlési rendszereket három fő csoportra oszthatjuk:

- Analóg hírközlő rendszerek : Analóg információk analóg modulációval való továbbítására terveztek

- Digitális hírközlő rendszerek: Digitális információk digitális modulációval való továbbítására terveztek

- Hibrid hírközlő rendszerek: Analóg jellegű üzenetjelek mintavételezett és kvantált értékeinek digitális modulációval való átvitelére terveztek. 


Analóg csatornák (folytonos csatorna)

A múltat teljes egészében az analóg átvitel jellemezte, pl. Telefon, rádió, TV. A kialakított kommunikációs infrastruktúra is döntően analóg volt. A sávszélesség analóg rendszerek esetén használt fogalom: egy adott analóg jel maximális és minimális frekvenciájának a különbségét értjük alatta. A sávszélesség az a frekvenciasáv (rezgésszám tartomány), amelyen belül a csatorna a rezgéseket lényeges torzítás nélkül átviszi. Például az emberi beszéd alsó frekvenciája 300Hz, a felső frekvenciája 3400 Hz, így a sávszélessége: 3400-300=3.1 kHz

Telefonvonal az emeri hang átvitelére tervezték, azonban számítógépek kommunikációjára is alkalmassá tehető.Legáltalánosabban a lakásokban levő telefon vonalak használatosak, melyek két vezetékes kapcsolt vonalak (csak az összeköttetés idejére kapcsolódnak össze), ellentétben a bérelt vonalakkal. A telefonvonal sávszélessége 3,1 kHz. Ide sorolhatók a mobiltelefonok, melyek vivőfrekvenciaként 450, 900, 1800 MHz-et használnak és idő-multiplexelést használnak (egyidejűleg többen is beszélhetnek ugyanazon a csatornán).

Rádió frekvencia kapcsolat: rádiók moduláció szerint Amplitúdó- Frekvencia Modulált (fázis nem terjedt el, bonyolult  a vevő, adó). 

Hullámhossz illetve frekvencia szerint:

o
KH közép Hullám

o
RH rövid Hullám

o
URH ultra rövid Hullám

o
Mikrohullám

Modem: itt említendő meg a modem, Olyan eszköz, amely egy (digitális) bitsorozatot analóg átviteli csatornán történő átvitelre alkalmas analóg jellé alakít át (modulál), illetve a vett analóg jeleket (digitális) bitsorozattá alakítja vissza (demodulál). Sebessége szerint megkülönböztetünk kis-, közepes-, és nagy sebességű modemet. Működése során a bitsorozatot ábrázoló jellel modulálja a hordozó frekvenciát, és ezt a modulált jelet kiadja az átviteli vonalra, illetve a beérkező frekvenciamodulált jelet demodulálja. A MODEM szó a MOdulátor/DEModulátor szavak összevonásából származik.

Digitális hírközlő rendszer (bináris csatorna)

A digitális átvitel több fontos szempontból jobb az analóg átvitelnél. Először is nagyon kicsi a hibaaránya, tökéletesen helyreállíthatóak és nem lép fel halmozódó hiba. Másik előnye, hogy különböző típusú adatok (hang, zene, kép) vihető át. Eleinte szövegátvitelt valósítotak meg, az átvitel egysége a bitcsoport volt, más néven karakterorientált átviteli eljárás. Manapság bitorientált eljárást alkalmaznak, melyekkel eltérő szóhosszúságú és adatábrázolású adat vihető át.

Digitális hálózatokat az adatátviteli sebességükkel: az időegység alatt átvitt bitek számával jellemezhetjük. Ezt célszerű bit/s-ban mérni. Az átvitelt jellemezhetjük a felhasznált jel értékében 1 másodperc alatt bekövetkezett változások számával is, amit jelzési sebességnek, vagy közismert néven baud-nak nevezünk.

A digitális kommunikációs rendszerek fő célja az, hogy egy digitális forrásból érkező üzenetet (szimbólumok egy sorozatát) továbbítsanak térben és időben egy adott célállomásra olyan gyorsan és pontosan, ahogy az csak lehetséges. 

Optikai: 

•
“szabadtéren” infra vörös sugárzással, de csak PC, távvezérlő, CD rendszerekben. PC Pl: IRDA

•
Vezetett. Optikai hálózatok PC több 100 Mbit


Zajok, torzítás, kapacitás, hiba
Az volna az eszményi, ha a csatorna kimeneteli oldalán mindig azt az információt kapnánk meg, amely a másik oldalán belépett, azaz a belépő x jelnek a kimenetelnél mindig y jel felelne meg. Az ilyen ­ csak elméletben létező­ ideális csatorna neve zajmentes csatorna. 

Sajnos a reális csatornák mindig zajosak, zaj minden olyan jelenség, amely a hírközlő csatornában "megtámadja" a hasznos információt, megcsonkítja, elnyomja, eltorzítja, legrosszabb esetben meg is semmisíti. Másképpen fogalmazva: zajos csatornánál a kilépő jel nem felel meg mindig a belépő jelnek, hamis jelek keverednek az igaziak közé. Zaj például az az elektromágneses rezgés, amely zavarja a rádióvételt, az utca zaja, amely elnyomja a beszélgetőtársunk hangját, a sajtóhiba. 

A zajokat két csoportra oszthatjuk. 

- A rendszertorzítás azonos jel esetén mindig azonos, és elvileg teljesen kiküszöbölhető. 

- A csatorna­ vagy csőzaj független a jeltől, rendszertelen, statisztikus jellege van, és teljesen sohasem szüntethető meg. (Tulajdonképpen a zaj is információ, csak éppen nem az, amire szükségünk van, s nagyon sokszor a kódját sem ismerjük.)  A zaj tehát bizonytalanná teszi a csatorna működését. A vevő sohasem lehet teljesen biztos benne, hogy jól értette­e az üzenetet, a vett jel megfelel­e a leadott jelelnek

A hírközlés gazdaságossága szempontjából nagyon fontos kérdés, hogy az információ milyen sebességgel halad át a csatornán. A maximális átviteli sebességet a csatorna kapacitásának nevezzük:

A csatornán átjutó információmennyiség rendszerint nem éri el a maximumot, s így a csatorna kapacitásának egy része kihasználatlan marad. A kapacitás és a ténylegesen átvitt információ különbségének az arányát a csatorna redundanciájának nevezzük. 

A jel/zaj viszony, vagy zajnívó a hasznos jel és a zaj teljesítményének az aránya. Minél nagyobb a hasznos jelek energiája, annál biztosabb a vétel. Ha nagy utcazajban kis energiával suttogunk, nagy lesz az információveszteség.

A távközlésnek, adatátvitelnek ­ talán úgy mondhatnánk ­ soha el nem érhető ideálja: maximális sebességgel, maximális pontossággal, megbízhatósággal maximális mennyiségű információt átvinni. A műszaki fejlődés egyre közelebb visz ehhez a célhoz, de a végeredményben egymással ellentétes követelményeket csak kompromisszumokkal lehet összeegyeztetni, s be kell érnünk azzal, hogy a vett információ alapján a leadott információt egy előre meghatározott biztonsági tényezővel rekonstruálni tudjuk. 

Vonalak megosztása

Ahhoz, hogy információcserét valósíthassunk meg két végpont között, szükségünk van a végpontok között az összeköttetést biztosító vonalakra. Sok esetben azonban a kommunikáció jellegéből fakadóan nincs folyamatos információcsere rajta, azaz a legtöbb kapcsolatban a vonalhasználat csak időszakosan jelentkezik. Nem ésszerű tehát egy kommunikációs csatorna számára kisajátítunk egy teljes vonalat. Ezek a vonalak igen jelentős költséggel épültek meg, célszerű minél jobban kihasználni azokat.

Amennyiben különválasztjuk a funkciókat, a csatornára, amelyeken az információcsere történik, és a felhasznált, tényleges, fizikailag létező összeköttetéseket biztosító vonalakra, akkor lehetőség nyílik a gazdaságosabb kihasználásra. Mivel az adó és vevő oldal számára csak a végeredmény, az információ a fontos, ezért egy vonalon több csatorna is kialakítható, a megvalósítás pedig többféleképpen is elképzelhető.

· Multiplexelés. A fizikai közeget több csatorna között osztjuk meg, annak érdekében, hogy a vonalat több adó és több vevő vehesse igénybe. A multiplexelés olyan eljárás, amelynek során egy adatvonalat előre meghatározott, rögzített módszer szerint elemi adatcsatornákra osztjuk fel. Minden bemenõ elemi csatornához egy kimenõ csatorna is tartozik. A mutiplexelést lehet az időtartományban és a frekvencia tartományban is elvégezni, így beszélhetünk frekvenciaosztásos és az idõosztásos multiplexelési módszerekről, valamint illetve ezek kombinációjáról. 

· Az üzenet és csomagkapcsolási módszerek alkalmazásával hatékony vonal kihasználás érhető el. Az átviendő információt kisebb adagokra kell bontani, a vonalon aztán egymás után átvinni, majd a darabokból újra összerakni. A csomagok folyamatos áramlása az adó és a vevő számára úgy tűnik, mint folyamatos összeköttetés. 

· A vonalkapcsolás-nak hívott módszer a harmadik lehetőség. Az adatvezetéket a kommunikálni szándékozó felek csak a kommunikáció időtartamára kapják meg. Tehát az adatvezeték nem egy adóhoz és egy vevőhöz tartozik, hanem csak annak függvényében, hogy szükségük van-e rá, valamint más nem használja-e a vonalat. A kapcsolat a kommunikáció befejezésekor megszűnik.

Digitális jelek kódolása

Az analóg és a digitális jel fogalma, példák felhasználásukra. Az analóg és digitális jel

különbsége és jellemzői. Az analóg jelek digitalizálhatósága. A mintavételezés törvénye.

A digitalizált adattárolás pontossága – minőségi problémák, korlátok.

Az analóg jelek digitalizálásának lépései. A hang, a kép és a film digitalizálhatósága.

A digitalizálás eszközei.

Az adat és az adatmennyiség fogalma az informatikában. Az informatikában használt

mértékegységek és ezek jellemzői. A bináris számábrázolás módszere és jelentősége

az informatikában. A bináris karakterábrázolás formái, kódtáblák felépítése, jellemzői

(ASCII, UNICODE).

A digitális képek tárolása, képformátumok és azok jellemzői (raszteres és vektoros). A

színek kódolásának módjai (RGB, CMYK). Alapfogalmak: pixel, felbontás, színmélység.

A digitális hang tárolása, formátumok és azok jellemzői.
A paritásbit és a CRC
Paritásvizsgálattal: Az adatátvitel során az esetleges átviteli hibák felderítését megkísérelhetjük oly módon, hogy az átviendõ adatbit-csoportot egy paritás bittel egészítjük ki úgy, hogy az így kiegészített adatcsoportban lévõ 1 értékû bitek száma páros (páros paritás), vagy páratlan (páratlan paritás) legyen. Ilyen módon, az ADÓ oldalán mindig biztosítható, hogy az 1-es értékû bitek száma mindig páros/páratlan legyen, és a VEVÕ oldalon az egy (ill. páratlan számú) bit változása miatti hiba felderíthetõ.Kettős hibát a módszer nem vesz észre. Paritásbitet a mágnesszalagokon kívül általában az operatív tár védelmére is használnak. 
ECR (egyedi bithibák) CRC (Cyclic Redundancy Code) Ellenőrző összegek használatosak akkor, ha a várható hibák nem függetlenek egymástól, hanem egy adatfolyam egymást növelő bitjei sérülnek. Például egy hálózati zavar, vagy mechanikai sérülés hatására. CRC.
Modem

Olyan eszköz, amely egy (digitális) bitsorozatot analóg átviteli csatornán történő átvitelre alkalmas analóg jellé alakít át (modulál), illetve a vett analóg jeleket (digitális) bitsorozattá alakítja vissza (demodulál). Sebessége szerint megkülönböztetünk kis-, közepes-, és nagy sebességű modemet. Működése során a bitsorozatot ábrázoló jellel modulálja a hordozó frekvenciát, és ezt a modulált jelet kiadja az átviteli vonalra, illetve a beérkező frekvenciamodulált jelet demodulálja. A MODEM szó a MOdulátor/DEModulátor szavak összevonásából származik.

ISDN

Az ISDN telefon a 20. sz. végén használt modern digitális telefon. Az ISDN (Integrated Services Digital Network) angol rövidítés, jelentése integrált szolgáltatású digitális hálózat.

A fejlett országok telefonközpontjai már digitális rendszerben működtek, a hálózat digitalizálását viszont csak hosszú idő alatt lehet megvalósítani elsősorban fényvezető kábelekkel. Egy olyan átmeneti megoldást kellett találni, mely alkalmas a digitális rendszerre hagyományos kábelekkel is. Ez volt az ISDN, mely tulajdonképpen egy négyvezetékes összeköttetés hagyományos kábelen. A felhasználói (előfizetői) oldal egy csatlakozó dobozban végződött. Ide kellett bedugni az ISDN telefont (a hagyományos nem jó), amely csak szerkezetében tér el a régiektől. További csatlakozási lehetőség volt fax, internet és videotelefon részére. Ez utóbbi használata kizárja a többi egyidejű használatát, a telefon, fax és internet szolgáltatásból egyidejűleg bármely 2 használható. A digitális fax működése is eltér a hagyományostól, a gép felismeri a karaktert (ha szöveges a dokumentum) és csak annak kódját továbbítja digitálisan. Tehát szöveg küldése vagy fogadása gyorsabb, közben ráadásul telefonálni vagy internetezni is lehet.

Átkapcsolásra nincs szükség, ha fax hív, automatikusan a fax kapcsolódik. Az ISDN vonalnak 4 egymásután következő telefonszáma van, valamint különböző csengetések is beprogramozhatók.

ATM

Az ATM rugalmas és testreszabható megoldást nyújt a minőségi szolgáltatások iránti egyre fokozódó igények kielégítésére olyan hálózatok esetében, amelyek többféle információtípust (adatot, hangot és valós idejű kép- és hanginformációt) is támogatnak. Az ATM segítségével mindezek az információtípusok egyetlen hálózati kapcsolaton keresztül továbbíthatók.
Az ATM definíciója 

Aszinkron adatátviteli mód (ATM) – egymással kapcsolatban álló technológiákat, köztük a szoftvert, a hardvert és a csatlakozáshoz szükséges eszközöket jelöli. Az ATM különbözik a jelenlegi LAN- és WAN-technológiáktól, hiszen kifejezetten a nagy sebességű kommunikáció támogatására tervezték. Az ATM lehetővé teszi, hogy a hálózatok a leghatékonyabban használják ki a sávszélességet mint erőforrást, miközben fenntartja a szigorú szolgáltatási követelményekkel rendelkező felhasználók és programok számára a szolgáltatás minőségét (QoS). 

Az ATM alapkomponensei a végponti számítógépek, az ATM-hálózathoz csatlakoztatott számítógépek, valamint azok az ATM-kapcsolók, amelyek összekötik a végponti számítógépeket és biztosítják az adatok sikeres továbbítását. 

Aszinkron – a rendelkezésre álló sávszélesség nincs felosztva időzítő mechanizmus vagy óra által szinkronizált rögzített csatornákra vagy tárolóhelyekre. Az aszinkron kommunikációs módszert használó eszközök között nincs kapcsolat abban a vonatkozásban, hogy milyen sebességgel képesek küldeni és fogadni az információt. A küldő és a fogadó saját fizikai korlátaik és a hálózati információáramlás fenntartására való képességük figyelembe vételével egyeztetést végez az adatátviteli sebességet illetően. 

Átviteli mód – a küldő és a fogadó közötti információáramlás módját jelöli. Az ATM esetében a továbbítandó adatok strukturálása és felosztása a kis méretű, fix hosszúságú cellákra vonatkozó koncepció alapján történik. Azzal, hogy nem a legtöbb létező hálózat esetében alkalmazott változó hosszúságú csomagküldési mechanizmust használja, az ATM biztosítja, hogy a kapcsolatok egyeztetése és kezelése során egyetlen adattípus vagy kapcsolat se sajátíthassa ki az adatátviteli útvonalat.
Az ATM előnyei 

Az ATM használata a következő előnyökkel jár: 

· Nagy sebességű kommunikáció 

· Kapcsolatorientált, a telefonos hálózathoz hasonló szolgáltatás 

· Gyors, hardver alapú átkapcsolás 

· Egyetlen univerzális, más egységekkel együttműködni képes hálózati adatátvitel 

· Egyetlen hálózati kapcsolat, amely megbízhatóan alkalmazható hang, kép és adat továbbítására 

· A hálózati sávszélesség rugalmas és hatékony lefoglalása 

DSL
Hagyományos rézdrótokon keresztüli nagysebességű adatátvitelre képes technológiák gyűjtőfogalma.

A DSL technológiák a hagyományos vonalkapcsolt telefonos megoldásokkal szemben, amelyek a hívó és a tárcsázott végpont között alakítanak ki egy áramkört, kizárólag a végállomás és a telefonközpont között építenek fel kapcsolatot, amely jóval zajmentesebb és így nagyobb sebességű kommunikációt tesz lehetővé.

Ezen kívül a DSL kapcsolatokon az ISDN-hez hasonlóan már eleve digitális kommunikáció zajlik a telefonközpont és a végkészülék között, így külön modemre nincs szükség a számítógép csatlakoztatásához.

A különböző DSL technológiák a legelterjedtebb szélessávú hozzáférési módok közé tartoznak a fejlett országokban.
17. A számítógép-hálózatok architektúrája, az OSI-modell (rétegek, protokollok, rétegszolgálatok). A TCP/IP protokoll (feladata, rétegei, információ-áramlás, címzés, útválasztás).

A mai, modern számítógép hálózatok tervezését strukturális módszerrel végzik, vagyis a hálózat egyes részeit rétegekbe (layer) vagy más néven szintekbe (level) szervezik, melyek mindegyike az előzőre épül. Az azonos szintű rétegek csak egymással kommunikálnak. E kommunikáció szabályait protokollnak nevezzük. A rétegek és protokollok halmazát hálózati architektúrának nevezzük. OSI - Open System Interconnection.
Felépítése:

· 1. Alkalmazás- Application, széles körben igényelt szolgáltatásokat tartalmaz (FTP)
· 2. Megjelenítés – Presentation, tömörítést, rejtjelezést végezhet el, az egyetlen amely megváltoztathatja az üzenet tartalmát.
· 3. Együttműködési, viszony – Session, lehetővé teszi, hogy két szg. felhasználói kapcsolatot létesítsen egymással, logikai kapcsolatot épít fel.
· 4. Szállítási – Transport, feladata a végpontok közötti hibamentes átvitel biztosítása, az összeköttetések felépítése és bontása, csomagok sorrendhelyes elhelyezése.
· 5. Hálózati – Network, a kommunkációs alhálózatok működését vezérli. Feladata az útvonalválasztás a forrás és céllálomás között. 
· 6. Adatkapcsolati - Data Link ,feladata a hibátlan adatátviteli vonal biztosítása a szomszéd gépek között. Az adatokat adatkeretté tördeli, továbbítja, nyugtázza, hibajavítást, forgalomirányítást végez.
· 7. Fizikai kapcsolat – Physical , a bitek kommunikációs csatornára bocsátásáért felelős, csatlakozások elektromos és mechanikai definiálása.
Az 1,2 a felhasználói alkalmazás, a 3, 4, 5 az operációs rendszer, a 6, 7 a hardver része.
TCP/IP protokoll
A TCP/IP nem más, mint egy protokollkészlet, amelyet arra dolgoztak ki, hogy hálózatba kapcsolt számítógépek megoszthassák egymás között az erõforrásaikat. A fejlesztés az ARPAnet köré csoportosult kutatók munkája. Valószínûleg az ARPAnet a legismertebb TCP/IP alapú hálózat.
A TCP/IP protokoll két alrendszerének az alábbi feladatai vannak:

1. TCP - a küldő számítógépen a továbbítandó adathalmaz feldarabolása adatcsomagokra, és az adatcsomagok címkézése. Az adatokat fogadó számítógépen pedig, a kapott adatcsomagok összerakása, és így az eredeti adathalmaz előállítása.

2. IP - az adatcsomagok irányítása, a kommunikációban résztvevők (gépek) azonosítása.
Rétegei
Az internetréteg
Mindezen az elvárások olyan csomagkapcsolt hálózathoz vezettek, amely egy összeköttetés nélküli internetwork rétegen alapulnak. Ez a réteg az internetréteg, amely az egész architektúrát összefogja. Ennek a rétegnek az a feladata, hogy egy hoszt bármilyen hálózatba csomagokat tudjon küldeni, illetve a csomagokat a célállomástól függetlenül (lehetõleg egy másik hálózatba) képes legyen továbbítani. Az sem gond, ha a csomagok nem az elküldés sorrendjében érkeznek meg, ugyanis, ha erre szükség van, akkor a magasabb rétegek visszarendezik õket a megfelelõ sorrendbe. Azt viszont ne felejtsük el, hogy az „internet” szó most általános értelemben használjuk annak ellenére, hogy ez a réteg az internetben is jelen van. Az internetréteg meghatároz egy hivatalos csomagformátumot, illetve egy protokollt, amelyet internetprotokollnak (Internet Protocol, IP) hívnak. A csomagok kézbesítése során azok útvonalának meghatározása, valamint a torlódás elkerülése itt most a legfontosabb feladat. Ezért hasonlít funkciója egy másik modell hálózati rétegére. 
A szállítási réteg
A TCP/IP-modellben az internetréteg fölötti réteget általában szállítási rétegnek nevezik. Feladata az, hogy lehetõvé tegye a forrás- és a célállomásokban található társentitások közötti párbeszédet. 
Az egyik szállítási protokoll az átvitelvezérlõ protokoll (Transmission Control Protocol, TCP), amely egy megbízható összeköttetés alapú protokoll. Feladata az, hogy hibamentes bájtos átvitelt biztosítson bármely két gép között az interneten. A beérkezõ bájtos adatfolyamot diszkrét méretû üzenetekre osztja, majd azokat egyesével továbbítja az internetrétegnek. A célállomás TCP-folyamata összegyûjti a beérkezett üzeneteket, és egyetlen kimeneti adatfolyamként továbbítja õket. A TCP forgalomszabályozást is végez annak érdekében, hogy egy gyors forrásállomás csak annyi üzenetet küldjön egy lassabb célállomásnak, amennyit az fogadni képes.
A másik átviteli protokoll ebben a rétegben a felhasználói datagram protokoll (User Datagram Protocol, UDP) amely egy nem megbízható, összeköttetés nélküli protokoll. Jelentõsége akkor van, amikor nem szükséges sem az üzenetek TCP-féle sorbarendezése, sem a forgalomszabályozás. Elsõsorban olyan egylövetû, kliens-szerver típusú kérdés-válasz alkalmazásokban terjedt el, ahol a gyors válasz sokkal fontosabb, mint a pontos. Ilyen például a beszéd- vagy videó átvitel. Az IP, a TCP és az UDP kapcsolatát a 3. táblázat [3.] szemlélteti.
Az alkalmazási réteg
A szállítási réteg fölött az alkalmazási réteg található. Ez tartalmazza az összes magasabb szintû protokollt. Eredetileg csak a virtuális terminál (TELNET), a fájltranszfer (FTP) és az elektronikus levelezés (SMTP) protokolljait tartalmazta, amelyeket a 3. táblázatban is láthattunk. A virtuális terminál lehetõvé teszi, hogy bejelentkezzünk egy távoli gépre, és azon dolgozzunk. A fájltranszfer protokoll segítségével hatékonyan tudunk adatokat átvinni egy géprõl a másikra. Az évek során számos más protokollal bõvítették az alkalmazási réteget. Ilyen például a Domain Name Service (DNS), amely a hosztok nevét képezi le a hálózati címükre; a HTTP, amely a World Wide Web oldalak letöltését segíti. 

A hoszt és a hálózat közötti réteg
Az internetréteg alatt egy nagy ûr tátong. A TCP/IP hivatkozási modell ugyanis nem mondja meg, hogy mi legyen itt, csak annyi megkötést tesz, hogy a hosztnak egy olyan hálózathoz kell csatlakozni, amely az IP-csomagok továbbítására alkalmas protokollal rendelkezik. Ez a protokoll hosztonként, illetve hálózatonként más és más lehet.
Információ áramlása 

A TCP a kapcsolatban lévő gépeken futó folyamatok kommunikációját biztosítja. fogadja a tetszőleges hosszúságú üzeneteket a felhasználói folyamattól és azokat maximum 64 kbájtos darabokra vágja szét. Ezekhez fejlécet fűz, majd ezeket a darabokat egymástól független datagramokként küldi el. A hálózati réteg sem azt nem garantálja, hogy a datagramokat helyesen kézbesíti, sem a megérkezett datagramok helyes sorrendjét.
A TCP feladata az, hogy időzítéseket kezelve szükség szerint újraadja őket, illetve hogy helyes sorrendben rakja azokat össze az eredeti üzenetté.

Minden TCP által elküldött bájtnak saját sorszáma van. A sorszámtartomány 32 bit széles, vagyis elegendően nagy ahhoz, hogy egy adott bájt sorszáma egyedi legyen.
Címzés 

A gépek egyedi azonosítására szolgál a címzés mechanizmusa. A jelen keretek között az IPv4-es szabvány kerül ismertetésre, mivel ez a legelterjedtebb IP szabvány. Az IPv6-os szabvány bevezetés alatt áll (IPv5 nem volt). A címek 32 bitesek a cím három részre osztható:

Elõtag: Ez azonosítja a címosztályt. A címosztály mutatja meg, hogy az elõtag után hány bitet kell hálózati címként, és hány bitet kell host címként értelmezni. 

Network Adress (hálózati cím): Az egyes hálózatok megkülönböztetésére szolgál, valamint a központi adminisztrációt segíti elõ, azaz ne lehessen két gépnek azonos IP címe. A hálózati címet központilag kell igényelni, és központilag utalják ki az igénylõnek. 

Host Adress: A 32 címbit maradékat teszi ki. Ezt szabadon állíthatja be a címtartományt igénylõ a saját gépein. 

Az IPv4 öt címosztályt definiál, de tulajdonképpen csak három címosztályt használnak. (Sajnos az elnevezéseket elég könnyû más elnevezésekkel keverni, mert bizonyos elnevezéseket a terminológiában másra is használnak.)

A osztályú IP cím: 

[image: image32.png]Metwork. Host

7 bit 24 bit





B osztályú IP cím: 

[image: image33.png]10

Metwork.

Host

14 bit

16 bit





C osztályú IP cím: 

[image: image34.png]110

Metwork.

Host

21 bit

8bit





Útválasztás (routing)
A csomagkapcsolt rendszerekben az úválasztás (routing) azt a folyamatot jelöli, amivel kiválasztjuk az útvonalat (path), amin a csomagot továbbküldjük és az útvonal választó (router) az a számítógép (IMP), amely ezt végrehajtja.
Az útválasztási táblák tárolják az információt az elérhető csomópontokról és azok elérési útvonalairól.

Ha két gép egyazon lokális hálózaton van, akkor útvonal-kiválaszás nélkül közvetlen (direkt) összeköttetés létesíthető közöttük.

Különböző hálózatok közötti közvetett (indirekt) útvonal kiválasztásánál először a feladónak meg kell adnia azt az útválasztót, amihez a csomagot (datagramot) küldi. Majd az útválasztó fogja (esetleg újabb útvonal választókon keresztül) a cél-hálózatra továbbítani a datagramot.

18. Lokális hálózatok szabványos megvalósítása (Ethernet, vezérjeles sín, vezérjeles gyűrű): protokollok, közeg-hozzáférési módszerek, átviteli közegek, fizikai egységek.
Hálózat: Egymással (szoros) kapcsolatban lévő önálló számítógépek rendszere.


A hálózat célja:

az erőforrások megosztása

terhelésmegosztás

nagyobb megbízhatóságú működés

költségmegtakarítás

adatbázisok elérése 

kommunikációs közeg kialakítása


Hálózattípusok:

I. Területi kiterjedés alapján (mekkora területen helyezkedik el):

1. LAN (Local Area Network) - kis kiterjedésű hálózat, lokális hálózat; jellemzője az egyedi kábelezés és az ebből következő gyors adatátvitel. Mérete 1 szobától kezdve néhány kilométerig terjed.

2. MAN (Metropolitan Area Network) - városi méretű hálózat; egy város nagyságrendjét lefedő hálózat. Fontossá teszik a térinformatikai rendszerek, melyek összefognak egy települést. Másik tipikus alkalmazás a világhálózatok kiindulási pontjaihoz (pl. Internet node-ok) való belépés biztosítása.

3. WAN (Wide Area Network) - nagytávolságú hálózat; kiterjedése pár kilométertől kezdve az egész Föld nagyságáig terjedhet. Tipikus átviteli eszközei a távközlési vállalatok által nyújtott eszközök: telefonvonal, műhold, mikrohullám, stb.

II. Topológia alapján:

1. bus (sín): gépek egy közös átviteli közegre csatlakoznak
2. gyűrű: a gépek egy gyűrűre vannak felfűzve
3. fa: bármely két összekötött gép között egy és csak egy út van
4. csillag: minden gép csak a központi géppel van összekötve
5. teljesen összefüggő: minden gép minden géppel egyedileg össze van kötve (ez lenne az ideális, csak egy kicsit drága).

6. részben összefüggő: a teljesen összefüggőből elhagyunk néhány ágat

III. Átviteli sebesség alapján

1. Lassú (kb 30 kbit/sec): általában telefonvonalak felhasználásával történő átvitelre jellemző (ISDN – 64, ill. 128 kbit/s)

2. Közepes sebességű (kb 1-20 Mbit/s): ide tartozik a legtöbb lokális hálózat (Ethernet - 10 Mbit/sec, Token Ring - 16 Mbit/sec)

3. Nagy sebességű (50 Mbit/sec felett) Speciális hálózatok osztálya volt régebben, de mára a 100 Mbit/s-os lokális hálózatok terjednek robbanásszerűen. Elkezdődött a Gigabit/s-os hálózatok fejlesztése is. Valószínűleg rövid időn belül ezt a tartományt fogjuk a nagy sebességű osztályba sorolni. A Matáv ezzel elsõként létesít hazánkban 2,5 Gigabit/sec sebességû optikai WDM, Wave Division Multiplexing-hálózatot, amelyet a budapesti NIIF központ és hat egyetemi város (Miskolc, Debrecen, Szeged, Pécs, Veszprém, Sopron) közötti kapcsolatokhoz épít ki.

IV. Átviteli módszer alapján

1. Alapsávú (baseband): modulálatlan jeleket továbbit, tehát az átviteli közegben haladó jel frekvenciája közel azonos a bitsorozat frekvenciájával (LAN-okra jellemző)

2. Szélessávú (broadband): az adatátvitel modulált, tehát a vivő frekvenciája jóval nagyobb, mint a bitsorozat frekvenciája (pl. kábeltévé)

V. Kommunikációs irány alapján

1. Szimplex (egyirányú): egyik állomás csak adó a másik csak vevő

2. Fél-duplex (váltakozó irányú): mindkét irányú átvitel megengedett, de egyidőben csak az egyik irány élhet

3. Duplex (kétirányú): mindkét állomás egyszerre adhat és vehet

VI. Kapcsolási technika alapján

1. vonalkapcsolt - két kommunikáló állomás között állandó kapcsolat épül ki (pl telefon)

2. üzenetkapcsolt - két állomás között az átvivő hálózat tárolva továbbító egységekből áll, ezek továbbítják az üzenetet egy címinformáció alapján. Az üzenet hossza nem korlátozott.

3. csomagkapcsolt - hasonló az üzenetkapcsolthoz, csak a csomag mérete maximált, ezért a hosszabb üzeneteket szét kell tördelni. Nem szükséges tárolva továbbítónak lenni az átvivő hálózatnak (pl. Ethernet). Két változata létezik: 

- összeköttetés nélküli: a csomagok átvitelét az ún. datagram service (távirat) végzi. Minden csomag tartalmazza a teljes rendeltetési címet, külön továbbítódik (közben a sorrendjük is változhat). Hátránya a bonyolult csomag-összeépítés.

- virtuális összeköttetéses: a csomagok átvitelét egy virtuális adatáramkör (virtual circuit) biztosítja. Ez egy hívás útján létrejövő logikai összeköttetés, amely a bontásig fennáll, a csomagok ezen a rögzített adatúton kerülnek át. Teljes cím helyett csak az adatáramkör azonosítóját kell tartalmazniuk. Hátránya, hogy nem olyan flexibilis, mint a datagram.

VII. Közeghozzáférési mód alapján

1. véletlen átvitelvezérlés: egyik állomásnak sincs engedélyre szüksége az üzenettovábbításhoz, adás előtt csak az átvivő közeg szabad voltát ellenőrzi. 

2. osztott átvitelvezérlés: egyszerre csak egy állomásnak van joga adni, de ez a jog az állomások között körbe jár. Tipikus képviselője a vezérjel-továbbításos (token passing) módszer. Az állomások között egy vezérjel jár körbe, akinél ez van, az adhat. A topológia alapján lehet vezérlőgyűrű (token ring) vagy vezérjeles busz (token bus).

3. központosított átvitelvezérlés: egy kitüntetett állomás foglalkozik az átviteli jogok kiadásával.


A hálózat hardver feltételei

A hálózathoz szükség van legalább kettő, vagy ennél több számítógépre. Ügyfél-kiszolgáló rendszereknél ebből egy a szerver szerepét tölti be. A második és a többi számítógép lesz a munkaállomás. Ahhoz, hogy ezek a gépek összeköttetésben legyenek egymással, szükség van még vezetékekre, és gépenként egy hálózati kártyára, ami a számítógépek közötti összeköttetést létrehozza.

A hálózat szoftver feltételei:

Egyenrangú hálózatoknál a kapcsolatban álló gépek kliensként és szerverként is működhetnek, az operációs rendszerbe vannak beépítve a hálózati szolgáltatások.

Kliens-szerver hálózatoknál a szerveren hálózati operációs rendszert kell futtatni (pl. Novell NetWare, Windows NT/2000/XP), ami kiszolgálja a kliensektől érkező kéréseket. A szerver feladata a fájlok tárolása és védelme és a hálózati nyomtatás lehetőségének biztosítása. A klienseken bármilyen kompatíbilis operációs rendszer futhat. Az alkalmazói programok a kliens gépeken futnak.


Felhasználói jogok a hálózatban:

Jogtípusok:

1- Elérési jogok: Egy felhasználó kaphatja a jogokat ahhoz, hogy egy könyvtárban elérje az ott található fájlokat. 

2 -Hozzáférési jogok: Az előbb ismertetett jogokat kaphatja egy alkönyvtár vagy egy fájl ahhoz, hogy bárki hozzáférjen az adott fájlhoz vagy alkönyvtárhoz. Így az alkönyvtárban végezhető műveleteket korlátozhatjuk. 

3- Effektív jogok: Az előző két jogtípus-halmaz közös metszete adja meg egy könyvtárban végezhető műveletek körét. Más szóval, ha a felhasználónak joga van egy könyvtárban valamilyen műveletre, de nincs joga senkinek abban a könyvtárban ahhoz a művelethez, akkor a művelet nem végezhető el. Ugyanez fordítva is igaz. Egyik jog sem felsőbbrendű.

Jogok:

1- FILE SCAN - KERESÉSI JOG: A felhasználó látja az alkönyvtárban lévő fájlokat, így keresni is tud 

2- READ - OLVASÁSI JOG: A felhasználónak joga van az alkönyvtárban lévő fájlokat olvasásra megnyitni, azok tartalmát olvasni, és olvasás után lezárni.

3- WRITE - IRÁSI JOG: A felhasználó az általa megnyitott fájlba írhat, az ott lévő adatokat módosíthatja

4- CREATE - LÉTREHOZÁSI JOG: Az alkönyvtárban új fájlokat hozhat létre a felhasználó.

5- ERASE -TÖRLÉSI JOG: Az adott alkönyvtárban lévő fájlokat törölheti a felhasználó.

6- MODIFY - MÓDOSÍTÁSI JOG: Az alkönyvtárban lévő fájlokat a felhasználó átnevezheti, attribútumait módosíthatja.

7- ACCESS CONTROL - HOZZÁFÉRÉS ELLENŐRZÉSE: hozzáférési jogokat adni és elvenni.

8- SUPERVISOR - RENDSZERGAZDAI JOG: Minden joga megvan a felhasználónak az adott könyvtárban és annak alkönyvtáraiban. Ez a legmagasabb jog egy könyvtárban.

19. Az operációs rendszer erőforrás-kezelőjének feladata. A holtpont és kezelésének stratégiái. Biztonságos állapot. A szemafor használata a termelő-fogyasztó folyamatok esetében.
Erőforrás kezelő feladata
Erőforrás kezelő (resource manager) a rendszermag azon része, amely az erőforrások elosztásáért és lefoglalásáért felelős. Ha egy folyamat erőforrást igényel, az erőforrás kezelő dönti el hogy a kérés kielégíthető-e.

Az erőforrás kezelő gondoskodik a számítógép erőforrásainak (a futó folyamatok igényei alapján történő) hatékony, gazdaságos elosztásáról, illetve az erőforrások használatáért vívott versenyhelyzetek kezeléséről.

Erőforrás: A számítógépes rendszer részei, illetve az általuk nyújtott szolgáltatások halmaza. 
Erőforrás kezelő: a rendszermag azon része, amely az erőforrások elosztásáért és lefoglalásáért felelős. 

· Ha egy folyamat erőforrást igényel, az erőforrás kezelő dönti el, hogy a kérés kielégítgető-e.

· Az erőforrás kezelő gondoskodik a számítógép erőforrásainak hatékony gazdaságos elosztásáról, illetve az erőforrások használatáért vívott versenyhelyzetek kezeléséről.
Az erőforrások csoportosítása: 
1. hardver erőforrások: pl. processzor, memória, nyomtató és az egyéb perifériák
2. szoftver erőforrások: a különböző közösen használható programok, adatállományok, adatbázisok.
Holtpont

Holtpont: Több folyamat egy olyan erőforrás felszabadulására vár, amit csak egy ugyancsak várakozó folyamat tudna előidézni.Pl.:
· ha a folyamatok nem megszakíthatók

· ha az erőforrások nem megoszthatóak

· ha ezek a folyamatok egymás erőforrásaira várnak

Kiéheztetés

     Kiéheztetés: Összesen ugyan van elegendő erőforrás, de szerencsétlen esetben egyes folyamatok mégis “éheznek”. Egy folyamat – az erőforrás kezelő stratégiája miatt – beláthatatlan ideig nem jut erőforráshoz.

A kiéheztetés az erőforrás kezelő stratégia miatt jöhet létre. Az erőforrás-kezelő stratégia szerint megtiltjuk, hogy egyszerre több folyamat is rendelkezzen erőforrással, így elszaporodhatnak a várokozó folyamatok, az erőforrás-kezelő dönt, hogy melyik folyamat jut erőforráshoz, és így lehet, hogy egy folyamat elé mindig bekerül egy másik, így az a folyamat beláthatatlan ideig nem jut erőforráshoz.

Holtpont kezelési stratégiák: 

· erőforrás használati szabályokkal biztosítani, hogy holtpont ne alakuljon ki: 

· holtpont megelőzés (deadlock prevention), 

· holtpont elkerülés (deadlock avoidance). 

· csak a holtpont kialakulásánál avatkozunk be: 

· holtpont felismerés (deadlock recognition), 

· holtpont felszámolása (deadlock recovery). 

Megelőző stratégiák
· Egyetlen foglalási lehetőség (One-shot allocation): Csak az a folyamat foglalhat erőforrást, amelyik még egyetleneggyel sem rendelkezik.

· Rangsor szerinti foglalás (Hierarchical allocation): Egy folyamat csak olyan osztályból igényelhet erőforrást, melynek sorszáma magasabb mint a már birtokolt erőforrások sorszáma. Leggyakrabban használt a kisebb sorszámú.

· Bankár algoritmus: Sohase elégítsünk ki egy igényt, ha az nem biztonságos állapotot eredményez.

Biztonságos állapot

Egy rendszer állapota akkor biztonságos, ha létezik egy olyan sorrend, amely szerint a folyamatok erőforrás igényei kielégíthetőek.

Szemafor használata
A termelő és a fogyasztó közös memóriaterületet használ de egyszerre nem használhatják. Ahhoz, hogy kizárjuk, hogy egyszerre használják az erőforrást használhatunk szemafort, ami megmutatja, hogy egy másik folyamat éppen használja-e a kívánt erőforrást. A szemafor kiolvasása és átállítása több lépésben történik ezért ha két folyamat egyszerre kívánja használni (átállítani) akkor ez hibás lehet. Ennek elkerülésére használják a P és V primitiveket. A P primitiv letiltja a szemafor használatát más folyamatoknak, a V primitiv pedig újból engedélyezi.

20. A magas, közbenső és alacsony szintű ütemezők feladata egy operációs rendszerben. A folyamatok állapotai. Ütemezési algoritmusok.
Ütemező
Az idővel való gazdálkodást ütemezésnek (scheduling) nevezzük. Az ütemezés során a folyamatok állapota változik meg. Attól függően, hogy milyen állapotok között történik váltás, az ütemezők több szintjét definiálhatjuk

Magas

A főütemező (high-level scheduler) vagy magas szintű ütemező választja ki a háttértárolón lévő programok közül azt, amelyik az operációs rendszer közvetlenebb felügyelete alá kerülhet, elkezdődhet a végrehajtása, azaz folyamattá válhat. Viszonylag ritkán van rá szükség.
Közbenső

Folyamatosan figyeli a rendszer állapotát (terhelését) és ha túlságosan sok folyamat kerül futásra kész állapotba és egyiknek sem jut elég processzoridő akkor a közbenső szintű ütemező egyes folyamatokat felfüggeszt illetve prioritásukat átrendez a rendszer hatékony működésének érdekében.
Alacsony

Az alacsony szintű ütemező feladata, hogy a processzort a futásra kész folyamatok között igazságosan és hatékonyan ossza el. Legfőbb követelmény vele szemben a gyorsaság.
Folyamatok állapotai
Alapállapotok:  
- Futásra kész


- Fut


- Várakozik

Átmeneti állapotok
- Elindul


- megszakad


- Vár


- Feléled

Ütemezési algoritmusok
FCFS(First Come First Served)
Előbb jött előbb fut: érkezési sorrendben kapják meg a processzoridőt ameddig le nem futnak illetve valamelyik periféria miatt nem várakoznak. Egyszerű, biztos, viszont a folyamatok érkezési sorrendjétől nagyban függ a várakozási idő.

SJB (Shortest Job First)
A legrövidebb előnyben. A legrövidebb processzoridőt igénylő folyamatot részesíti előnyben. A legrövidebb várakozási időt adja viszont a hosszabb futást igénylő folyamatokkal mostohán bánik (leterhelt processzor esetén mindig „elévághat’ valaki)

RR(Round Robin)
Minden egyes folyamatnak egy meghatározott processzoridőt biztosít és azután megszakítja és a várakozási sor végére teszi. Előnye, hogy a legrövidebb válaszidőt produkálja és a folyamatok között demokratikusan osztja el a CPU-t viszont jelentős adminisztrációt igényel a környezetváltások miatt.

21. Többfeladatos (multitasking) operációs rendszerek feladatai, felépítése. A tárvédelem feladata és megvalósítása (privilégiumi szintek, jogosultságok, szegmensek, deszkriptorok, kapuk).
A többfelhasználós operációs rendszerek lehetővé teszik, hogy a számítógép erőforrásait egyszerre több felhasználó hasznosítsa. Az operációs rendszernek gondoskodnia kell arról, hogy az egyes felhasználók igényei ki legyenek egyensúlyozva, és hogy az egyes programok elegendő és kellően elválasztott erőforrásokat használjanak. 

Egy rendszer képessége több mint egy feladat párhuzamos, vagy annak látszatát keltő módon történő futtatására.

Valódi párhuzamos feldolgozást jelentő multitasking (multiprocesszing) csak több processzorral rendelkező rendszerekben valósítható meg.
Az egyprocesszoros gépeken a multitaskingot az operációs rendszerek az ún. 
időosztás (time sharing) segítségével valósítják meg úgy, hogy minden egyes feladatot csak a másodperc törtrészéig hagynak futni, ami után elveszik tőle a vezérlést, és egy másik feladatot hagynak hasonlóan rövid ideig futni. Azt, hogy melyik feladattal mennyit „foglalkozzon” a processzor, a folyamat prioritása mutatja meg. Általában a rendszerfolyamatok magasabb prioritással futnak. Így az erőforrásokhoz a folyamatok időben osztozva férnek hozzá. 
Az időosztásos rendszer működése során minden egyes feldolgozó folyamatnak kizárólagos, de csak rövid ideig tartó hozzáférést enged az erőforrásokhoz, amelynek letelte után ugyanezt a jogot a következő processznek engedi át, amellyel szintén hasonló módon bánik el. Ilyen módon egyetlen rendszeren több feldolgozási folyamat végrehajtását is lehetővé teszi a nélkül, hogy azoknak egymás befejezésére kellene várniuk.
Az időosztásos rendszerek annak ellenére, hogy valójában soros működési módot alkalmaznak, a párhuzamos feldolgozás látszatát keltik a felhasználóban, illetve több felhasználó látszólag párhuzamos - valójában megosztott - kiszolgálására is alkalmasak.
Ütemező (scheduler): A többfeladatos rendszerek központi magja, amely eldönti, hogy melyik feladat mikor és mennyi ideig kapja meg a vezérlést.
Amennyiben az ütemező a megadott idő lejárta után képes maga is visszavenni a vezérlést az éppen futó feladattól, akkor preemptív ütemezőről beszélünk. A vezérlés visszaszerzésére csak a futó feladat hozzájárulásával képes ütemezőket kooperatív ütemezőnek nevezik. 

Mivel így egyetlen másodpercen belül akár több tíz folyamat is "szóhoz juthat", azaz műveleteket végezhet, ezért a felhasználóban az képzet keletkezik, hogy a programok párhuzamosan működnek - pedig valójában minden időpillanatban csakis egyetlen egy folyamat fut.

Jellemzői:
· Különböző felhasználók adatainak, beállításainak nyilvántartása, privát munkaterület biztosítása

· Több felhasználó is dolgozhat egy számítógépen ugyanabban az időben

· Többfeladatos (multitask): több feladat (process) futhat egy időben

· A számítógép-hálózatok kiterjedt támogatása

· Különböző korlátozások létrehozása különböző felhasználók részére

· A felhasználók csak a saját fájljaikkal dolgozhatnak

Felépítésük
A WINDOWS operációs rendszer
A Windows már többfeladatos, multitaszkos operációs rendszer, egyszerre több alkalmazás is futtatható, más - más ablakokban. A multitaskingot időosztásos (time-sharing) módon valósítja meg a rendszer, ellentétben a Windows 3.1-ig létező kooperatív működéssel ( az alkalmazások egyeztek meg ). Programhiba esetén általában a hibás alkalmazás bezárható, az op. r. nem sérül. Internetes lehetőségekkel, beépített hálózatkezelési lehetőséggel rendelkezik.

A Windows NT a Windows továbbfejlesztett, üzleti célú megvalósítása, alkalmazásával több gép összekapcsolható, így megosztva az erőforrásokat. Kiterjedt biztonsági rendszere van .

A fájl és könyvtárstruktúra a Windows régebbi változataiban megegyezik a DOS-ban használt struktúrával, csak a megjelenítése történik grafikusan. Viszont a Windows 95-ben már lényeges változásokat eszközöltek ezen a téren. A Windows 95 kihasználja a 32 bites hardverlehetőségeket. A hardver megváltoztatása esetén bekapcsoláskor automatikusan felismeri a változást és azonosítja az új elemet (Plug and Play).
A fizikai könyvtárstruktúra azonos a DOS könyvtárstruktúrájával, a fájlok is ugyan úgy helyezkednek el a katalógusokban. Az elnevezéseknél viszont már lehet hosszú neveket, valamint más karaktereket is használni. A nevek hossza legfeljebb 250 karakter lehet. A fizikai megvalósítás szinte teljesen azonos a DOS - al, a különbség a megjelenítésben található. A lemezen ugyan úgy vannak tárolva az állományok, a nevük is csak maximum 13 karakter hosszú, beleértve a kiterjesztést és a pontot is, a hosszú megnevezés egy másik fájlban található. 

 A UNIX operációs rendszer
A UNIX valójában a Unix alapú operációs rendszerek csoportja (pl. HP-UX, IRIX, stb.).Régi 1969 óta létezik. Létezik ingyenes verziója is, a LINUX (pl. Red Hat, Suse, Debian). 

Többfelhasználós - többfeladatos, időosztásos operációs rendszer. Ez azt jelenti, hogy egyidőben több felhasználó is dolgozhat, és minden felhasználó több programot is futtathat egyidőben. A felhasználók ún. terminálokon keresztül csatlakoznak a rendszerre, az összeköttetés megvalósítására számos módszer létezik. 

A rendszer karakteres és grafikus felülettel is rendelkezik. A felhasználókat, jogosultságaikat  nyilvántartja. 

A memóriakezelésben lapozásos virtuális memóriakezelést és swappingot használ: ha a rendszernek szabad memóriára van szüksége, egy inaktív folyamatot a háttértárra ír, egyébként pedig gondoskodik a szükséges lapok memóriában létérőll. A futó folyamatok között az időszeleteket prioritásos elven osztja ki, mely a felhasználó által beállítható. 

A Unixban minden file: olyan kommunikációs végpont, ahova adatok írhatóak és onnan kiolvashatóak. A file rendszerben nincsenek meghajtók, a rendszerben levő minden file-t a gyökérkönyvtárból elérhetünk (pl. /mnt/floppy). A filenév max. 255 karakter hosszú lehet, minden karaktert tartalmazhat, megkülönbözteti a kis és a nagybetűket. 

A fájl az adatok tárolására szolgáló alapvető adatobjektum a UNIX alatt. Teljesen strukturálatlan, nincs sem rögzített, sem változó hosszúságú mezőkre, rekordokra bontva, nincs megszabott hosszúsága, semmilyen más korlátja nincs.A fájl tehát egyszerűen bájtok (karakterek) sorozata. 

A UNIX fájloknak három fő típusa van:

-Közönséges : adat, végrehajtható, bináris, shell-scrip

-Speciális

-Katalógus

A shell-scriptek ugyanazok a UNIX - ban mint a DOS - ban a batch fájlok. Sorai végrehajtható parancsokat tartalmaznak. 

A bináris - amint a neve is mutatja - a futtatható programok bináris kódját tartalmazza.

A speciális fájlokon keresztül lehet elérni a különböző perifériákat, terminálokat, billentyűzetet, monitort, diszkeket, hálózati egységeket stb. 

A katalógusok fájlok egy másik fájltípus. Ez azt jelenti, hogy a UNIX - ban a katalógusok is fájlokban találhatóak. Annyi a különbség, hogy ezen fájloknak a kezelésére külön parancsok szolgálnak. 

Ezért lehet kijelenteni, hogy a UNIX - ban minden fájl !

Feladataik

- az egyes taszkok jellemzõinek nyilvántartása

- a processzor ütemezése

- taszkváltás, a taszkok állapotának mentése/helyreállítása

- (közös) erõforrások ütemezése

- tárkezelés, tárkiosztás, tárvédelem

- a konkurencia kezelése, kölcsönös kizárás biztosítása

- a rendszer hatásfokának vezérlése
Tárvédelem

Napjainkban egyre fontosabbá válik a tárolt adatok és programok védelme. A korszerű számítógépek és op. rendszerek lehetővé teszik, hogy egyidejűleg több felhasználó is dolgozzon ugyanazon a gépen (multiuser-üzemmód) és több program fusson párhuzamosan (multitask-üzemmód). Ezzel növekszik annak a valószínűsége, hogy az egyes programok (folyamatok) beleírnak a másikba, elrontva annak működését. Az ilyen problémák megakadályozására feltétlenül szükséges a különböző védelmi módszerek alkalmazása.
A védelem legfontosabb feladatai a következők:

· az elkülönített memóriaterületek védelme. Egy prg. csak a saját területét használhatja, vagyis a kiadott címeket meg kell vizsgálni, hogy a megadott területre vonatkoznak-e. Ezen belül is külön kell választani a programterületet (ahol az utasítások vannak) és az adatterületet, mert a programterületről csak olvasás történhet, míg a másik írható-olvasható.

· a rendszerprg.-ok védelme a felhasználói prg.-októl.

· a felhasználói prg.-ok védelme egymástól.

A védelmi rendszer kialakításában nagy fontosságúak a szegmensek és a különböző deszkriptortáblák.

A tárvédelem kialakításának néhány lehetősége:

· külön szegmensbe lehet tenni az adatokat és az utasításokat tartalmazó programrészeket, ezzel szabályozva az írhatóságot és olvashatóságot.
· védelmi bitek rendelhetők az egyes szegmensekhez és ezek a deszkriptorok.

· prioritások is rendelhetők az egyes prg.-okhoz (pl. a rendszert működtető prg.-ok prioritása a legnagyobb).

· létrehozhatók olyan szegmensek, amelyeket minden program használhat. Ezek a GDT-táblában (Globális Deszkriptor Táblában) vannak nyilvántartva.

Vannak olyan szegmensek, amelyeket csak egy-egy felhasználói program használhat. Ezek az LDT-táblában (Lokális Deszkriptor Táblában) vannak nyilvántartva.
Szegmensek
[image: image35.png]cim 1 szegmens

EegmenT

Rozdtein | Hovez | Tpe? |

Szegmenslird Labla




Kódszegmens: minden egységnek van saját kódszegmense. Az aktuális kódszegmens címe a proc. CS regiszterét található.

A program jól elkülöníthető programrészekből áll, egy Turbo Pascal programnak mindig van egy főprogramja, mely különböző modulokat (unit) használ. Minden unit lefordított kódja egy külön szegmens, melyet egymás után helyeznek el a tárban: legelöl a főprogram kódszegmense, melyet a programhoz szerkesztett unitok kódszegmensei követnek. Egy kódszegmens mérete max. 64 KB, a programban használt unitok száma elvileg korlátlan. 
Adatszegmens: az összes egység ezt használja statikus adat globális változó, és az összes típusos állandó tárolása. Reg->DS. 

Az adatszegmens egy közös, állandó adatterület. A főprogram és az összes unit ezt az adatterületet használja statikus (az egész program futása során létező) adatainak tárolására. Az adatszegmens tartalmazza tehát a globális változókat és az összes típusos állandót. Mérete max. 64 KB lehet. 
Veremszegmens: A veremszegmenst a rendszer adatok ideiglenes tárolására használja, ide kerülnek az eljárások és függvények lokális változói, paraméterei és visszatérési címei. A verem szegmenscíme és mérete a futás során állandó. 
Adatvédelem
Eszközszintű védelem - Hardver:

Lemeztükrözés: Esetén minden lemezből kettő van, és minden lemezzel kapcsolatos művelet mindkét egységen párhuzamosan, azonos módon hajtódik végre. Az operációs rendszer figyeli az eltéréseket, és hiba esetén megkísérli a javítást. A tükrözés elve kiszélesíthető a lemezegységen felül a vezérlőkár-tyára, sőt az egész gépre is.

RAID: (Redundant Array of Inexpensive Disks) Ebben az esetben lemezek együttműködő tömbje végzi az adatok tárolását úgy, hogy az adatblokkok meghatározott rendszer szerint megoszlanak a le-mezek között. Olcsó lemezek redudáns tömje

Adatszintű védelem - Szoftver:

Paritásvizsgálattal: Az adatátvitel során az esetleges átviteli hibák felderítését megkísérelhetjük oly módon, hogy az átviendõ adatbit-csoportot egy paritás bittel egészítjük ki úgy, hogy az így kiegészített adatcsoportban lévõ 1 értékû bitek száma páros (páros paritás), vagy páratlan (páratlan paritás) legyen. Ilyen módon, az ADÓ oldalán mindig biztosítható, hogy az 1-es értékû bitek száma mindig páros/páratlan legyen, és a VEVÕ oldalon az egy (ill. páratlan számú) bit változása miatti hiba felderíthetõ.Kettős hibát a módszer nem vesz észre. Paritásbitet a mágnesszalagokon kívül általában az operatív tár védelmére is használnak. 

Hibajavító kóddal: hibajavító kódok alkalmazhatók, ha a várható hibák egymástól függetlenek. Álta-lánosan elmondható, hogy n+1 db hiba detektálására és n db hiba javítására. A hibajavítás alapja álta-lában az ún. Hamming-távolság, azaz azt az adatot tekintjük jónak, amely megfelel a hibajavító bitek állásának, és a rossz adattól a lehető legkevesebb bitben tér el. Az optikai egységek olvasási hibalehe-tőségei meglehetősen nagyok, ezért a CD-ROM olvasóknál 6 db hibajavító bitet használnak.

Ellenőrző összegek: ECR (egyedi bithibák) CRC (Cyclic Redundancy Code) Ellenőrző összegek használatosak akkor, ha a várható hibák nem függetlenek egymástól, hanem egy adatfolyam egymást növelő bitjei sérülnek. Például egy hálózati zavar, vagy mechanikai sérülés hatására. CRC-
a.) Programok és felhasználói feladatok védelme

A tárvédelemnek három különböző szintjét szoktuk megkülönböztetni:

1. védeni kell egy folyamat különböző logikai egységeit egymástól,

2. védeni kell a felhasználói folyamatokat egymástól, de biztosítani kell közöttük az igényelt kommunikáció lehetőségét,

3.védeni kell az operációs rendszert a felhasználói folyamatoktól.

Privilegizálási szintek (Hierarchikus)

Deszkriptorok (Nem hierarchikus)

b.) Adatok védelme:

A feladatok által használt adatok védelme érdekében, a szegmensekhez, la​pokhoz való hozzáférési jogokat szabályozza a védelmi rendszer.

 A leggya​koribb hozzáférési jogok:

- olvasási jog (read access); a tárolóhoz (laphoz, szegmenshez) forduló feldolgozás tetszőleges adatot kiolvashat az adott területről;

- írási jog (write access); a feldolgozás átírhatja a tárolóterület adatait, beírhat új adatokat, törölheti az ott lévő adatokat;

-végrehajtási jog (execute access); a feldolgozás a tárolóterületen talál​ható kódot elindíthatja; végrehajtási jog csak programot tartalmazó lap​hoz, vagy szegmenshez rendelhető hozzá, adatszegmenshez nem.
Kapuk

kapuleírok: 

call kapu: 16bites 32bites 

megszakítási kapu:16 bites 32bites

csapda kapu: 16bites, 32bites

taskkapu

Ezek olyan szegmensleírók melyek mögött valódi szegmens nincs, speciális szerkezet. Kapuleírók csak pointerek. Táblázaton át átmutat egyigazi szegmensre. Behoz egy igazi szegmensleírót. Bizonyos szegmensekhez csak kapun át lehet hozzáférni: akinek a privilgiumszintje eltér a hívó programától, Ez biztonságos de lassú.

Call:vezérlés átadásra szolgál, megjelöli az eljárás belépő pontját, meghatározza a belépéshez szükséges privilégiumszintet.

Megszakítási csapda: IDT-táblázat:megszakítási táblázat kapun át lehet átadni a megszakítás kérést

Megszakítás: nem újra megszakítható

„B” tételek

1. Az algoritmus és a program fogalma, jellemzői. Az algoritmus-tervezés helye és szerepe a szoftverfejlesztésben. Algoritmusok építő elemei. Algoritmuslépések és programutasítások kapcsolata. Programvezérlési szerkezetek egy választott programozási nyelvben.
Az algoritmus és a program fogalma, jellemzői

Algoritmus: Olyan utasítások halmaza, melyek egy feladat megoldásához vezetnek. 
       Egy számítógép által érthető algoritmust programnak nevezünk.
Jellemzői:

1) lépésekből áll (elemi tevékenységekből, instrukciókból, utasításokból)

2) minden lépésnek egyértelműen végrehajthatónak kell lennie (a végrehajtó egység minden lépés után eldönti, mi lesz a következő lépés)
3) hivatkozhatunk összetett lépésekre is.(külön megadhatjuk)
4) a végrehajtandó instrukciónak valamilyen célja van. (A végrehajtás során valamilyen változás következik be. Általában meváltoznak az adatok értékei.)
5) az algoritmus véges számú lépésekből áll. (Ez azt jelenti ,hogy az algoritmizáló ember a feladat megoldásával, vagyis az algoritmus leírásával előbb-utóbb végez).
6) általában vannak bemenő (input) adatai, melyeket felhasznál.
7) legalább egy kimenő (output) adatot eredményeznie kell.
8) elronthatatlannak kell lennie
Egy tetszőleges algoritmus felépíthető a következő elemekből:

szekvencia, szelekció, iteráció, feltétel nélküli ugrás.
A csak szekvencia, szelekció, iterációból építkező programot strukturált programnak nevezzük.
Program: a számítógép számára érthető instrukciók sorozata, mely az adatok megfelelő számításaival és mozgatásaival egy feladat megoldását célozza.

Jellemzői:

1) összetett lépésekből (algoritmus) áll (mélysége függ a programnyelv lehetőségeitől, a már megalkotott elemi tevékenységtől, utasításoktól)

2) az utasítás végrehajtásának mindig van tárgya. Ezeket a tárgyakat a programozásban adatoknak nevezzük..
3) célja van (az utasításnak)
4) felhasználóbarátnak kell lennie
Az algoritmus-tervezés helye és szerepe a szoftverfejlesztésben

Tervezési irányok:

- Felülről lefelé (top-down): a megoldást felülről lefelé, fokozatosan finomítjuk és így a kis feladatokat csak a végső fázisokban oldjuk meg;

-Alulról felfelé (bottom-up): kész feladatokból építkezünk (pl. megoldott részfeladatok felhasználásával vagy rutingyűjtemény vásárlásával). Ez nagy programozói tapasztalatot igényel.

A programfejlesztés fázisai

Analízis (tervezés (kódolás(tesztelés

Az első kettő nyelvfüggetlen, a megoldást célozza meg,  az utóbbi kettő a megoldást implementálja az adott nyelvhez.

Analizis

Az analízis során felmérjük a helyzetet, mire van szükség, mik a lehetőségek. Itt kell eldönteni, hogy a feladat egyáltalán megvalósítható-e, mik a célok, meg kell becsülni az időt és a költségeket. Feladatspecifikáció vagy rendszerterv készítése.

Tervezés

A programtervezés feladata, hogy az analízis során összegyűjtött információkat és adatokat alapul véve logikailag véglegesen kialakítsa az adatstruktúrákat és az adatokon manipuláló algoritmusokat.(Strukturált, majd OOP)

Kódolás

Az implementáció első szakasza a programterv kódolása egy adott programnyelven. A kódolási szakasz dokumentációja a forrásprogram. Ez akkor jó, ha pontosan a programterv alapján készül, áttekinthető és egyértelmű megjegyzéssekkel van kiegészítve.

Tesztelés

A tesztelés során különböző próbaadatokkal futtatjuk a programot. Teszteléskor a következőkre kell figyelni:

· Pontosan úgy működik a program ahogy az feladat leírásában szerepelt?

· Nem lehet elrontani?

· Elég hatékony?

· Biztonságos a használata?

· Felhasználóbarát?

Dokumentálás

 fejlesztés során készülő dokumentációk összessége a fejlesztői dokumentáció, mely az alábbiakból áll

· Feladatspecifikáció

· Programterv

· Forrásprogram

· Kész program

· Tesztadatok listája

Algoritmusok építő elemei
[image: image36.jpg]A folyamatabra szimbdélumai

az algoritmus kezdete

adat be- és kivitel

értékadds Véltozd:—Kifejezés
Kétiranyd eldgazas (dontés)
alépések sorrendje l

az algoritmus vége





Algoritmuslépések és programutasítások kapcsolata

Az algoritmuskészítés elvei:
·      Felülről lefele haladás elve. Egy komplex probléma szintenkénti részekre osztása. Eljutva egészen az alap algoritmusokig amelyekből mint téglákból épül fel az egész.

·      Oszd meg és uralkodj elve. Az algoritmus legyen áttekinthető (uralható). Az áttekinthetőséget a megfelelő részekre osztás biztosítja

·      Szükséges döntések kimondásának elve. A meghozandó döntést, ha minden információ rendelkezésre áll, ki kell mondani.

·      Döntések elhalasztásának elve. Információ hiányában döntést nem szabad kimondani.

·      Adatok szeparálásának elve. A részprogramok nem használhatják egymás belső adatait. 

·      lokális változók : csak az adott részprogram használhatja.  

·      globális változók : minden programrész használhatja.

·      Problémaorientáltság elve. Algoritmust probléma és nem konkrét feladat megoldására készítünk. / pl. nem készítünk külön algoritmust 10 és 20 szám összegzésére.

Programvezérlési szerkezetek egy választott programozási nyelvben

Szekvencia (összetett utasítás)

Egymás utáni tevékenységek sorozata. A szekvenciát a nyilak irányában felsorolt egymás utáni tevékenységek alkotják.

Szelekció

Programelágaztatást jelent; egy adott ponton a tevékenység végrehajtása feltételektől függ.

A szelekció – válogatás - a program végrehajtását egy feltételtől függően elágaztatja, felkészítve így a programot a lehetséges esetek kezelésére. A szelekciókat egymásba is lehet ágyaztatni.

Az egyágú szelekció (IF..THEN) a megadott feltétel teljesülése esetén végrehajt egy utasítást (vagy utasítássorozatot), egyéb esetben pedig kikerüli a feltételes részt és folytatja a program szekvenciális végrehajtását. 

[image: image37.png]Jackson abra:
A

F
B ©





A kétágú szelekció (IF..THEN..ELSE) azt jelenti, hogy ha teljesül a megadott feltétel, akkor a hozzá kapcsolódó tevékenységet kell végrehajtani, egyébként egy másikat. Az elágazás után pedig folytatódik a program szekvenciális végrehajtása.

[image: image38.png]Jackson abra:

T

Fy

T [}

T, ©





Többágú szelekció (IF..THEN..ELSE IF és CASE - OF) esetén a feltételek közül legfeljebb egy teljesülhet, ha az egyik teljesül, a többi már szóba sem jöhet. Az egy illetve a kétágú szelekció a többágú szelekció speciális esete.

[image: image39.png]Jackson abra:

T, °

T, ©





Iteráció

Az iteráció az utasítások ismételt végrehajtását jelenti.

[image: image40.png]Jackson abra:
A

F
B *





Elöltesztelő ciklus (WHILE..DO) esetén a program még a ciklusba való belépés előtt megvizsgálja a belépési feltételt, és ha ez teljesül, a ciklusmag végrehajtódik. A ciklusmag ismételten végrehajtódik, amíg a belépési feltétel teljesül. Ha a feltétel nem teljesül, akkor a vezérlés a ciklus utáni utasításra kerül. Két részből áll: ciklusfeltétel, ciklusmag.

[image: image41.jpg]Eldlteszteld ciklus:

tevékenység




Hátultesztelő ciklus (REPEAT..UNTIL) esetén a ciklus magja egyszer mindenképpen végrehajtódik, majd a ciklus végén történik egy feltételvizsgálat (kilépési feltétel), ami eldönti, kiléphetünk-e a ciklusból, vagy nem.

[image: image42.jpg]Hatultesztel§ ciklus:

tevékenység

[feltétel]

[else]




Növekményes ciklus (FOR) esetén a ciklusmagot a ciklusfeltételben meghatározott számszor hajtjuk végre. A számot egy kezdő- és egy végértékkel adjuk meg, a ciklus a megadott intervallumon belül egy ciklusváltozót léptet, s ha ez eléri a végértéket, a ciklus befejeződik. A FOR tehát egy elöltesztelő ciklus, ahol előre lehet tudni a végrehajtások számát.

2. Szoftverfejlesztési módszer és módszertan. A vízesés módszer összehasonlítása az inkrementális és iterációs módszerekkel. A RUP objektumelvű fejlesztési módszertan lényeges jellemzői (életciklus szemlélet, felépítés). Nézetek és modellek, kapcsolatuk.
Szoftverfejlesztési módszer és módszertan
· A fejlesztési modellek a fejlesztési folyamat átfogó, koncepcionális modelljét írják le

· Útmutatást ad a csoportmunka irányítására

· Meghatározza, hogy milyen termékeket kell kifejleszteni és mikor

· Meghatározza az egyes fejlesztőknek, valamint a csoportnak a feladatát

· Kritériumokat ad a termékek és tevékenységek mérésére és minősítésére

· Ritkán jelennek meg tiszta, ideális formában

· A fejlesztési folyamat egyfajta logikai absztrakciója. 
Szoftverfejlesztési módszertanok

Az 1960-as évek végén – a szoftverfejlesztés hajnalán – a programozók számára az egyénileg kidolgozott technikák követése volt az általános, nagyrészt azért, mert a programozás egyszemélyes feladat volt. Csapatmunka kialakítása szinte reménytelen volt, mert az elkészült programkód logikáját gyakran csak az alkotója értette. Az 1970-es évek elején bizonyos programozási gyakorlatok (pl. GOTO alkalmazása – Edsger Wybe Dijkstra, 1968) nehezen kezelhetőnek nyilvánításával indult el egy folyamat a szoftverfejlesztés technikájának elvi alapokon történő megfogalmazása felé. Bizonyos módszerek nagyon sikeresnek bizonyultak, amely újabb szabályozások kialakítására ösztönözte a szakterület képviselőit. Évtizedek során egyre több szabályrendszer követése vált elfogadottá, amelyekből lassan egy-egy szervezet által menedzselt komplex módszertanok alakultak ki.

A szoftverfejlesztési módszertan tehát különböző szabályok, eljárások, módszerek halmazának tekinthető, amely egy szoftvertermék elkészítését segíti elő. A különböző standardok pedig más és más tevékenységi területen igyekeznek minél szélesebb körben elfogadott és alkalmazott ajánlásokat adni.

A célokról és a követelményekről rendelkezése álló információk rendszerezése és analizálása egy bizonyos határ felett megköveteli azok egységesen struktúrált dokumentálását. Az alkalmazott szoftver-életciklus modelltől függetlenül több követelményelemzési és tervezési módszertan iránymutatását is követhetjük, mint pl. az SSADM (Structured Systems Analysis and Design Method), illetve az objektum-orientált rendszereket leíró UML (Unified Modelling Language).

Bizonyos módszertanok – mint pl. az iteratív Incremental vagy Spiral Model esetében alkalmazható, objektum-orientált szemléletet követő RUP (Rational Unified Process) – a teljes szoftver-életciklus időtartama alatt útmutatóként szolgálnak a napi tevékenységek elvégzéséhez.

Más módszertanok – mint pl. az MSF (Microsoft Solutions Framework) – egy-egy konkrét részterületre fókuszálva (a projektszervezet felépítése, a képességek menedzselése, a kockázatkezelés, stb.) és azokat egységes keretbe helyezve nyújtanak mintát a munkavégzéshez.

A legfrissebb irányzatok közé tartozik az XP (Extreme Programming), ami programozói szemszögből számos hasznos ötlettel képes orvosolni általános szoftverfejlesztési problémákat.

A következőkben az itt ismertetett fogalmakat szeretnénk részletesebben ismertetni.

A vízesés modell
A Waterfall Model a követelményelemzés, a tervezés, az implementáció és az integráció szigorúan egymás utáni végrehajtására épül. Az egyes tevékenységek végrehajtásának befejeződését mérföldkőnek (milestone) nevezzük, amelynek elérését a hozzá tartozó dokumentum elkészülése jelzi.[image: image43.emf]
A vízesés modell fázisai 

· Követelményanalízis és – definíció 

· Rendszer- és szoftvertervezés 

· Implementáció és a részegységek tesztelése 

· Részegységek integrálása és a rendszer tesztelés 

· Működtetés és karbantartás 

· A vízesés modell legfőbb hátrányai: 

• A gyártás megindulás a után nehéz változásokat beépíteni. 

• Egy munkafázisnak be kell fejeződni, mielőtt a következő elkezdődhet. 

A vízesés modell problémái 

·  Nehéz a változó megrendelői igényekhez igazodni, mert a projekt nehezen változtatható részegységekből áll. 

·  Ez a modell akkor hasznos, ha a követelmények jól ismertek és csak nagyon kis változások lehetségesek a fejlesztés során. 

· Sajnos csak kevés üzleti rendszernek vannak stabil követelményei. 

· A vízesés modellt főleg nagy rendszerek fejlesztése során használják, ahol a fejlesztés több helyszínen történik. 

Inkrementális módszer

Az Incremental Model elve a 80:20 szabály, azaz egy 80%-ban kész megoldás elkészítésére elegendő a rendelkezésre álló idő 20%-a. A modell a tevékenységek iteratív végrehajtására épül. Az első iterációs lépés (kezdeti cliklus) során 80%-ban elkészült kibocsátható rendszer további iterációk során funkcionálisan bővül a követelményelemzésben lefektetett igények szerint.

Jellemzője, hogy már az implementáció korai szakaszában rendelkezésre áll a működő rendszer.

Elképzelhető úgy is, mint egy Waterfall Model szerint felépülő rendszermag (80%), majd Waterfall Model vagy Rapid Prototyping szerint hozzáadott további funkcionalitások (20%).

Alkalmazhatóságának feltételei a rizikót csökkentő tényezők:

· Konkrétan specifikált célok, jól definiált követelményrendszer. 

· Rendelkezésre álló, rendszerezett információk. 

· A megbízó részéről hatékony döntési mechanizmus, lehetőség a közvetlen kommunikációra. 

· Kis méretű projektszervezet. 

· Elhanyagolható technológiai rizikó (kipróbált technológia, garantálható teljesítmény) 

Alkalmazása olyan nagy méretű, komplex projektek esetén javasolt, ahol üzleti igény minél előbb kézzelfogható eredményt produkálni.

Iteráció

Az iteráció az utasítások ismételt végrehajtását jelenti.
[image: image44.png]Jackson abra:
A

F
B *





Elöltesztelő ciklus (WHILE..DO) esetén a program még a ciklusba való belépés előtt megvizsgálja a belépési feltételt, és ha ez teljesül, a ciklusmag végrehajtódik. A ciklusmag ismételten végrehajtódik, amíg a belépési feltétel teljesül. Ha a feltétel nem teljesül, akkor a vezérlés a ciklus utáni utasításra kerül. Két részből áll: ciklusfeltétel, ciklusmag.
[image: image45.jpg]Eldlteszteld ciklus:

tevékenység




Hátultesztelő ciklus (REPEAT..UNTIL) esetén a ciklus magja egyszer mindenképpen végrehajtódik, majd a ciklus végén történik egy feltételvizsgálat (kilépési feltétel), ami eldönti, kiléphetünk-e a ciklusból, vagy nem.
[image: image46.jpg]Hatultesztel§ ciklus:

tevékenység

[feltétel]

[else]




Növekményes ciklus (FOR) esetén a ciklusmagot a ciklusfeltételben meghatározott számszor hajtjuk végre. A számot egy kezdő- és egy végértékkel adjuk meg, a ciklus a megadott intervallumon belül egy ciklusváltozót léptet, s ha ez eléri a végértéket, a ciklus befejeződik. A FOR tehát egy elöltesztelő ciklus, ahol előre lehet tudni a végrehajtások számát.
RUP
A Unified Process a rendszerfejlesztés folyamatát alapvetően két dimenzióval írja le. Az

egyik dimenzió a fejlesztés időbeliségét, dinamikáját követi. A másik dimenzió statikus

szempontja az eljárás elemeit határozza meg, az elkészítendő dokumentumokat,

diagramokat és forráskódokat, melyek közvetve az elkészítés lépéseit, munkafolyamatait is

megadják.

Az időbeliség alapján a Unified Process a rendszerfejlesztést négy nagyobb egységre,

négy fázisra bontja.
[image: image47.jpg]Uzleti modell

Elokészités | Kidolgozds | Megvaldsitds

Atadis

Kovetelmények

Elemzés BN
i i 1
Tervezés il |
T 1 !
Implementéci [ e S
T T T
i i i
Testt ! | » |

iter._|iter.

iter. | ier

AR R b ek o





Az Előkészítés (inception) fázisában a rendszer eredeti ötletét olyan részletes

elképzeléssé dolgozzuk át, mely alapján a fejlesztés tervezhet_ lesz, a költségei pedig

megbecsülhet_k. Ebben a fázisban megfogalmazzuk, hogy a felhasználók milyen módon

fogják használni a rendszert és hogy annak milyen alapvető belső szerkezetet, architektúrát

alakítunk ki.

A Kidolgozás (elaboration) fázisában a használati módokat, a „használati

eseteket” részleteiben is kidolgozzuk, valamint össze kell állítanunk egy stabil

alaparchitektúrát (architecture baseline). A Unified Process készítőinek a képe

alapján a teljes rendszer egy testnek tekinthető, csontváznak, bőrnek és izmoknak. Az

alaparchitektúra ebből a bőrrel borított csontváz, mely mindössze a minimális összeköt_

izomzatot tartalmazza, annyit, amennyi a legalapvetőbb mozdulatokhoz elegendő. Az

alaparchitektúra segítségével a teljes fejlesztés folyamata ütemezhet_ és a költségei is

tisztázhatók.

A Megvalósítás (construction) során a teljes rendszert kifejlesztjük, beépítjük az

összes „izomzatot”.
Az Átadás (transition) a rendszer bétaváltozatának kipróbálását jelenti, mely

során néhány gyakorlott felhasználó teszteli a rendszert és jelentést készít annak

helyességér_l vagy a hibáiról és hiányosságairól. A rendszer javítása a rendszer

módosítását, majd ezt követ_en újabb tesztelést jelent.

Minden fázis vége a fejlesztés egy-egy jól meghatározott mérföldkövét (milestone)

jelenti, azaz olyan pontot, ahol egy célt kell elérnünk, illetve ahol kritikus döntéseket kell

meghozni. Minden fázis végén megvizsgáljuk az eredményeket és döntünk a folytatásról.
[image: image48.jpg]erdforrdsigény
5%
20% 10%
5%
ids
TElbkészités  Kidolgozds Megvaldsitds Atadds
0% 0% 50% 10%

2. Abra: Fazisok idé és erdforrdsigénye tipikus fejlesztés esetén




A fejlesztés nagyobb egységeit jelentő fázisok további kisebb egységekre, iterációkra

(iteration) bonthatók. Minden iteráció egy teljes, illetve részben önálló fejlesztési

ciklust jelent, mivel az iteráció végén egy működő és végrehajtható alkalmazásnak kell

előállnia. Minden iteráció végén így a végső, teljes rendszer egyre bővülő részét kapjuk

eredményül, melyeket a rendszer egymás utáni kibocsátásainak (release), vagy belső

változatainak nevezünk. A belső változatok lehetővé teszik, hogy azt a fejlesztők

kipróbálhassák és annak tapasztalatai alapján esetleg módosíthassák a fejlesztés

ütemezését.
[image: image49.jpg]Elokém’xé\}Kmnlgom\} Megvaldsids } Auadis

L2 nl o

iier._|iter. iter,_|ier

~ N/

Meérfoldkovek

3. Abra: Mérfoldkivek





[image: image50.jpg]=

Usleti elenués__
Urketi model
=
Kovetelmények
Haszngltieset
modell
Elemzés _
Elematsi
modell ,
Tervezés _ .

Tervezési Tekepitési

modell madell —

Tmplementicio _

Implementicics
‘modell —

Tesat_

Teszt
modell

4. Abra: Modellek




Kezdetben a fejlesztéshez egy megfelelő kiindulópontot keresünk. Az első
tevékenységcsoportunk így az üzleti modellezés (business model), mely során

megkeressük a készítendő rendszer üzleti vagy más néven szakterületi környezetét, mely

alapvetően az üzleti fogalmakat és folyamatokat jelentik, illetve az azokra hatást gyakorló

üzleti munkatársakat.

A következő tevékenység a követelmények meghatározása (requirements

capture). Ezen munkafolyamat során összegyűjtjük és felsoroljuk a rendszer

működésével szemben támasztott kezdeti elképzeléseket, leírjuk azt, hogy a rendszernek

milyen környezetben kell működnie, valamint felsoroljuk a funkcionális (működéssel

kapcsolatos) és nem-funkcionális (pl. válaszidők, bővíthetőség, alkalmazott technológiák,

stb.) követelményeket.

A követelmények meghatározása során alapvetően a felhasználók szempontjából írjuk

le a rendszert, így annak egy külső képét rögzítjük. A következő munkafolyamat, az

elemzés (analysis) folyamán a követelményeket a fejlesztők szempontjának

megfelelően rendezzük át, így azok együttessen a rendszer egy belső képét határozzák

meg, mely a további fejlesztés kiindulópontja lesz. Az elemzés során rendszerezzük és

részletezzük az összegyűjtött használati eseteket, valamint azok alapján meghatározzuk a

rendszer alapstruktúráját.

Az elemzés célja a szerkezeti váz kialakítása, mely vázat a következő munkafolyamat,

a tervezés (design) formálja teljes alakká és tölti fel konkrét tartalommal, mely az

összes — funkcionális és nem-funkcionális — követelménynek is eleget tesz. A

tervezésnek az implementációval kapcsolatos összes kérdést meg kell válaszolnia, így részletesen le kell írni az összes felhasznált technológiát, a rendszert független fejlesztői

csoportok által kezelhető részekre kell bontani, meg kell határozni az alrendszereket és

közöttük a kapcsolódási módokat, protokollokat. A tervezésnek a rendszert olyan 
részletezettségi szinten kell vázolnia, melyből az közvetlenül, egyetlen kérdés és probléma

felvetése nélkül implementálható. A Unified Process szóhasználata szerint elő kell állítania

az implementáció tervrajzát (blueprint).

Az implementáció (implementation) során a rendszert az UML terminológiája

szerinti komponensekként állítjuk el_, melyek forráskódokat, bináris és futtatható

állományokat, szövegeket (pl. súgó), képeket, stb. jelentenek. Az állományok előállítása

egyben azok függetlenül végrehajtható, önálló tesztjeit is jelentik. Az implementáció

feladata még az architektúra, illetve a rendszer, mint egésszel kapcsolatos kérdések

megválaszolása, így az iteráció esetén szükséges rendszerintegráció tervezése, az

osztottság (distribution) tervezése.

Az utolsó munkafolyamat, a teszt (test) során összeállítjuk az iterációkon belüli

integrációs tesztek és az iterációk végén végrehajtandó rendszertesztek ütemtervét.

Megtervezzük és implementáljuk a teszteket, azaz teszt-esetekként megadjuk, hogy mit

kell tesztelnünk, teszt-eljárásokként megadjuk azok végrehajtási módját, és programokat

készítünk, ha lehetséges a tesztek automatizálása. A tesztek végrehajtásával párhuzamosan

azok eredményeit szisztematikusan feldolgozzuk, majd hibák vagy hiányosságok esetén

újabb tervezési vagy implementációs tevékenységeket hajtunk végre.
3. A típus és a változó fogalma. Egyszerű és összetett adattípusok. Adatok láthatósága az objektumokban. Közvetlen és közvetett hivatkozású (referencia/dinamikus) változók. Az SQL adattípusai.
Típus

= változó tulajdonsága, amely meghatározza a hozzárendelhető értékek halmazát. Vannak a rendszerbe beépített (standard) típusok, valamint mi is létrehozhatunk újabbakat, melyet deklarálni kell. A var részben csak már ismert típusú változókat deklarálhatunk, az új típusok definiálása a - type - paranccsal történik.

Minden változónak van egy jól meghatározott típusa. A változó csak a típusának megfelelő értékeket veheti fel, például  egy szöveg típusú változóba csak szöveget tehetünk, dátum típusúba dátumot stb. Típusnak nevezünk egy adathalmazt és a rajta értelmezett műveletek összességét. 

Változó: /program adata/

[image: image51.jpg]aktTanul6:Tanulo

név: String lény: boolean  sziilD4tum: Date

év:number ho: number nap: number

1976

Sziv Zsazsa true





Lefoglalt memóriaterület, ami értéket vehet fel, ez az érték a program futása közben

változhat) Különböző tulajdonságaik alapján csoportosíthatjuk, mint például: 
típusa, érvényességi köre, életciklusa vagy létrehozása alapján.

Egyszerű adattípusok
· egész szám (Integer)

· karakter (Char) = ASCII karakter

· logikai (BOOLEAN)

Összetett adattípusok

· változók sorozata (=szekvenciális), pl.: karakterlánc (String)

· tetszőleges típusú adatok halmaza pl.: Rekord

· tulajdonságaik alapján csoportosított adatok pl.: tömb vagy tábla
Az SQL adattípusai
Az adattípusok: a táblázat egy-egy oszlopában elhelyezkedő adatoknak kötelezően azonos fizikai jel​lemzőkkel kell rendelkezni. 
Jellemző adattípusok:

1. Rögzített vagy változó hosszúságú karaktersorok

· CHAR(n) : típus egy rögzített hosszúságú karaktersor 

· VARCHAR(n) : legfeljebb n hosszúságú karaktersor

2. Rögzített vagy változó hosszúságú bitsorok

· BIT(n) : rögzített hosszúságú bitsor 

· BIT VARYING(n) : legfeljebb n bitből álló bitsor

3. Egész számok tárolására

· INT 

· SHORTINT

4. Fixpontos értékek tárolására

· DECIMAL(n , d) : ahol n: számjegy, d: tizedesjegy

5. Lebegőpontos értékek tárolására

· FLOAT (másnéven REAL) 

· DOUBLE PRECISION : nagyobb pontosság

6. Dátum és idő tárolására

· DATE 

· TIME

4. Az adatmodell alapelemei. Adatmodell típusok és jellemzőik. A relációs adatmodell fogalma, kulcsok kategóriái, kapcsolatok felállítása. Az adatmodellek és a szakterületi modellek kapcsolata, összefüggése.
Az adatmodell alapelemei

Az adatmodell egyedek (táblák), tulajdonságok (mezők) és kapcsolatok halmaza, mely absztrakt módon tükrözi a valós objektumok tulajdonságainak és kapcsolatainak elvont kategóriáit.

Az adatmodell egy séma, melyben megadjuk mely tulajdonságok határozzák meg az egyedeket, mely egyedek szerepelnek a sémában, és ezek közt milyen kapcsolatok vannak.

Az adatmodell alapelemei: a modellek három szerkezeti elemből állnak:

-Egyed (egyedtípus)

-Tulajdonság (tulajdonság-típus)

-Kapcsolat (kapcsolat-típus)

Egyed: egyednek hívunk minden olyan dolgot (objektumot), ami minden más dologtól (objektumtól)

megkülönböztethető, és amirıl adatokat tárolunk.

Tulajdonság: Az egyedeket tulajdonságokkal (attribútumokkal) írjuk le. A tulajdonság az egyed jellemzıje, amely megadja, meghatározza az egyed egy részletété.

Kapcsolat: kapcsolatnak nevezzük az egyedek közötti viszonyt. A kapcsolat mindig valóságos objektumok közötti konkrét viszonyokat fejez ki, hiszen az egyed ilyen objektumokat képvisel.

Adatmodell típusok és jellemzőik
Adatmodellek típusai:

Három adatmodell terjedt el: hierarchikus, hálós, és a relációs.

A hálós adatmodell szerkezetét gráffal adjuk meg. A gráfban a csúcspontok az egyedek, az élek pedig a kapcsolatok. Az egyedeket tulajdonságaikkal írjuk le, a kapcsolatokat mutatók segítségével adjuk meg.

[image: image52.jpg]



A hierarchikus adatmodell szerkezetét is gráffal adjuk meg, de a gráf egy fa. Az adatok alá-, és fölérendeltségi viszonyban állnak.

[image: image53.jpg]== =




Hierarchikus adatmodell 

A relációs adatmodellnél  az egyedet táblázattal adjuk meg, a táblázat oszlopai a tulajdonságok, sorai pedig az egyed értékei (előfordulásai). A táblázat egy-egy sorát a tulajdonságok konkrét értékei adják. A táblázat maga az egyedhalmaz.

Reláció=táblázat[image: image54.jpg]Gsdlop





Relációk elemei 
A relációs adatmodellben az egyedet egy táblázattal adjuk meg.

[image: image55.png]Dolgoz (egyedtipus) Tulajdonsagtipus

—

Személyi szam Besorolasi kédszam
12711280111 [Magy P4l |S-126

1 590623 1542 Szaho Odon [B-123 [

Rekord (egyedelsfordulas) Tulajdonsag eléfordulss




A táblázat első sorában lévő tulajdonságtípus neveit mezőnévnek is szokták nevezni.

A relációs adatmodell táblázatokkal dolgozik, melynek oszlopai tulajdonságtípusok. Halmazelméleti megközelítés szerint, pedig 

· attribútum halmazok direkt (Decartes)  szorzatának részhalmaza. Az attribútumok (oszlopok) számát az R reláció fokának, a sorok számát, pedig a reláció számosságának nevezzük. 

A relációs adatbázis rövid jelölése a következő: 

· R (A1,A2,A3,…,An), ahol R a reláció neve, Ai pedig egy attribútum. A reláció voltaképpen egy egyedtípus, és minden egyedtípus egy relációnak tekinthető. R reláció elemeit gyakran rekordoknak nevezzük.

Kulcsok kategóriái
A reláció kulcs a reláció egy sorát azonosítja egyértelműen. A reláció - definíció szerint- nem tartalmazhat két azonos sort, ezért minden relációban létezik kulcs. A reláció kulcsnak a következő feltételeket kell teljesítenie 

· az attribútumok egy olyan csoportja, melyek csak egy sort azonosítanak (egyértelműség) 

· a kulcsban szereplő attribútumok egyetlen részhalmaza sem alkot kulcsot 

· a kulcsban szereplő attribútumok értéke nem lehet definiálatlan (NULL) 

A definiálatlan (NULL) értékek tárolását a relációs adatbázis kezelők speciálisan oldják meg. Numerikus értékek esetén a NULL érték és a 0 nem azonos.

Egy relációban tartsuk nyilván az osztály tanulóinak személyi adatait

	Diák

	Személyi szám
	Születési év
	Név

	 
	 
	 

	 
	 
	 

	 
	 
	 


3.7 ábra Reláció kulcs

SZEMÉLY_ADATOK=({ SZEMÉLYI_SZÁM, SZÜL_ÉV, NÉV}).
A SZEMÉLYI_ADATOK relációban a SZEMÉLYI_SZÁM attribútum kulcs, mert nem lehet az adatok között két különböző személy azonos személyi számmal. A születési év vagy a név nem azonosítja egyértelműen a reláció egy sorát mivel ugyanazon a napon is született tanulók vagy azonos nevűek is lehetnek az osztályban. Vajon a személyi szám és a születési év kulcsa-e a személyi adatok relációnak? Együtt a reláció egy sorát azonosítják, de nem tesznek eleget a kulcsokra vonatkozó azon feltételnek, hogy a bennük szereplő attribútumok részhalmaza nem lehet kulcs. Ebben az esetben a személyi szám már kulcs, így bármelyik másik attribútummal kombinálva már nem alkothat kulcsot. 

Előfordulnak olyan relációk is, melyekben a kulcs több attribútum érték összekapcsolásával állítható elő. Készítsünk nyilvántartást a diákok különböző tantárgyakból szerzett osztályzatairól az alábbi relációval:
NAPLÓ=({SZEMÉLYI_SZÁM, TANTÁRGY, DÁTUM, OSZTÁLYZAT)}

	Napló

	Személyi szám
	Tantárgy
	Dátum
	Osztályzat

	 
	 
	 
	 

	 
	 
	 
	 

	 
	 
	 
	 


3.8 ábra reláció összetett kulccsal

A NAPLÓ relációban a SZEMÉLYI_SZÁM nem azonosít egy sort, mivel egy diáknak több osztályzata is lehet akár ugyanabból a tantárgyból is. Ezért még a SZEMÉLYI_SZÁM és a TANTÁRGY sem alkot kulcsot. A SZEMÉLYI_SZÁM, TANTÁRGY és a DÁTUM is csak akkor alkot kulcsot, ha kizárjuk annak lehetőségét, hogy ugyanazon a napon ugyanabból a tantárgyból egy diák két osztályzatot kaphat. Abban az esetben, ha ez a feltételezés nem tartható (ennek a rendszer analiziséből kell kiderülnie!), akkor nem csak az osztályzat megszerzésének dátumát, hanem annak időpontját is tárolni kell. Ilyenkor természetesen a NAPLÓ relációt ezzel az új oszloppal ki kell bővíteni. 

Nem csak összetett kulcsok fordulhatnak elő a relációkban, léteznek olyan relációk is, melyekben nem csak egy, hanem több kulcs is található. Ennek illusztrálására nézzük meg a következő relációt
KONZULTÁCIÓ=({TANÁR, IDŐPONT, DIÁK)}

	Konzultáció

	Tanár
	Időpont
	Diák

	 
	 
	 

	 
	 
	 

	 
	 
	 


3.9 ábra Reláció több kulccsal

A KONZULTÁCIÓ relációban a tanár illetve a diák oszlopban olyan azonosítót képzelünk, mely a személyt egyértelműen azonosítja (például személyi szám). Minden egyes diák több konzultáción vehet rész, minden tanár több konzultációt tarthat, sőt ugyanaz a diák ugyanannak a tanárnak más-más időpontokban tartott konzultációin is részt vehet. Ezekből következik, hogy sem a TANÁR, sem a DIÁK, sem pedig ez a két azonosító együtt nem kulcsa a relációnak. De egy személy egy időben csak egy helyen tartózkodhat. Ebből következik, hogy a TANÁR, IDŐPONT attribútumok kulcsot alkotnak, de ugyanilyen okból kifolyólag a DIÁK, IDŐPONT attribútumok is kulcsot alkotnak. 

Vegyük észre azt, hogy a kulcsok nem önkényes döntések következtében alakulnak ki, hanem az adatok természetéből következnek, mint a funkcionális vagy a többértékű függőség. 

A relációban külső kulcsot vagy kulcsokat is megkülönböztetünk. Ezek az attribútumok nem az adott relációban, hanem az adatbázis másik relációjában alkotnak kulcsot. Például ha a KONZULTÁCIÓ relációban a DIÁK azonosítására a személyi számot alkalmazzuk, akkor ez egy külső kulcs a személyi adatokat nyilvántartó relációhoz. 

A kapcsolatok fajtái:

-Egy-egy típusú: az egyik egyedhalmaz mindegyik eleméhez a másik egyedhalmaz pontosan egy eleme kapcsolódik.

-Egy-több: az egyik egyedhalmaz mindegyik eleméhez a másik egyedhalmaz több eleme kapcsolódhat.

-Több-több: az egyik egyedhalmaz mindegyik eleméhez a másik egyedhalmaz több eleme kapcsolódhat és ez megfordítva is igaz.

Kardinalitás: az egyed maximális kardinalitási száma a kapcsolatban azt adja meg, hogy az egyed egy

előfordulásához a másik egyedből maximálisan hány előfordulás kapcsolódhat.
5. Rutin, metódus, eljárás és függvény fogalma, jellemzőik. Paraméterátadás. Példány és osztálymetódusok. Eseménykezelő metódusok. Függvények az SQL-ben.

Rutin

A rutin egy külön névvel ellátott összetett tevékenység.
· Meghívható a nevére történő hivatkozással

· Lehetnek paraméterei.

· Lehet visszatérési értéke.

A visszatérés nélküli rutint eljárásnak, míg a visszatérési értékkel rendelkező rutint függvénynek nevezzük.

Metódus
Utasítások (tevékenységek) összessége, melyet meghívhatunk a metódus nevére való hivatkozással.
Metódusok írásával az objektum, illetve osztály feladatait részekre bonthatjuk , azokat külön-külön megnevezhetővé tehetjük. Amikor egy objektumnak (vagy osztálynak) üzenetet küldünk, akkor egy olyan metódus kerül végrehajtásra, amely az üzenetnek egyértelműen megfeleltethető. Az osztályban deklarált metódusok egymást is hívhatják.
Eljárások, függvények

Egy adott probléma megoldásának a során célszerű, ha programunkat jól elkülönített, zárt egészet alkotó részprogramokból építjük fel

Az eljárás (rutin) tevékenységek (utasítások) összessége, melyet meghívhatunk az eljárás nevére való hivatkozással. Az eljárás egy olyan alprogram, amely egy előírt műveletsort végez el. Az eljárással több eredményt is előállíthatunk

Eljárást akkor írunk, ha:

· egy-egy hasonló feladatot többször akarunk elvégezni a programban,

· a program átláthatóbbá válik ettől.

Az eljárás szerkezete nagyon hasonlít a programéhoz. Az eljárás feje kötelezően a Procedure szóval kezdődik, majd az eljárás azonosítója végül a paraméterlista. Az eljárást még hívás előtt deklarálni kell.
Előnyök:

· Módosításkor, javításkor csak egy helyen kell belenyúlni a programba,

· Az általános célú eljárásokat később újra fel lehet használni.

A függvény (rutin) sokban hasonlít az eljáráshoz, a különbség csak annyi, hogy a függvény mindig egy értéket  ad vissza egy előre meghatározott típus szerint. A függvény egy olyan programrész, amely adott bemeneti paraméterekből egyetlen értéket számít ki, és azt hozzárendeli az azonosítóhoz.  Értékadás nélkül a függvény definiálatlan lesz.
Míg az eljárás hívása utasításként viselkedik, a függvényt kifejezésekben használhatjuk.
Paraméterátadás, -átvétel

A szubrutinok paraméterek segítségével kommunikálhatnak környezetükkel ill, eredményüket is e paraméterek segítségével adják vissza. Az eljárások, függvények fejlécében felsorolt paramétereket FORMÁLIS paraméterekenek nevezzük Azokat a paramétereket, amelyekkel az eljárást vagy függyvényt meghívjuk AKTUÁLIS paraméternek nevezzük. amelyet az eljárás vagy függvény ténylegesen átvesz, azaz az értékkel rendelkező formális paraméterek. A formális és aktuális paraméter darabszámának és páronként típusának meg kell egyeznie.

A paraméter átadás/átvétel szempontjából megkülönböztetünk értékparamétert (érték szerint átadott) és változó (cím szerint átadott) paramétert.Az értékparaméterek értéke nem változtatható meg az eljárásban, míg a változó paraméterek értéke igen.
-Cím szerinti paraméterátadáson azt értjük, hogy az aktuális és formális paraméterek, a tárban is ugyanazon a címen találhatók. Így az alprogramban az ezeken a változókon végrehajtott bármilyen művelet megváltoztatja a hívó programban is e változók értékeit. Az ilyen típusú paraméterátadás deklarálásakor a paraméter előtt a ‘var’ szó áll. (Procedure(var a1,a2  :  word);) A paraméter csak változó lehet.
-A paraméterátadás másik módja az érték szerinti paraméterátadás. Ez azt, hogy az aktuális és a formális paraméterek külön helyet foglalnak a tárban, más változókat jelentenek. Ezek a változók az adott eljárásban lokálisak, tehát értékeik megváltozása nincs hatással az aktuális paraméterekre

A paraméter lehet konstans vagy kifejezés is. Lefutása után a szubrutin  az általa lefoglalt memória területeket felszabadítja. 
Példány és osztálymetódusok
Példánymetódus

Az osztály azon metódusait, amelyek példányokon (példányváltozókon) dolgoznak, példánymetódusoknak nevezzük.
Osztálymetódus

Az olyan metódus, amely objektumok nélkül is tud dolgozni.
Az osztálymetódus a példányadatokat nem éri el, az csak az osztályváltozókat manipulálhatja.

Egy osztálymetódus meghívható az osztálynak küldött üzenettel:


Osztály.osztálymetódus

Osztálymetódus az osztály saját metódusa, amely csak osztályváltozókon dolgozik. Egy osztályt csak osztálymetódussal lehet megszólítani; egy objektumok meg lehet szólítani példánymetódussal és osztálymetódussal egyaránt.
Eseménykezelő metódusok
Az eseményvezérelt programozás olyan programozás, amely egy eseménybegyőjtı és szétosztó mechanizmuson alapszik. Az objektumok a hozzájuk érkezett eseményeket (eseménykezelő metódusokkal) lekezelik.
Pl. a TForm1-en levő OK nevő gomb megnyomására a TForm1.OKClick metódus fog végrehajtódni. Delphiben az eseménykezelő metódusok egérkattintásra automatikusan generálódnak, a programozónak csak a metódus belsejét kell ténylegesen megírni. Ilyen metódusok pl.:

-
 OnClick: kattintás egérrel

- 
OnEnter: belépés a szerkesztımezıbe

- 
OnExit: kilépés a szerkesztımezıbıl

- 
OnKeyPress: billenytőlenyomás

- 
OnChange: állapot megváltozása (ComboBox-nál)
Függvények (beépített függvények és a behívó nyelv függvényei)

A függvények szerkezete : függvénynév (argumentum)
Aggregáló fügvények: különböző számításokat végez a megadott mezők alapján.

COUNT: megszámolja az oszlopnév alapján megadott oszlop elemeinek a számát. A DISTINCT módosító esetén csak a különbözőket számolja meg.


SUM: összegzi a numerikus típusú oszlop értékeit.


AVG: a numerikus értékek átlagát képezi.


MIN: a minimális értéket adja vissza


MAX: a maximális értéket adja vissza.

Predikátumfüggvények: a WHERE parancs feltételében használhatjuk őket


Kif1 BETWEEN kif2 AND kif3: igaz értéket vesz fel, ha kif1 kif2 és kif3 közé esik. 


Oszlopnév IN (értéklista): igaz, ha az oszlop értéke eleme a listának.


Oszlopnév LIKE érték: igaz, ha az oszlop értéke megegyezik a LIKE utáni kifejezéssel. 

Egyéb (nem feltétlenül vannak)


Stringmanipuláló függvények (nem mindenütt)


Konverziós függvények
6. A kifejezés fogalma. Kifejezések kiértékelése, a műveletek precedenciája. Egy választott programozási nyelv aritmetikai, logikai és relációs műveletei. Kifejezések az SQL-ben.
Kifejezés
Változók és alapműveletek összessége Egy kifejezés operandusokból, és operátorokból áll (a+5 ( ahol az „a” és az „5” operandus, a „+” operator) A kifejezés állhat egyetlen operandusból is, és bármelyik operandus lehet egy újabb kifejezés. Vannak egy-, ill. kétoperandusú műveletek. 

Kifejezések lehetnek:


Aritmetikai: számtani alapműveletek


Logikai: logikai alapműveletek


Karakteres: karaktereken, sztringeken végzett műveletek, nem minden programnyelv támogatja.

Kifejezések kiértékelése = műveletek prioritása:

Precedencia szabály 
A többoperandusú mûveletek végrehajtásánál felmerülhet az a kérdés, hogy milyen sorrendben kell a jelölt mûveleteket végrehajtani. Ennek a sorrendnek a megállapításához ad segítséget az ún. precedencia szabály. Az operátorokat a végrehajtás sorrendje szerint négy csoportra osztjuk: 
1. szint  - Prefix műveletek:  not, - Legmagasabb prioritása a + és - előjelnek van, valamint a NOT műveletnek, ezek egy oprandusú műveletek
 2. szint - Multiplikatív műveletek: *, /, div, mod, and, shl, shr DIV, MOD a szorzó műveletek értékéleődnek ki: (* / DIV(egész osztás), MOD(maradékosztás) SHL(bitenként balra tolatás) SHR(bitenként jobbra tolatás)

3. szint  - Additív műveletek +, -, or, xor: Ezek után következnek az összeadó műveletek: (+ - OR XOR)

4. szint  - Relációs műveletek: <, <=, =, >=, >, <> =, /=, <, ... Legkisebb prioritása a hasonlító műveleteknek van

A kifejezések kiértékelésénél három szabályt kell figyelembe venni: 

-"Ha két különbözõ precedenciájú operátor között van az operandus, akkor a magasabb precedenciájú operátorhoz tartozik, tehát elõször az a mûvelet kerül végrehajtásra." 

Pl. ha a kifejezés 6*7+2, akkor a 7-et elõbb szorozni kell 6-tal, majd hozzáadni 2-t.

-"Ha két azonos precedenciájú operátor között van az operandus, akkor a tõle balra álló operátorhoz tartozik és az a mûvelet kerül elõször végrehajtásra." 

Pl. ha a kifejezés 6+7+2, akkor a 7-hez elõbb hozzáadunk 6-ot, majd 2-t.

-"Ha a mûvelet zárójelezve van, akkor a zárójelben lévõ mûveletek kiértékelésének van elsõbbsége." 

Pl. ha a kifejezés 6*(7+2), akkor a 7-hez elõbb hozzáadunk 2-t, majd megszorozzuk 6-tal.
Egy választott programozási nyelv aritmetikai, logikai és relációs műveletei
1. Hierarchikus szerkezetű (IMS, IMS-VS, DL/1, DL/1 ENTRY, VANDL/1) 

2. Hálós szerkezetű (IDMS, DENNIS, CODASYL, SÁMÁN, BANK) 

3. Relációs elvű (ORACLE, SQL, SYBASE, DB2, SYSTEM-R, Paradox)

A relációs modell: E.F.Codd dolgozta ki 1971-72-ben. Az volt a célja, hogy kiküszöbölje a hálós struktúra hátrányait. A relációs modellnél a logikai adatszerkezet független a fizikai tárolástól, en​nek következtében a logikai kapcsolatok változtatása után nem kell a tárolást újraszervezni.
A relációs adatmodell lényege, hogy az adatokat logikailag relációkban ábrázoljuk. Ez az áb​rázolás olyan, mintha az adataink kétdimenziós táblázatba lennének foglalva. Ezért lehet a relációs modell esetében táblázatokról is beszélni. A táblázatos ábrázolásmód legnagyobb előnye, a könnyű áttekinthetőség, a felhasználói szemlélethez közelálló modell-megjelenítés. A modell alapja a relációelmélet. Az alkalmazott műveleteket kifogástalan matematikai esz​közökkel írják le. Hátránya, hogy a számítástechnikai szakembereknek új kifejezéseket kell megtanulni, illetve a szokásostól eltérő gondolkodásmódot kíván.

Relációs műveletek :

SELECTION  kiválasztás sorokból

PROJECTION oszlopszám csökkentés

PRODUCT  szorzás

UNION  egyesítés

DIFFERENCE  különbség

JOIN   összekapcsolás

DIVIDE  osztás

Lekérdezések eredményének formázása :

COLUMN oszlopfejek

TTITLE tábla fejléc (tetejére)

BTITLE tábla fejléc ( aljára)

BREAK adatcsoportok szerint tördeli a táblát

COMPUTE oszlopértékek szerint összegez

Kifejezések
Az SQL a kifejezések szerkezete és tartalma tekintetében megegyezik más nyelvekkel.

· Aritmetikai kifejezések: Numerikus vagy dátum típusú oszlopnevekből, változókból, konstansokból, műveleti jelekből (+, -, *, /, **) és zárójelekből állnak. Szerepelhet bennük aritmetikai függvény is.

· Karakter-kifejezések: Karakter típusú oszlopnevekből, változókból, szöveg konstansokból, műveleti jelből (+, a konkatenáció jele) és zárójelekből állnak. A szöveg konstansokat idézőjelek vagy aposztrófok közé tesszük.

· Logikai: Logikai típusú oszlopnevekből, változókból, konstansokból, műveleti jelekből (AND, OR, NOT, relációs operátorok <>=…) és zárójelekből állnak.
· Relációs adatbázis: Az adatokat adattáblákban tárolja, az adattáblák közt kapcsolatok vannak. A relációs adatbázis legfontosabb jellemzői: 

· Táblázatokban ábrázolja az adatokat. 

· Egy sor-oszlop találkozásnál (cella) csak egyetlen elemi adat szerepelhet. 

· Egy oszlopban csak azonos típusú adatok lehetnek. 

· Egy adattáblában nem lehet két azonos nevű oszlop (egyedi mezőnevek). 

· Oszlopok és sorok sorrendje lényegtelen. 

· A táblák közötti relációk kapcsolómezőkön át valósíthatók meg. 

7. Osztály és objektum fogalma. Egységbezárás. Osztály definiálása egy választott fejlesztő környezetben. Jellemzők (properties). Az osztálymodell kapcsolata az adatbázis-modellel.
Osztály és objektum fogalma

Objektum: a valós világban előforduló dolgokat objektumoknak nevezzük. Az objektumnak vannak adatai (tulajdonságai) és van valamilyen viselkedésmódja. Az objektum információt tárol, és kérésre feladatokat hajt végre. Az objektum felelős feladatainak korrekt elvégzéséért. Az objektum logikailag összetartozó adatok és rajtuk dolgozó algoritmusok (rutin, metódus, programkód) összessége.

Osztály: olyan objektumminta vagy típus, amelynek alapján példányokat (objektumokat hozhatunk
 létre) (sablon)
Osztály: hasonló objektumok közös szerkezetének, viselkedésének és kapcsolatainak absztrakciója. Az osztály (típus) egy minta, mely alapján objektum példányokat (objektumokat) lehet létrehozni.
Egységbezárás
Bezárás, információ elrejtése (encapsulation): A bezárás az adatok és metódusok összezárását, betokozását jelenti. Az információ elrejtése azt jelenti, hogy az objektum elrejti adatait, azt csak az interfészen keresztül lehet megközelíteni. Így más programrész nem tudja elrontani az objektum belsejét, és az objektumban esetlegesen keletkezett hiba nem tud átterjedni más programrészekre. Ehhez a következő szabályok betartása szükséges:

· Az objektum csak olyan üzenetekre reagáljon, amelyre azt beprogramozták,

· Az objektumot csak interfészen keresztül lehessen megközelíteni,

· Az objektum interfész része a lehető legkisebb legyen.

· Az adatok csak metódusokon keresztül legyenek elérhetők.

(szerk.: Az objektum saját szociális problémája, hogy hogyan oldja meg a rá kiosztott feladatot, abba

beleszólni nem lehet.)

Osztály definiálása egy választott fejlesztő környezetben
· az objektum adatait (hogy az egyes objektumok milyen adatokat jegyeznek meg),
· az objektum által elvégzendő műveleteket (metódusokat). A metódus tulajdonképpen rutin (eljárás, függvény), mely az adott objektum adatain dolgozik. Az üzenet nem más, mint egy rutin hívása.

Az objektumot létrehozni , majd ezt követően azonnal inicializálni kell:
· be kell állítani kezdeti adatait;

· végre kell hajtani azokat a tevékenységeket, amelyek az objektum működéséhez feltétlenül szükségesek.

Az inicializálást végző metódust konstruktornak nevezzük.
A properties (tulajdonság) típust is, mely olyan publikus adat, melyet már tervezési időben is állíthatunk.

Az osztálymodell kapcsolata az adatbázis-modellel
OO adatbázis kezelő rendszerek segítségével az objektumokat adataikkal és viselkedésével együtt prezisztens módon (maradandóan, a programot túlélve) lehet tárolni, és azokat különbözp szempontok szerint visszakeresni.
Egy relációs adatbázis kezelő rendszer megbízható, használata egyszerű; nem beszélve arról, hogy lekérdező nyelve, az SQL (Structured Query Language) szabványos.

Oszálymodell
Az Object Pascal osztálymodell

OP-ben egy osztályt hagyományos módon (Object) vagy  Class-t használva lehet deklarálni:
Type

   TOsztaly = Class (TŐsOsztaly)

      Mezőlista;

      Metóduslista;

      Jellemzőlista;

   End;
A Class-ként deklarált osztály példányai dinamikus objektumok tehát tulajdonképpen egy objektum-mutatónk lesz. Az objektum számára inicializáláskor foglalódik le a szükséges hely, így az objektumok csak inicializálásuk után foglalnak helyet a memóriában egészen a megszüntetésükig, tehát ezzel memóriaterületet spórolunk meg. 
Ebben az osztálymodellben minden osztálynak pontosan egy őse van. 
Többszörös öröklés itt sem lehetséges

Mezőlista: Itt  kell  felsorolnunk az osztály változóit ugyanúgy, ahogyan ezt a TP-ben is tettük.

Metóduslista: A metóduslista  tartalmazza az osztályhoz tartozó rutinok (függvények és eljárások) deklarációit. Minden osztálynak van egy konstruktora (életrekeltő, inicializáló  metódusa)  és  egy  destruktora (megszüntető metódusa). Konstruktor: Create Destruktor:  Destroy.

Adatbázis modell

Egyed (egyedtípus):
Az egyedtípusok a modellezni kívánt világ egy-egy, közös tulajdonságokkal jellemezhető és egymástól egyértelműen elkülöníthető kisebb csoportjai (halmazai), melyek tartalmazzák a valós előfordulásokat (egyedeket). 

Egy-egy halmazba a matematikai halmazfogalomnak megfelelően olyan elemek tartoznak, amelyek e meghatározott feltételnek eleget tesznek. Így például a HÁZ egyedtípus mindenféle házat tartalmazhat, csak az a lényeg, hogy ami ebbe a halmazba tartozik, az biztosan ház legyen és például ne bokor. Akkor ugyanis már e másik, más tulajdonságokkal jellemezhető egyedtípusba tartozna (pl. NÖVÉNY). Az egyedtípusok lehetnek élő vagy élettelen, illetve tárgyi vagy fogalmi jellegű halmazok is. A feladattól függően létrehozhatunk például HALAK, KÖNYV, TERMÉK, FOGLALKOZÁS, TÁNC egyedtípusokat is.

Egyed-előfordulás:
Az egyedtípus egy konkrét értékét egyed-előfordulásnak nevezzük (egy rekordja vagy sora a táblázatnak)

Tulajdonságtípus:
Az egyedeket tulajdonságokkal (attribútumokkal) írjuk le. Értékeit egy adott tartományból vehetik fel.

Az attribútumok meghatározott értékeket vehetnek fel, azaz értelmezési tartományuk (domain) adott.

Az attribútumok az egyes egyedtípusokat jellemző tulajdonságok. Például a HÁZ egyedtípust jellemezhetjük az alapterülettel, az emeletek számával, a típusával, a színével, vagy akár azzal is, hogy milyen anyagból építették. Ezek a jellemző tulajdonságok mind a HÁZ egyedtípushoz tartozó attribútumok lesznek. Azt, hogy milyen attribútumokat veszünk fel az egyes egyedtípusokhoz, az határozza meg, hogy milyen adatokat szeretnénk tárolni vele kapcsolatban.
Az attribútumokat szintén többnyire egyszavas, beszédes nevekkel azonosítjuk. Így az előbb említett HÁZ egyedtípus attribútumai a következők lehetnének: alapterület, emeletszám, típus, szín, anyag.
Az attribútumok meghatározott értékeket vehetnek fel, azaz értelmezési tartományuk (domain) adott. Az alapterület attribútum értéke nem lehet negatív, pl. -100 m2, csak pozitív, pl. 100, 70.5 vagy 52 m2 . A típus lehetséges értékei: emeletes, családi, társas, vagy iker. A szín felvehető értékei pl. piros, sárga, lila, fehér, barna, vagy rózsaszín.

8. Objektumok és osztályok közötti kapcsolatok. A kapcsolatok implementálása. Öröklődés, polimorfizmus, virtualitás.
Objektumok közötti kapcsolatok megvalósítása

· Tartalmazási kapcsolat esetén a kliens fizikailag tartalmazhatja a szervert, ekkor tehát nyugodtan felvehetünk a kliens osztályában egy (szerver) objektum típusú változót. 

· Ismeretségi kapcsolat esetén a kliens nem birtokolhatja a szervert, mert akkor azt más nem használhatná. Ekkor a kliensből egy mutatót irányítunk a szerverre.

Osztályok közötti kapcsolatok megvalósítása

· Ha két objektum 1:1 kapcsolatban áll egymással, akkor a kliens objektumnak tartalmaznia kell egy mutatót a szerverre, hogy megszólíthassa azt:.

· Az 1:N kapcsolatok megvalósítására olyan konténereket használunk, amelyekbe szükség szerint akárhány objektum bedobható. Ahhoz, hogy a Kliens különböző karbantartási és keresési műveleteket hajtson végre a kapcsolódó objektumokon, valamilyen módon fizikailag hozzá kell kötözni őket. Kliens nem mutathat külön minden egyes szerverre, hiszen a szerverek száma elvileg végtelen lehet. Legyen a kliens objektumnak egy konténere (tárolója), amelybe elvileg akárhány szerver objektum betehető. Amelyik szervernek Kliens üzenni akar, annak a mutatóját egyszerűen elkéri a konténertől Az egy-sok kapcsolat megvalósítása konténer objektummal lehetséges.
A kapcsolatok implementálása
Objektumok közötti kapcsolatok

Objektum jelölése:


[image: image56]
Objektum neve

Tulajdonságai

Tevékenységei
Az objektumok csak úgy tudnak együttműködni, ha kapcsolatban állnak egymással. Alapvetően kétféle kapcsolat létezik:

Társítás (association): elemek közötti strukturális kapcsolat. 

Jelölése folytonos vonal, a nyíl iránya jelzi a kapcsolat irányát. 

Ha nincs nyíl, a kapcsolat kétirányú. A vonal fölé, illetve alá írhatjuk a kapcsolat nevét.
[image: image57.png]



Ismeretség: Két objektum ismeretségi (használati) kapcsolatban van egymással, ha azok léte egymástól független, és legalább az egyik ismeri, illetve használja a másikat. Amelyik objektum használni akarja a másikat (kliens objektum), annak tartalmaznia kell egy referenciát (mutatót) a megszólítandó (szerver) objektumra. Az ismeretségi kapcsolatban álló objektumok közül bármelyik megszüntethető. Ha az objektumok kölcsönösen használják egymást, vagyis a kliens-szerver szereposztás váltakozik, akkor mindkét objektumban fel kell vennünk a másikra vonatkozó referenciát. Az ismeretségi kapcsolatban álló objektumok közül bármelyik megszüntethető, csak arra kell vigyázni hogy a “túlélő ” objektum a továbbiakban ne hivatkozzon a “meghaltra”. Pl. a nyomtatót használó két alkalmazás ismeri a nyomtatót, egyik megszünésekor a másik objektum nyomtathat

[image: image58.png]



Tartalmazás: két objektum tartalmazási kapcsolatban van egymással, ha az egyik objektum fizikailag tartalmazza vagy birtokolja a másik objektumot. Az egész objektum tartalmazza a rész objektumot, az egész objektum megszűnése maga után vonja részének megszűnését. A tartalmazási kapcsolat erősebb, mint az ismeretségi. (pl kutya: fej,lábak törzs) az egész objektum mindig ismeri részét. 

Kompozíciónak nevezzük azt a tartalmazást, ahol az egész rész létrehozásakor összeáll a végleges kompozíció, és később nem vehető ki belőle egyetlen rész sem (erős tartalmazás) 

gyenge tartalmazás: ha a rész kivehető az egészből. 
[image: image59.png]



erős tartalmazás: ha a rész nem vehető ki az egészből.
[image: image60.png]



Függőség (dependency): logikai kapcsolat. Az egyik (független) dolog változása maga után vonja a másik (függő) dolog változását. 

[image: image61.png]



Általánosítás (generalization) – öröklés: osztályszerű elemek közötti strukturális kapcsolat.
[image: image62.png]



Megvalósítás (realization): egy dolog megvalósít (realizál, implementál) egy másikat. Logikai kapcsolat mely az általánosítás és függőség keveréke. Csak osztályszerű elemek között lehetséges.
 [image: image63.png]




Osztályok közötti kapcsolatok

Alapvetően 3 kapcsolatot különböztetünk meg, melyek lehetnek opcionálisak vagy kötelező jellegű (megengedhető társnélküliség). Osztályok számának (multiplicitás) feltüntetése felsorolással (* jelenti a tetszőleges számút). Ha 0 is lehet, akkor az előfordulás opcionális, egyébként kötelező.

· Egy-egy kapcsolat: az egyik osztály egy példánya a másik osztály legfeljebb egy példányával áll kapcsolatban. A másik osztályra ugyanez vonatkozik. (Pl. Férfi és Nő házastársi viszonya). 

· Egy-sok kapcsolat: az egyik osztály egy példánya, a másik osztály sok példányával állhat kapcsolatban. A másik osztály egy példánya viszont legfeljebb egy példánnyal állhat kapcsolatban az egyik osztályból. (Anya-Gyerek, Ország-Város).

· Sok-sok kapcsolat: a sok-sok kapcsolatban mindkét osztály akármelyik példánya a másik osztály sok példányával állhat kapcsolatban. (Pl. Tanfolyam-Hallgató, Hallgató-Hallgató (*)).

[image: image64.wmf]használja

1..5

1

EgyObjektum

SokObjektum1

SokObjektum2

SokObjektum3

EgyOsztály

SokOsztály

Osztálydiagram

Példánydiagram

 

(

Objektumdiagram

)


Öröklődés, örökítés

/kódolási könnyebbség/

Egy már meglévő osztály továbbfejlesztése. A már meglévő osztály az ős osztály, a továbbfejlesztett osztály pedig az utód osztály. Az utód osztály az ős osztály specializálása. Az ős osztályból úgy származtatunk újabb osztályt, hogy az ős osztály tulajdonságaihoz (adatok), ill. képességeihez (metódusok) újabbakat adunk, vagy a meglévőket felülírjuk. A származtatás több szinten át folytatódhat. [image: image65.png]



Egyszeres öröklés: egy osztálynak csak egy őse lehet. (pascal)

Többszörös öröklés: egy osztálynak több őse is lehet, melyet ki lehet váltani egyszeres öröklődéssel. (c++)
 Szabályok: 

- egy osztályból több is származtatható, 
- az öröklődés tranzitív Ha A örökli B-t, B örökli C-t akkor A örökli C-t
- bármely metódus ismeri és használhatja a saját osztályában és felette levő osztályokban deklarált összes adatot és metódust


[image: image66.wmf]ŐsOsztály

UtódOsztály2

Mez

ők

Metódusok

Mez

ők

Metódusok

UtódOsztály1

Mez

ők

Metódusok


Polimorfizmus (többalakúság)

Azt jelenti, hogy ugyanarra az üzenetre különböző objektumok különbözıképpen reagálhatnak; minden objektum a saját, az üzenetnek megfelelő metódusával. (Az üzenet küldıjének nem kell tudnia a fogadó objektum osztályát).
[image: image67.jpg]A HengerProgran feladatban példéul a konténerben harom féle henger is van (2.6. dbra), és
mindegyiknek ugyanazt iizenjiik: terfogat (). Az iizenet hatiséra az objektum osztaly4tol
fliggben mas-més metoduslénc fut le: a Henger térfogatit masképp szamoljuk, mint a Cs
terfogatdt. A terfogat () iizenet kiilonbz6 objektumok esetén mas és mas alakot 6lt.

:TomorHenger

lerfogﬂt(‘)\
toString()

terfogat()
toS(ring()/

terfogat()
toString()

2.6. abra. Polimorfizmus




Virtuális metódus : olyan metódus, melynek címet a program később, futási időben oldja fel. A virtuális metódusokkal elérjük, hogy mindig az aktuális objektum osztályának a metódusa fog futni. 

Egyszerűbben:

Virtuális metódus:

Az objektumokkal történő munka során szükség lehet arra, hogy az utód osztály metódusait megváltoztassuk. Erre ad lehetőséget a virtuális metódusok használata. A virtuális metódusokkal átdefiniálható az ősosztály azonos nevű metódusa, így csak a futás közben dől el, hogy éppen melyik metódust kell használni.
Virtuális Metódusok Táblázata (VMT)

Minden egyes, virtuális metódusokat tartalmazó osztályhoz tartozik egy VMT. A virtuális metódusok címét a program futáskor ebből a táblázatból veszi. Az objektum példány egy VMT mezőt tartalmaz, mely az osztály VMT-jének relatív címét tartalmazza (mérete 2 bájt). A példány VMT hozzárendelést a konstruktor végzi a példány létrehozásakor, illetve inicializálásakor. 
Ha az osztály használ virtuális metódust, akkor van egy VMT mezője, mely a virtuális metódus tábla címét tartalmazza.
9. A felhasználói felület, az alkalmazáslogika és az adatbázis-logika szerepe, az ezeket realizáló objektumok sztereotípusai. Az egyes alkalmazás-rétegek jellemző komponensei egy választott fejlesztő eszköz esetében.
Felhasználói felület
Minden adatbázis-kezelő alkalmazásban három fő funkcionális egységet különböztetünk meg:

Közvetlen adatkezelés: ez végzi az adatok fizikai feldolgozását.

Alkalmazás-logika: ez felelős a teljes alkalmazás helyes működéséért. Adatvédelem, hatékony és kényelmes adatkezelés (tranzakció stb.)
Alkalmazáslogika: A szoftverrendszer harmadik komponense az alkalmazáslogika, mely a rendszer magjaként a feladat specifikus műveletek végrehajtására szolgáló algoritmusokat foglalja magába. 
Az alkalmazáslogika implementálására magas szintű, gyakran objektumorientált programozási nyelv szolgál. Nagyon sokféle nyelvre alapulnak 4GL környezetek. Így például a Delphi az Object Pascal-ra, a Visual C++ a C++-ra, a JBuilder a Java-ra.
[image: image68.jpg]Az alkalmazaslogika rétege (Bussines Logic)

Az alkalmazéslogika rétege az adatbézisra vonatkozs szabalyok dsszességét tartalmazza. Gyakorlatilag ebbe
a réteghe tartoznak azok a funkcidk, miveletek amelyek meghatérozzk egy adatbézis mikadését. llyen
szabélyok a mez6 lletve rekordszint ellenorzések (mez6szintd ellenorzés pl. ha egy tanulg érdemiegyeinek
fehitelekor a program csak egy és ot kozotti értéket enged felvinni), a hivatkozasi fuggoségek ellenorzése ( pl
egy konyvet csak akkor lehessen eladni ha az szerepel a konyvesbolt drukészletén) stb.




Felhasználói felület: kapcsolat a felhasználóval, adatmegjelenítés, stb. Részei: menü, ablakkezelés, súgó
Adatbázis logika

Logikai típusú oszlopnevekből, változókból, konstansokból, műveleti jelekből (AND, OR, NOT) zárójelekből áll.

A logikai kifejezésben itt is szerepelhetnek a relációs operátorok (<,>,=,stb.)
Objektumok főbb sztereotípusai

Az objektumokat, illetve osztályokat különböző kategóriákba sorolhatjuk..
· Határ (interfész) objektum: a külvilággal kapcsolatot teremtő objektum (pl. menü, ablak, nyomógomb stb.)

· Kontroll objektum: vezérlést, számolást végrehajtó objektum. (pl. egy folyamatvezérlő vagy egy statisztikai adatgyűjtő objektum)

· Egyed objektum: a rendszer lényegi részeit alkotó objektumok. Az egyed objektum egy valós világbeli személy, dolog, hely, fogalom, vagy esemény.

· Konténer objektum: a különböző kapcsolatok megvalósítására szolgál. Ha a kapcsolat foka jól behatárolható, akkor statikus adatszerkezetek is használhatok, mint pl. a tömb. Ha a kapcsolat foka változó, akkor valamilyen dinamikus szerkezetet kell használnunk, mint a lista, vagy a kollekció. Az adatbázisok saját konténerrel rendelkeznek.
Komponensek

(az újrafelhasználható kód): szabályos, újrafelhasználható szoftver építıelemek (forrás, bináris,

vagy futtatható kód) , melyeket applikációk fejlesztéséhez hasznának. Komponensek lehetnek például osztályok, vagy azok egy csoportja:

· Interfész osztályok – például a nyomógomb, a listadoboz, a menü vagy a párbeszédablak;

· Konténer osztályok – például a lista, tömb, fa, halmaz vagy a szótár.

Komponensek egyszerűbb nyelvi elemekből épülnek fel, melyeket aztán beépítenek az alkalmazásba. Azért használjuk őket, mert egyrészt az alkalmazás fejlesztésének idejét drasztikusan lecsökkenti, másrészt növeli az alkalmazás minőségét.
Az egyes alkalmazás-rétegek jellemző komponensei 

Az alkalmazói program egy olyan program, amelyet egy adott számítógépes környezetben, kifejezetten egy speciális feladat elvégzésére készítettek. Egy tipikus alkalmazói program a következő elemeket tartalmazza:

· Felhasználói felület: az alkalmazás azon része, mely az ember-gép kapcsolatot biztosítja. Részei: menü, ablakkezelés, súgó

· Eseményvezérelt programozás: az esemény egy olyan történés, amely megváltoztathatja valamely objektum állapotát. Az eseményvezérelt programozás olyan programozás, amely egy eseménybegyűjtő és szétosztó mechanizmuson alapul. Az objektumok a hozzájuk érkezett eseményeket eseménykezelő metódusokkal lekezelik.

· Adatbázis-kezelés: vannak olyan objektumok, amelyeket hosszabb idıre el szeretnénk tárolni. A program futását túlélő objektumokat rezisztens objektumoknak nevezzük. Ezen objektumok tárolását és manipulálást az adatbáziskezelı végzi: adatok központi permanens tárolása, több felhasználó kiszolgálása, integritás,helyreállítás, adatvédelem, lekérdezések.
· Kivételkezelés: a kivétel egy esemény vagy feltétel, melynek bekövetkezése megszakítja a program normál futását. A kivétel objektum tárolja azt az információt, hogy milyen kivétel történt, és hol. A kivételes eseményt a program átadja az ún. kivételkezelőnek, amely azt lekezeli. A kivételkezelő a kivételes (általában hiba) esemény bekövetkezése esetén megpróbálja a programot megmenteni az összeomlástól: vagy elhárítja a hibát, vagy visszaállítja a rendszert egy előző, stabil állapotba.

· Szemétgyűjtés: a hivatkozatlan dinamikus változók automatikus kitakarítása a memóriából.

OO szoftverfejlesztési eszközök

A vizuális fejlesztőeszközök segítségével a fejlesztő a program nagy részét nem forráskód írásával készíti, hanem interaktív módon, a fejlesztőrendszer eszköztára által felkínált vizuális elemek kiválasztásával, azok tulajdonságainak beállításával. A forráskód vázát a fejlesztőeszköz generálja, a fejlesztő pedig kiegészíti.

Elterjedt (Java, C++, Pascal és Smalltalk alapú) vizuális fejlesztőeszközök: JBuilder (Borland), JDeveloper (Oracle), Visual C++ (Microsoft), Delphi (Borland), IBM Visual Age for Smalltalk
10. Felhasználói felület (ablakok, menük, stb.) tervezése – alapelvek, szabályok, szabványok. Eseményvezérelt program, kapcsolat az operációs rendszerrel. Az eseményvezérelt programozás megvalósítása egy választott fejlesztő eszköznél.
Felhasználói felület
A grafikus felhasználói interfész komponensei

Az alkalmazás ablakai a TForm osztály példányai. Az ablakok a következő objektumokat tartalmazhatják:
Ablak egy olyan objektum, amely egy objektumnak valamilyen nézetét mutatja. Maga az ablak komplex (aggregációs) objektumként többfajta objektumból áll. Az ablak részei: keret, címsor, menüsor, eszközsor, állapotsor, gördítősáv(ok) stb. 
Menü: A menü segítségével tud a felhasználó a lehetséges opciók közül egyet kiválasztani. 
Kurzorok: a kurzor alakja is segítséget nyújthat a felhasználónak.
Képernyővezérlő elem (Control):  A képernyővezérlő elemek jelentik azt az alapvető eszközt, amellyel információt jeleníthetünk meg a képernyőn, illetve fogadhatjuk a felhasználói adatokat. A leggyakoribb képernyővezérlő elemek a következők:
1. Címke (TLabel:): A címke statikus szövegek megjelenítésére szolgáló képernyőelem. Tipikusan adatbeviteli mezők előtt szerepel, hogy vizuálisan jelölje, hogy milyen célt szolgál az adott mező.

2. Adatbeviteli mező (TEdit, TextBox): Az adatbeviteli mezők adatmegjelenítésre és felhasználói adatbevitelre szolgálnak

3. Listadoboz (TListBox): A listadoboz tulajdonképpen egy konténer objektum tagobjektumait vagy egy attribútum lehetséges értékeit mutatja. Mivel a választék általában nagyobb a listadoboz függőleges méreténél, ezért függőleges gördítősáv tartozik hozzá. 

4. Legördülő listadoboz (TDrop-Down List Box): A legördülő listadoboz csak annyiban különbözik a sima listadoboztól, hogy helytakarékosabb, mivel alapállapotában csak egyetlen sort foglal el a képernyőn. Ebben a sorban mindig a listadoboz aktuális eleme jelenik meg. A tényleges választék a listadoboz jobboldalán lévő nyíl lenyomására jön fel a képernyőre.

5. Kombinált doboz (TCombo Box): A kombinált doboz tulajdonképpen egy legördülő listadoboz és egy adatbeviteli mező házasságaként jött létre. Külsőre ugyanolyan, mint egy legördülő listadoboz, de a kombinált doboznál a felhasználó adatot is begépelhet.

6. Jelölőnégyzet (TCheckBox): A jelölőnégyzet olyan adatmezőknél használatos, amelyek csak kétféle értéket vehetnek fel. A logikai HAMIS állapotnak az üres, míg az IGAZ állapotnak az "x"-szel vagy a pipával kitöltött jelölőnégyzet felel meg.

7. Rádiógomb-csoport (TRadioButtonGroup): A rádiógomb-csoport használata esetén egyszerre csak egyetlen rádiógombot lehet bejelölni. A rádiógomb-csoport a listadoboz jó alternatívája lehet abban az esetben, ha nem nagy számú, előre rögzített lehetőségből kell a felhasználónak választania.

8. Nyomógomb (PushButton, Command Button): A nyomógomb megnyomásával egy tevékenység hajtható végre. A nyomógomb felirata vizuálisan jelzi a felhasználó számára, hogy mi az a funkció, amit elvégez.
9. Eszközgomb (TToolButton), eszköztár: Az eszközgombok tulajdonképpen grafikus feliratú nyomógombok, amelyek tipikusan az eszközsoron (toolbar) vagy önálló eszközpalettán (tool palette) helyezkednek el
10. Gördítősáv: görgetés, pozícionálás adatokban, csúsztatott adatállítás
11. Ikon: Az ikonok általában kisméretű grafikus bitképek, amelyek objektumokat jelképeznek a képernyőn.
A képernyőelemek elrendezése

Az objektumorientált tervezés során létrejött minden osztályt külön ablakba kell helyezni úgy, hogy az elsődlegesnek ítélt osztálybeli objektumok elsődleges ablakokba, a kiegészítő objektumok pedig másodlagos ablakokba kerüljenek. Az aggregációs és a konténer osztály objektumai is külön ablakban jelenjenek meg. 

Az egyes objektumokban a felhasználó keresési sorrendjének megfelelően kell elrendezni a képernyőelemeket. Az elrendezés általában feleljen meg a valós világbeli objektum elrendezéseinek. Ha nincs valós világbeli analógia, akkor abból kell kiindulni, hogy a felhasználó felülről lefelé és balról jobbra fogja átpásztázni a képernyőt. Az egyes menüpontok és nyomógombok elhelyezése is a végrehajtási prioritás szerint történjen. Egy dialógusablak esetén például az ablak belsejében a nyomógomboknak vagy a képernyő jobb oldalán felülről-lefelé vagy a képernyő alján balról-jobbra adott sorrendben kell elhelyezkedniük.


Üzenetek:A felhasználónak szóló üzenetek megtervezése is kellő körültekintést kíván meg. Célszerű olyan rövid, maximum 3 soros üzeneteket terveznünk, amelyekből a probléma és a megoldás is kiderül.


Egy alkalmazás elkészítése a következő lépésekben történik:

-Az alkalmazás űrlapjainak, menüszerkezetének megtervezése, kitalálása

-Az űrlapok kivitelezése, megrajzolása

-Az egyes gombok, menüpontok, eseménykezelőinek megírása

-Az alkalmazás tesztelése

Ha alkalmazásunkban több információt kell megjeleníteni és ez már nem fér egy űrlapon akkor két irányba indulhatunk:

-Logikailag összetartozó információkat egy űrlapon több oldalra helyezzük el, és fülekre kattintva lehet váltani

-Több űrlapos alkalmazást készítünk

A következő ablakokat tartalmazhat egy alkalmazás:
- Egyszerű üzenet és adatbeviteli ablakok,

- Windows rendszer párbeszédablakok. Delphi-ből ezeket komponenesek segítségével kezelhetjük (OpenDialog),

- Előzőleg megtervezett és elmentett űrlapokat.

Az űrlapok közül 

-Automatikusan jönnek létre (auto-create), azaz a program indításának pillanatában jönnek létre és ettől kezdve megszűnésükig ott tartózkodnak a memóriában.

-Nem automatikusan jönnek létre, csak megjelenésük pillanatától a bezárásukig foglalják a memóriát

Eseményvezérelt programozás
Az esemény egy olyan történés (előfordulás), amely megváltoztathatja valamely objektum állapotát. Az eseményvezérelt programozás azt jelenti, hogy a program futása során események keletkeznek, melyeket egy kontroll objektum fogad és megfelelő szabályok szerint szétoszt a program objektumai között. Az egyes objektumok előre be vannak programozva, hogy egy adott eseményre hogyan reagáljanak.

Esemény lehet:

Jel: egy objektum a másik objektumnak egyértelmű jelet küld (pl. billentyűleütés, egér kezelés)


Hívás: egy objektum meghívja egy másik objektum egy metódusát


Űrfeltétel: egy előre meghatározott feltétel igazzá válik


Idő: a kijelölt idő eltelik vagy elérkezik.
A reakció lehet egy feladat végrehajtása, vagy egy újabb esemény kiváltása is. Az objektum lekezeli az eseményt, amely egy eseménykezelő metódus feladata. Ahhoz hogy egy objektum fogadjon egy eseményt, két feltételnek kell teljesülnie:

Az objektum be legyen tanítva az esemény fogadására: a keretrendszer objektumait már nagyon sok esemény fogadására betanították. Ha valamire mégsem, az a programozó dolga.


Az objektumhoz eljusson az esemény: a mechanizmusban az egér által kiváltott jelet általában az az objektum (ablak) kapja meg, amelyiken kattintottak, a billentyűleütést pedig az, amelyik éppen a fókuszban van. A Delphi környezetben az ablakok adatait a programozó vizuálisan adja meg, az eseménykezelő metódusok pedig egérkattintásra automatikusan generálodnak – csak az eseménykezelő metódus belsejét kell a programozónak ténylegesen megírni.

Az eseményvezérelt programozás olyan programozás, amely egy eseménybegyűjtő és szétosztó mechanizmuson alapszik. Az objektumok a hozzájuk érkezett eseményeket (eseménykezelő metódusokkal) lekezelik.
Pl. a TForm1-en levő OK nevő gomb megnyomására a TForm1.OKClick metódus fog végrehajtódni. Delphiben az eseménykezelő metódusok egérkattintásra automatikusan generálódnak, a programozónak csak a metódus belsejét kell ténylegesen megírni. Ilyen metódusok pl.:

-
 OnClick: kattintás egérrel

- 
OnEnter: belépés a szerkesztımezıbe

- 
OnExit: kilépés a szerkesztımezıbıl

- 
OnKeyPress: billenytőlenyomás

- 
OnChange: állapot megváltozása (ComboBox-nál)

11. Egy vizuális fejlesztő eszköz bemutatása: a fejlesztőkörnyezet elemei, szolgáltatásai, osztálymodell, komponensek, adatbázis-kezelési lehetőségek, adatbázisok adatainak megjelenítése. Az eszköz dokumentáltságának ismertetése.
A 4GL (4. Generation Language - Generációs Nyelv) jellemzői, hogy fejlesztés nagyrésze interaktív módon történik. Alapvetően objektumok-komponensekből dolgozik. Ilyen kész kompnenseket kell elhelyezni fejlesztéskor egy adott form-ra. Ez lehet maga az alkalmazás felhasználói ablaka, de lehet pl egy adatbázis tervező nézet is. Létezik egy tulajdonság ablak, melyben az adott osztály különféle tulajdonságait állíthatjuk.

A 4GL eszközök működése azon a tényen alapul, hogy a szoftverrendszerek nem elszigetelt módon működnek, hanem feladataik végrehajtása közben folyamatos párbeszédet folytatnak a környezetükkel.
A környezet két részre bontható:
-Emberi környezet: A kezelő, akivel a rendszer a kezelői felületen keresztül tartja a kapcsolatot.

-Gépi környezet: Külső számítógépes rendszerek, amelyekből beérkező információk vagy események a rendszer működését befolyásolják. Ezekkel a kommunikációs felületen keresztül tartja a rendszer a kapcsolatot.

-Alkalmazáslogika: A szoftverrendszer harmadik komponense az alkalmazáslogika, mely a rendszer magjaként a feladatspecifikus műveletek végrehajtására szolgáló algoritmusokat foglalja magába. 
Az alkalmazáslogika implementálására magas szintű, gyakran objektumorientált programozási nyelv szolgál. Nagyon sokféle nyelvre alapulnak 4GL környezetek. Így például a Delphi az Object Pascal-ra, a Visual C++ a C++-ra, a JBuilder a Java-ra.

A Delphi objektumorientált nyelve az Object Pascal. Egy Delphi alkalmazásban az interfész objektumok tartalmazási, tulajdonosi hierarchiát alkotnak: az alkalmazás birtokolja az ablakot, az ablak tartalmazza a gombokat, menüt, cimkét, stb. A tartalmazás következménye, hogy ha az ablakot becsukjuk, becsukódik a benne levő összes objektum; ha egy ablakot elmozdítunk, vele mozog az összes benne levő objektum 

Az Object Pascal osztálymodell

OP-ben egy osztályt hagyományos módon (Object) vagy  Class-t használva lehet deklarálni:
Type

   TOsztaly = Class (TŐsOsztaly)

      Mezőlista;

      Metóduslista;

      Jellemzőlista;

   End;
A Class-ként deklarált osztály példányai dinamikus objektumok tehát tulajdonképpen egy objektum-mutatónk lesz. Az objektum számára inicializáláskor foglalódik le a szükséges hely, így az objektumok csak inicializálásuk után foglalnak helyet a memóriában egészen a megszüntetésükig, tehát ezzel memóriaterületet spórolunk meg. 
Ebben az osztálymodellben minden osztálynak pontosan egy őse van. 
Többszörös öröklés itt sem lehetséges

Mezőlista: Itt  kell  felsorolnunk az osztály változóit ugyanúgy, ahogyan ezt a TP-ben is tettük.

Metóduslista: A metóduslista  tartalmazza az osztályhoz tartozó rutinok (függvények és eljárások) deklarációit. Minden osztálynak van egy konstruktora (életrekeltő, inicializáló  metódusa)  és  egy  destruktora (megszüntető metódusa). Konstruktor: Create Destruktor:  Destroy.

[image: image69.jpg]TObject {az osztdlyok kézds JSse}

------- TComponent {komponensek k&zbs dse}
p=fControt {ldthaté komponensek}
....... TLabel {cimke}
TWinControl {ablakozott komponensek}

------- TEdit {szerkesztddoboz}

....... TMemo {tébbsoros szerkesztddoboz}

....... TButton {gomb}

------- TCheckBox {jelélénégyzet}

------- TRadioGroup {vdlasztégomb-csoport}

....... TListBox {listadoboz}

....... TComboBox {kombindlt lista}

....... TMainMenu { fémenii}
....... TPopupMenu {gyorsmenii}
L —TMenuItem {egy meniipont osztdlya}

4.1. ébra. Standard komponensek a Delphi osztalyhierarchidban





Fontosabb osztályok és metódusok funkcionális bemutatása.

TObject
Annak érdekében, hogy az összes objektumok egységesen tudjuk kezelni, létezik egy általános ősosztály, melyből az összes többi osztály származik le. 
Delfiben egy közös ős van, ez a TObject osztály; így minden osztályt felfűzhetünk egy listára.

Tcomponent
Ebből származik a TComponent osztály is, mely közös őse a 
tervezési időben kezelhető, komponenspaletta vezérlőelemeinek.

A TComponent osztályból minden vezérlőelem két fontos jellemzőt örököl: 

· Name: a komponens programbeli neve.

· Owner: a komponens tulajdonosa. A tulajdonos feladata, hogy megszűnésekor megszűntesse a komponenseit, pl. egy ablak bezáráskor megszűnteti a rajta levő gombokat.


TControl
A TControl osztály a TComponent osztály leszármazottja, a látható komponensek őse. Fontosabb jellemzői:

· Visible: láthatóság

· Top, Left, Width, Height: pozíció

· Color: szín

· Font: betűtípus


TForm
Az alkalmazás ablakai a TForm osztály példányai. Az ablakok a következő objektumokat tartalmazhatják:

· TLabel: statikus szöveg

· TEdit: szerkesztőmező

· TButton: nyomógomb

· TCheckBox: jelölőnégyzet

· TRadioButton: választógomb

Fontosabb metódusok: 
A program futása során események keletkeznek, melyeket egy kontrol objektum fogad, és megfelelő szályok szerint szétoszt a program objektumai között. Az egyes objektumok be vannak programozva, hogy egy adott eseményre hogyan reagáljanak. Delphiben az eseménykezelő metódusok egérkattintásra automatikusan generálódnak, a programozónak csak a metódus belsejét kell ténylegesen megírni. Pl.

· OnClick: kattintás egérrel

· OnEnter: belépés a szerkesztőmezőbe

· OnExit: kilépés a szerkesztőmezőből

· OnKeyPress: billenytűlenyomás
Minden osztálynak létezik konstruktora, mely létrehozásakor hívódik meg, és destruktora, mely felszabadításakor.

Az adatbázis-kezelést támogató komponenseket két fő kategóriába sorolhatjuk:

Az adatelérési komponensek: adatbázisok, táblák, lekérdezések, tárolt eljárások, kezelését teszik lehetővé.

Az adatmegjelenítési komponensek csupán megjelenítési célokra kifejlesztett komponensek, amelyek az adatelérési komponensekhez kapcsolódnak az adatforrásukon keresztül, így ezek pillanatnyi állapotát tükrözik.

Delphi-ben az adatbázisok kezelését speciális komponensek segítségével tudjuk megoldani. A különböző formátumú adatbázisokat egységesen, ugyanazokkal a komponensekkel érjük el.
A komponensek metódusai a beépített adatbázis-motor (Borland Database Engine) rutinjait használják, tehát a BDE egységes felületet (rutincsomagot) biztosít a különböző adatbázisok kezelésére. 
[image: image70.jpg]TTable

TDataSource
_>.._,.<_ F’. TDBEdit
‘>. TDBText
'>. TDBGrid

TDBNavigator

TDBListBox

TStoredProc TDataSource TDBComboBox

AdatModul Urlap
Adatelérés és alkalmazds-logika (Felhaszndldi feliilet)





Delphiben az adatbázis-kezelést támogató komponenseket két fő kategóriába sorolhatjuk:
Az adatelérési komponensek ( Data Access )adatbázisok elérését,  az adatbázis adathalmazainak kezelését, táblák, lekérdezések tárolt eljárások, kezelését teszik lehetővé. Itt kell megemlíteni a TDataSouce komponenst, mely az adatelérési komponenseket összekapcsolja az adatmegjelenítési komponensekkel. Az adathozzáférési komponensek egymáshoz is kapcsolódhatnak, így 
együttesen alkotják az alkalmazás adatelérési és alkalmazás logikáját (business logic). 
· A TDatabase
komponens egy konkrét adatbázis elérését biztosítja. Biztosítja az utat az adatbázis felé, felelős a jelszó bekéréséért és metódusaival tranzakció-kezelést tudunk lebonyolítani.
· TQuery: egy SQL utasítás végrehajtását teszi lehetővé. Csak fizikai táblákat és ezek fizikailag létező mezőit kérdezheti le. 
· A TTable komponens biztosítja egy fizikai tábla, vagy egy nézet (view) adatainak elérését. Ha adatainkat több táblából szeretnénk összeválogatni, akkor a TQuery komponenst használjuk, ha pedig az adatok egy tárolt eljárás végrehajtásából keletkeznek, akkor ezek Delphiből a TStoredProc komponens segítségével érhetők el.
Az adatmegjelenítési komponenseknek (Data Controls) Az adatmegjelenítési komponensek a felhasználói felület elemei. Azt mutatják, amit a hozzájuk kapcsolt adathozzáférési komponenstől kapnak. Helyük azon az űrlapon van, amelyen az adatokat meg akarjuk jeleníteni. Mindannyian rendelkeznek egy DataSource jellemzővel, amelyen keresztül kapcsolódnak – a TDataSource közbeiktatásával - az adatmodul valamely adatforrásához. Ennek az adatforrásnak a tartalma jelenik meg, íráskor pedig ezt módosítjuk. 
Az adatok megjelenítése:

A Data Controls palettán elhelyezkedő komponensek segítségével megjeleníthetjük és módosíthatjuk egy adatforrás tartalmát. 

· TDBGrid: táblázatszerűen tudja megjeleníteni egy adatforrás több rekordját. 
· TDBListBox, TDBComboBox: egy adott adatforrás adott mezőjének értékét jeleníthetjük meg, illetve szerkeszthetjük. A lebomló lista tartalmát beállíthatjuk.

· TDBNavigator: a tábla rekordjai közötti mozgáshoz kínál navigátorgombokat, melyekkel előre-hátra, első-utolsó rekordra tudunk ugrani, új rekordot vehetünk fel, és a meglevőt törölhetjük.
Felhasználásához a kiválasztott komponenst el kell helyezni az ablakon, majd a DataSource jellemzőjét a megfelelő adatforrásra kell állítani.
12. Relációs adatbázisok. Funkcionális függőség fogalma, speciális függőségek szerepe. Normálformák, a normalizálás célja. A normalizálás lépéseinek szemléltetése példán. Az adatbázis-terv dokumentációja.

A relációs adatmodell táblázatokkal dolgozik, melynek oszlopai tulajdonságtípusok. Halmazelméleti megközelítés szerint, pedig 

· attribútum halmazok direkt (Decartes)  szorzatának részhalmaza. Az attribútumok (oszlopok) számát az R reláció fokának, a sorok számát, pedig a reláció számosságának nevezzük. 

A relációs adatbázis rövid jelölése a következő: 

· R (A1,A2,A3,…,An), ahol R a reláció neve, Ai pedig egy attribútum. A reláció voltaképpen egy egyedtípus, és minden egyedtípus egy relációnak tekinthető. R reláció elemeit gyakran rekordoknak nevezzük.

Funkcionális függőség

Legyen R (A1,A2,A3,…,An), egy reláció és legyenek P,Q az A attribútum-halmaz részhalmazai. Azt mondjuk, hogy P funkcionálisan meghatározza Q-t (P→Q), ha abból, hogy a reláció valamely két sora megegyezik a P halmazon következik, hogy két sor értékei megegyeznek a Q halmazon is. 

Tehát az attribútumok egy csoportja függ az attribútumok egy másik csoportjától. 
A valós világban meglévő függőségeket fejezi ki.
Ha P és Q  tetszőleges tulajdonság típus, akkor Q funkcionálisan függ P-től, ha P minden értékéhez vagy előfordulásához egyértelműen kijelölhetünk egy Q értéket vagy előfordulást. P ( Q, Q funkcionálisan függ P-től.


Más szóval Q funkcionálisan függ P-től ha abból, hogy a reláció valamely két sora megegyezik a P halmazon, következik, hogy a két sor értékei megegyeznek a Q halmazon is.


Felhasználhatjuk egy relációs adatbázis (egy táblázat) tárolási hatékonyságának megnövelésére. P ( Q esetén a P-ben egyező sorokhoz tartozó Q -beli sorokat csak egyszer tároljuk.


Hátránya: az adatbázisba nem vihető fel pl. olyan személy, akinek két címe van, olyan esetben, ahol a lakcim funkcionálisan függ a névtôl.

A funkcionális függőség:

· egyszerű, ha a meghatározó tulajdonság típus is egyszerű

· összetett, ha a meghatározó tulajdonság típus is összetett.

A funkcionális függőségek tulajdonságai: 
- reflexív  (reflexivitás)

A ( A

Egy attribútum halmaz a benne levő részhalmazt meghatározza.

Q ( P ( A, akkor P  Q teljesül.

Egy tulajdonságtípus bármely értéke meghatározza önmagát.

- additív  (egyesítési szabály) 
A ( B, A ( C  (  A ( (B+C)
Az additivitás szabályai szerint, amennyiben A tulajdonság típus egy B és egy C tulajdonság típust határoz meg, úgy meghatározza a (B+C) tulajdonság típus sort is.

- tranzitív   (tranzitivitás)

A ( B és B ( C  (  A ( C

A tranzitivitás szabálya kimondja, hogy abban az esetben, ha egy A tulajdonság típus meghatároz egy B tulajdonság típust, ami C -t határozza meg, a C az A -tól is függ.

- pszeudo tranzitív (pszeudo-tranzitivitási szabály)
 A ( B és (B+x) ( C ( (A+x) ( C

A pszeudo tranzitivitás értelmében, ha egy A tulajdonság típus meghatároz egy B -t, amely pedig bármilyen bővítményével (B+X) meghatároz egy C -t, akkor az A megfelelő bővítménye (A+X) is meghatározza a C -t.

- Bővítés

Ha P ( Q teljesül és S ( A  egy tetszőleges attributúmhalmaz az A - ból, akkor 

P S Q S

- Dekompozició
Ha P Q teljesül és S ( Q, akkor P  S is teljesül.

{- projektív

A   B  (  B ( A     (B összetett).

A projektivitás szabálya leszögezi, hogy amennyiben egy A tulajdonság típust része egy B tulajdonság típusnak, úgy B meghatározza A -t. B ekkor természetesen összetett.

- augentitív

A ( B és x tetszőleges tulajdonság típus  (  (A+x) ( B

Az augentitivitás azt jelenti, hogy amennyiben egy A tulajdonság típus meghatároz egy B -t, az (A+X) együttes is meghatározza B -t, X legyen bármilyen tulajdonság típus.

}


Annak megállapításához, hogy egy relációban van-e funkcionális függőség, azt kell megállapítani, hogy mi az attribútumok  tartalma. A funkcionális függőség a valóságos világban meglévő függőségeket fejez ki.

Definíciók:

Funkcionális függőség: adott az R reláció, azt mondjuk, hogy Y értelmezési tartománya

funkcionálisan függ az X értelmezési tartományától akkor és csak akkor, ha X minden értéke

egyértelműen meghatározza Y-t. Ez a meghatározás nem csak az aktuális előfordulásokra,

hanem mindig érvényes.
Speciális függőségek:
Funkcionális teljes függőség: adott az R reláció és az X összetett értelmezési tartomány. Y

értelmezési tartomány funkcionálisan teljesen függ X-től, ha Y funkcionálisan függ X-től, de

nem függ funkcionálisan X egyetlen valódi részhalmazától sem.
Tranzitív függőség: adott az R reláció; Z értelmezési tartomány tranzitívan függ X

értelmezési tartománytól, ha Z funkcionálisan függ X-től, Y-tól és Y függ X- értelmezési

tartománytól.

Az elsődleges kulcstól minden tartomány funkcionálisan függ; ha a kulcs egyben egyszer@ is,

akkor ez a függőség teljes.

Normálformák /az adatbázisok belső szerkezetét jellemzik/
· 1NF: Egy R relációról azt mondjuk, hogy első normálformában van, ha minden sorában pontosan egy attribútumérték áll.Pl. egy attribútumértékhez - szakképzettség – két érték tartozik (nem elemi), akkor NINCS 1NF-ben. Az adatbáziskezelők csak olyan adatbázist fogadnak el, amelyek legalább 1 NF-ben van.
· 2NF: Egy R relációról azt mondjuk, hogy második normálformában van, ha első normálformában van, és ha minden másodlagos attribútum teljesen függ a kulcstól, de nem függenek a kulcs részeitől (ha a kulcs több attribútumból áll). A 2NF első követelménye, hogy az adatbázis első normálformában legyen. A második követelménye pedig az, hogy az reláció (tábla) minden egyes sora azonosítható legyen
· 3NF: Egy R relációról azt mondjuk, hogy harmadik normálformában van, ha második normálformában van, és minden másodlagos attribútum

· egymástól funkcionálisan függetlenek

· a kulcstól teljesen függnek.
· Azaz nem függenek tranzitíven a kulcstól.
A 3NF legelső követelménye, hogy az adatbázis 2NF-ban legyen. A második kitétel, hogy a tábláinkban nem lehet olyan redundáns (ismétlődő) nem-kulcs információ, amely más táblákban is nem-kulcs információt jelent.
Normalizálás: Az az eljárás, amelynek során az attribútumokat optimális relációkba csoportosítják. A normalizálás mindig az adatok logikai szintjén történik. Általában több lépésből áll.

A normalizálás alkalmazásával:

•
az adatok tároló igénye kisebb lesz

•
az elemi adatokat gyorsabban és kevesebb hibalehetőséggel változtathatjuk meg

•
az adatbázis logikailag áttekinthetőbb lesz
· 1NF-re: 

· minden „többszörös” attribútum​értékű sort annyi sorban írunk fel, ahányszoros az attri​​bú​tum​​érték a sorban;

· két vagy több relációra  bontjuk fel az eredeti egy relációt, úgy hogy a reláció kulcsának értékei mellé írjuk az egyszeres attribútumértékeket, a másikban pedig a kulcshoz rendelt külső kulcs mellé annyi sort írunk, ahányszoros attribútum értékek szerepeltek a korábbi, többszörös attribútumokban.

· 2NF-re: Több relációra bontjuk az eredeti relációt, amelyek már 2NF-ben vannak. A kulcsnak azon attribútum halmazaiból, melyek maguk is meghatározzák (funkcionálisan) a másodlagos attribútumokat, valamint ezen másodlagos attribútumokból önálló relációt hozunk létre..
· 3NF-re: megszüntetjük a tranzitív függőségeket, mégpedig úgy, hogy a tranzitív függőségben részt vevő attribútum halmazok felhasználásával új relációkat készítünk.
Normalizálás: olyan folyamat, mely egy relációt (ált.) több relációba transzformál úgy, hogy

azáltal megszünteti a redundanciát és a szabálytalanságokat (anomáliákat), és az új relációk

megfeleltethetők az eredeti relációnak.
A normalizálás a relációra vonatkozóan bizonyos fajta átalakítást jelent. A reláció elmélete különféle módszereket tartalmaz a redundancia megszüntetésére az ún. normálformák segítségével. A normalizálás során a különböző normálformák feltételeit vizsgáljuk. Öt normál formát különböztetünk meg. A különböző normál formák egymásra épülnek, például a harmadik normál formában levő reláció második normálformában is van. A tervezés során a legmagasabb normál forma elérése (5NF) a cél. Az első három normál forma a funkcionális függőségekben található redundanciák, míg a negyedik és ötödik a többértékű függőségekből adódó redundanciák megszüntetésére tartja szem előtt.

Azt az adatmodellt, amelyről nem tudjuk, hogy melyik normálforma feltételeit teljesíti, nulladik normálformájúnak nevezzük. Ez a normalizálás kiinduló helyzete. Ha az adatmodell az ötödik normálformát is teljesíti akkor az modellt, illetve az adatmodell alapján felépített adatbázist, teljesen normalizált adatbázisnak nevezzük. A teljes normalizáltságot elérő eljárást veszteségmentes felbontásnak nevezzük. A normalizálás támogatja az adatintegritást a redundancia és az inkonzisztencia minimalizálásával, de ez az adatok lekérdezését lassítja. Ezért az a helyzet is előfordulhat - ha a fő hangsúly az adatok gyors elérésén van -, hogy egy alacsonyabb normálformájú adatbázissal kell megelégednünk.

A normalizáció következményeként: az adatok tárolására fenntartott hely lecsökkent, az adatok gyorsabban, pontosabban és kevesebb hibalehetőséggel használhatók, maga az adatbázis egyszerűbbé és áttekinthetőbbé válik.

Ezek alapján egy relációknak létezik első (1NF), második (2NF), harmadik (3NF), ún. Boyce-Codd (BCNF), negyedik (4NF) és ötödik (5NF) normálformája.

Az adatbázis-terv dokumentációja
[image: image71.png]Adatbazis-tervezés

Leirés ayelve Eredméay

|

Fogslai
Reliciss Logiksi
mode tervezés
s Fizisi
E- N R

1

Adatbazis lérehozisa

R S

Tesat adatok betsltése

Tesztelés

1

Eles adatok betdltése

Uzemibehetyezés

l

Karbantartas





13. SQL adatbázis, adattábla, index, nézet létrehozása és törlése. Adattábla szerkezetének módosítása. Kulcsok, külső kulcsok megadása, kapcsolatok beállítása. További megszorítások elhelyezése.
SQL adatbázis
Valamely alkalmazás objektumai adatbázist alkotnak. Az SQL esetében az adatbázis egy önálló alkönyvtárt jelent. Az objektumok egy részét az alkalmazó, más részét a rendszer kezeli illetve használja. Az adatbázis olyan adatoknak a halmaza, melyeket együtt kezelünk, az adatok kapcsolataikkal együtt történő ábrázolását, tárolását jelenti. Nagy előnye, hogy egyszerre sokan használhatják, így egyszerre különféle információigények kielégítésére alkalmas, de csak egyszeres tárolásra van szükség.
Adattábla

Az adatokat tartalmazó relációt nevezzük adattáblának. Az SQL táblákat kezel /TABLE/, melyek azonosítója betűvel kezdődik. A tábláknak oszlopaik vannak, melyek típusát meg kell adni az adattábla definiálásakor. Egy tábla, akkor számít definiáltnak, ha már megadtuk a tábla nevét, melynek az egész adatbázisban egyedinek kell lennie és az oszlop nevét és típusát Csak arra kell ügyelni, hogy egy táblán belül két azonos nevű oszlop ne legyen. Megadhatjuk még, hogy hol helyezkedik el a tábla az adatbázisban. Ugyancsak definiálhatjuk a tábla elsődleges kulcsát is. A tábla minden egyes oszlopát külön kell definiálni. 

Definiáló formátum:
CREATE TABLE táblanév
(oszlopnév adattípus
[,oszlopnév adattípus] ... );
A Create Table utasítás végrehajtása után egy üres táblázatot kapunk, melybe az Insert adatkezelő utasítással vagy táblázatbetöltő szolgáltató programmal vihetünk be adatokat.

Indextábla létrehozása
Az indexállomány egy adott táblából kiemelt néhány rendezett oszlopból áll. Ez azt jelenti, hogy az alábbi utasítással kijelölt oszlopok fizikailag rendezett oszlopok lesznek (növekvő vagy csökkenő sorrendben). Ennek az az előnye, hogy ha a táblában azon oszlopok értékei szerint keresünk, amelyek indexelve  vannak, a keresés gyorsabb lesz, hiszen egy rendezett táblában könnyebb a keresés.

A rendezett oszlop akkor ér valamit, ha az oszlop minden értéke mellett ott van  annak a sornak a sorszáma, amelyben ez az érték a rendezés előtt volt.

Az SQL-ben  rendezett oszlopokból álló indextáblát a következőképpen hozzuk létre:


CREATE [UNIQUE] INDEX indextábla-név   ON táblanév


      (oszlopnév [[ASC] / DESC] [,oszlopnév[ASC/DESC],…]);


Hatása:



Az ON után adott tábla felsorolt oszlopait rendezi (növekedőleg ha ASC és csökkenőleg, ha DESC szerepel, ha semmi akkor az ASC érvényes) és belőlük egy az  INDEX szó után megadott nevű táblát készít. Ha azon oszlopok szerint keresünk, amelyek indexelve vannak (vagyis az indextáblában szerepelnek) akkor a keresett rekordokat sokkal gyorsabban megtalálja a rendszer. A UNIQUE azt jelenti, hogy az oszlop értékei egyediek. Ha szerepel ez a szó a parancsban, akkor a rendszer hibát jelez ha ismétlődő értékek is vannak az oszlopban.

Példa: 
CREATE UNIQUE INDEX indtkod


ON keszlet


(tkod);

Az indextáblát a DROP INDEX index-táblanév paranccsal törölhetjük.
Nézet létrehozása és törlése
Létrehozás
A táblákból álló adatbázis létrehozásának első lépése az adatbázis definiálása.

Az adatbázis létrehozó parancs szintaxisa:


CREATE DATABASE adatbázisnév;

Az utasítás hatására voltaképpen egy üres adatbázis jön létre (az adatbázishoz tartozó könyvtárakkal és katalógustáblákkal).

Létrehozás után az adatbázis aktív (nem kell kiadni a START parancsot).
Törlés

A DROP DATABASE parancs.
Ha az adatbázisra többé már nincsen szükségünk, akkor töröljük a könyvtárból.

Adatbázis törlése a

DROP DATABASE adatbázisnév;

paranccsal végezhető el.

Adattábla szerkezetének módosítása
Az ALTER TABLE parancs.

Az adatbázis feldolgozása folyamán szükségünk lehet a tábla szerkezetének módosítására. Az SQL-ben sajnos nincsen lehetőség igazi módosításra, csak új oszlopok hozzávételére.

Minden más változtatást úgy tudunk elvégezni, hogy létrehozunk egy új táblát (és azt már a meglévő táblázatból töltjük fel).


ALTER TABLE táblanév
ADD (oszlopnév adattípus [,oszlopnév adattípus …]);

Hatása: a felsorolt oszlopokkal bővíti a táblát.
Kulcsok, külső kulcsok megadása, 
Kulcs: ha egy tulajdonság (attribútum) vagy tulajdonságok egy csoportja egyértelműen meghatározza, hogy melyik egyedről van szó.

A relációs adatbázisokban a különböző táblákat közös attribútumokkal kötjük össze, melyeket kulcsoszlopoknak nevezzük.

Külső kulcs (idegen kulcs), tulajdonság, mely kulcsa egy másik relációnak. A külső kulcs nem azonosítja a rekordokat, nem valódi kulcs, csak a táblák sorai közti kapcsolatot fejezi ki.

Kulcsok fajtái:

Egyszerű kulcs: a kulcs egyetlen attribútumból áll.
Összetett kulcs: a kulcsot kett. vagy több oszlop kombinációja alkotja, el.fordulhat az is,

hogy az összes oszlop szerepel a kulcsban.
Minimális kulcs: ha összetett kulcs esetén bármely attribútumot elhagyjuk a kulcsból, és az

így megmaradt oszlopok kombinációja már nem rendelkezik kulcs tulajdonsággal,

akkor az összetett kulcsot minimálisnak nevezzük. Az egyszerű kulcs mindig minimális.
Kulcsjelöltek: egy relációban több különböz. oszlop vagy oszlopkombináció létezhet,

amely eleget tesz a minimális kulcs definíciójának, ezeket a lehetséges kulcsokat

kandidate kulcsoknak vagy kulcsjelölteknek nevezzük.
Elsődleges kulcs (primary key): az a kulcs, melyet a kulcsjelöltek közül választunk ki, és

kulcsként használjuk. A ki nem választott kulcsjelölteket alternatív kulcsnak nevezzük.

Az els.dleges kulcsnak nem lehet NULL az értéke.
Idegen kulcs (foreign key): olyan attribútum vagy attribútum kombináció egy adott

relációban, amelyik egy másik relációban els.dleges kulcsként szerepel. Az idegen

kulcsot tartalmazó relációt hivatkozó relációnak, a másikat, melyben ez a kulcs

elsődleges, hivatkozott relációnak nevezzük.
Kapcsolatok beállításai

Kapcsolat (relationship): Az egyedek vagy tulajdonságaik közötti viszony. A

kapcsolatokat megkülönböztethetjük annak megfelel.en, hogy az egyedhalmazok közötti

viszonyt vizsgáljuk, vagy az egyes egyedek tulajdonsághalmazai közötti viszonnyal

foglalkozunk. Az egyedhalmazok közötti kapcsolat, a táblák (relációk) közötti kapcsolatban

fog megjelenni. Az egyedhalmaz tulajdonsághalmazai közötti kapcsolatokat pedig a relációs

modellnél vizsgáljuk, amikor meghatározzuk a funkcionális függőséget.
További megszorítások elhelyezése
A tábla definiálásakor más megszorítások is megadhatók Ennek legegyszerűbb esete az, amikor a megszorítás az egyes attribútumok értékeire vonatkozik.
A NOT NULL opció azt jelenti, hogy az adott attribútum nem vehet fel NULL (üres) értéket. A CHECK kulcsszó után tetszőleges feltételt adhatunk. Az erre vonatkozó szabályok megegyeznek a SELECT parancsban használt WHERE záradék lehetséges feltételével.

 A feltétel ellenőrzése sor beszúrásakor, vagy az attribútum módosításakor történik. 

Ennél általánosabb megszorítások is megfogalmazhatók. Lehetnek olyanok, amelyek sorokra vonatkoznak, és lehetnek olyan globális megszorítások, amelyek a teljes adatbázisra vonatkoznak. A sorokra vonatkozó megszorítások ellenőrzése a sorban történő bármilyen módosításkor megtörténik. A teljesen általános megszorítások ellenőrzése minden olyan módosításkor bekövetkezik, aminek az adott feltételre hatása lehet. A sorra vonatkozó feltételek megadása szintén a CHECK paranccsal történik, ezt a tábla definiálásának a végén kell megadni.
14. SQL adattábla sorainak felvitele, módosítása, törlése. Lekérdezés adatbázisból, a lekérdező parancs összeállítása, végrehajtása. Belső lekérdezés lehetősége, a nyelv kifejezései. Jogok kiosztása és visszavételezése.

SQL adattábla sorainak felvitele, módosítása, törlése
Beszúrás (INSERT):

Az INSERT utasítás sor(oka)t helyez be egy táblázatba vagy nézetbe. Beíráskor formátum- és integritás-ellenőrzés történik. Ha a bemenő adat bármelyik mezője nem fér el a megfelelő oszlopban, akkor az utasítás nem hajtódik végre, vagyis a sor nem kerül bele a táblázatba.

INSERT INTO A-táblanév
[oszlopnév-lista]
VALUES (értéklista)

Al-SELECT használatával is beszúrható új sor a táblába, ekkor az új sorok értékeit az Al-SELECT E-táblájának soraiból tölti fel az SQL.

INSERT INTO A-táblanév
[oszlopnév-lista]
Al-SELECT;

További sorok az INSERT parancs ismételt kiadásával szúrhatók be.
Adattábla szerkezetének módosítása

Módosítás (UPDATE):

Az UPDATE utasítás módosítja a megadott táblázat vagy nézet egy vagy több sorának meghatározott oszlopát vagy oszlopait. Ha nem adunk meg feltételt, akkor minden sort módosítunk, egyébként csak azokat, amelyekre a feltétel teljesül. Speciális esetben előfordulhat, hogy egy sort sem módosítunk.


UPDATE A-táblanév
SET oszlopnév = kifejezés
[oszlopnév = kifejezés]...
[WHERE feltétel];

Al-SELECT használata esetén a WHERE feltételében megadott belső SELECT E-tábla értékei jelölik ki a módosítandó sorokat

Törlés (DELETE):

A DELETE utasítás sor(oka)t töröl egy táblázatból vagy nézetből. A kiválasztási feltétel bármelyik lehet (SELECT, BETWEEN, IS NULL, LIKE, EXISTS). A táblázat/nézet az összes sor törlése után is megmarad, ennek megszüntetésére a DROP utasítás szolgál. Ha a táblázatra idegen kulccsal más táblázat is hivatkozik, akkor annak sorai is az idegen kulcs definiálásakor megadott módon változnak meg. A törölt kulccsal egyező értékű idegen kulcsot tartalmazó sorok a hivatkozó táblázatból szintén törlődnek vagy a null-értéket veszik fel.

DELETE
FROM A-táblanév
[WHERE feltétel];

Al-SELECT használatakor a WHERE feltételében megadott belső SELECT E-tábla értékei jelölik ki a törlendő sorokat.
Lekérdezés adatbázisból, a lekérdező parancs összeállítása, végrehajtása

Lekérdező parancs felépítése

Az adatbázis kezelés egyik legfontosabb művelete a lekérdezés, mely a SELECT paranccsal hajtható végre.

A SELECT parancs összetett parancs, mert több alparancsból áll.

A SELECT parancs végrehajtásának eredményeként egy új tábla keletkezik, melyet eredménytáblának hívunk.

A SELECT parancs hatására keletkező E-tábla csak ideiglenesen jön létre. Ha nem mentjük el, akkor a SELECT után kiadott bármely parancs hatására eltűnik.

A SELECT parancs összetett parancs, melyben az alparancsok csak egy megadott sorrendben írhatók fel. 

A SELECT paranccsal kiadható lekérdezések típusát az alparancsok adják meg.

A parancs általános szerkezete:

SELECT.... 




(
mit, milyen oszlopokat vagy értékeket

  [INTO...]

  FROM...   




(
honnan, melyik táblából

  [WHERE..] 




(
ha a feltétel teljesül, akkor kiválasztódik 

  [GROUP BY..]



(
csoportosítani valami szerint

  [HAVING..]




(
csoportosítási feltétel

  [UNION..]




(
egyesítés

  [ORDER BY/FOR UPDATE OF ..]
(
oszlop vagy oszlopok szerinti rendezés

  [SAVE TO TEMP..]



(
mentés

A lekérdező parancs végrehajtása.

Az adatbázis kezelés egyik legfontosabb művelete a lekérdezés, mely a SELECT paranccsal hajtható végre.

SELECT........

FROM

A SELECT és a FROM külön nem állhat. 

SELECT  [ALL/DISTINCT] oszlopnév lista|*

                                          FROM táblalista;

A FROM után szereplő táblákból kiemeli az oszloplistában szereplő oszlopokat, illetve a * esetén az összes oszlopot.

ALL/DISTINCT = előfordulhat, hogy egy az oszlopnévlistában szereplő oszlopbban

                               valamilyen érték többször előfordul. Ha a SELECT parancsban

                               DISTINCT-et írunk, akkor az azonosak közül csak egyet választ ki

                               az oszlopba. ALL esetén pedig az összes azonosat.

Belső lekérdezés lehetősége, a nyelv kifejezései

Beágyazott SELECT parancsok:

A SELECT parancsok egymásba ágyazhatók az alábbi szerkezetben:



SELECT … (SELECT) … (SELECT) … ) …

Az egymás mellett lévő bal oldalon álló SELECT-et a tőle jobbra állóhoz képest külső SELECT-nek, a másikat pedig belsőnek nevezzük.

A külső SELECT a belső E-táblájától függően hoz létre E-táblát. Az ilymódon létrehozott SELECT-sorozat egyetlen eredménytáblát ad, amit az utolsó külső SELECT generál.

A belső SELECT mindig vagy WHERE vagy HAVING utasítás operandusa, nem tartalmazhat ORDER BY és UNION utasításokat, és az is kikötés, hogy a GROUP BY és a HAVING a teljes SELECT-ben csak egyszer fordulhatnak elő.

Az egymásba ágyazott SELECT szerkezetek aszerint, hogy a  belső SELECT E-táblája egy vagy több értéket tartalmaz, két csoportba sorolhatók:

a.) Egyetlen értéket tartalmazó E-tábla

Ha a belső E-tábla egyetlen értéket tartalmaz, akkor a WHERE parancsrészben egyszerű összehasonlításokat végezhetünk.

Pl.
SELECT vnev + knev, fiz


      FROM dolgozo



WHERE fiz < (SELECT AVG (fiz) FROM dolgozo);

b.) Többértékű belső SELECT

Amikor egy SELECT-nek egynél több értéke van, akkor a WHERE utasításrészben olyan logikai feltétel szerepelhet, amely több értéket használ fel. Ilyen esetekben négy predikátummal dolgozunk. Ezek az IN, ALL, ANY, EXISTS.

1. Az IN esetén a külső SELECT a belső SELECT által generált listában keresi a külső SELECT WHERE-jében lévő oszlop értékeit és amelyiket megtalálja, az ahhoz tartozó értéket beteszi az E-táblába.

2. Az ANY kulcsszóval azokat a sorokat választjuk ki a külső

SELECT WHERE parancsrészével, amelyekre a WHERE-ben lévő logikai feltétel a belső SELECT által generált lista valamelyik értékére igaz.

3. Az ALL predikátum úgy „működik”, mint az ANY, de a mondat utolsó sorában lévő valamelyik szó helyett minden-t kell mondani.

4. Az EXISTS-szel létrehozott feltétel akkor vesz fel igaz értéket, ha a belső SELECT által generált E-tábla nem üres (ellenkező esetben hamis az érték)

Jogok kiosztása és visszavételezése

Jogosultságok kiosztása

· az adhat jogot egy objektumra (tábla, nézettábla, stb.) vonatkozóan, aki rendelkezik ezzel a joggal, és továbbadási joggal is

· az adatbázis-adminisztrátor (DBA) kezdetben minden joggal rendelkezik minden objektumra

· az adatbázis felhasználóit a DBA hozza létre, és adhat nekik jogokat

· léteznek alapértelmezések

· az objektum tulajdonosa az, aki létrehozta az objektumot

· az objektum tulajdonosa minden joggal rendelkezik a saját objektuma felett

· a PUBLIC az összes felhasználót jelenti

GRANT jogosultság_1,…, jogosultság_k ON objektum TO felhasználó_1, … , felhasználó_m 

WITH GRANT OPTION;

· Jogosultságok: SELECT, INSERT, DELETE, UPDATE, ALTER, …. 

· Az összes jogot jelenti az ALL.

· A továbbadási jog a WITH GRANT OPTION, ami el is hagyható.

Példa:

· Felhasználó_1 kiadja a következő parancsot:

GRANT insert TO Felhasználó_2 ON szeret WITH GRANT OPTION;

· Ekkor Felhasználó_2 is továbbadhatja a kapott jogot:

GRANT insert TO Felhasználó_3 ON szeret;

Jogosultságok visszavonása

REVOKE jogosultság_1,…, jogosultság_k ON objektum FROM felhasználó_1, … , felhasználó_m;

· A paraméterek megegyeznek a GRANT parancsnál használhatóakkal

· A WITH GRANT OPTION segítségével továbbadott jogok is visszavonja.

Példa ( a GRANT-nál megadott példa folytatása):

Felhasználó_1 kiadja a következőt:

REVOKE insert ON szeret FROM felhasználó_2;

Hatása: Felhasználó_2 és Felhasználó_3 mindegyikétől megvonja az a szeret táblára vonatkozó insert jogot.

15. Modellező nyelvek és eszközök szerepe az alkalmazások tervezésében és dokumentálásában. UML diagramok: használati eset diagram, objektumdiagram, kommunikációs diagram, állapot diagram, osztálydiagram és osztályleírás, komponens diagram.
Modellező nyelvek és eszközök szerepe az alkalmazások tervezésében és dokumentálásában

Objektumorientált tervezés

· Analízis: a megoldandó feladat meghatározása. Tartalmazza a feladatspecifikációt, képernyő és listaterveket, adatszótár,
· Tervezés: az analízisben készült dokumentációk kibővítése: objektumdiagrammok, együttműködési diagrammok, osztálydiagram, osztályleírás. Célszerű már meglévő osztályokat újrafelhasználni.
· Kódolás, tesztelés: az osztálydiagramm osztályait kódoljuk, és folyamatosan teszteljük, elsősorban az analízis során feltárt esetek kipróbálásával.
A programterv egyes részeit párhuzamosan készítjük. A diagramokat a használati esetek alapján folyamatosan szárazon teszteljük. Kódolni egy osztályt csak akkor szabad, ha annak feladata és környezetével való kapcsolata teljesen letisztult.


UML jelölés

Unified Modeling Language (Egyesített modellező nyelv): a három legnagyobb objektumorientált rendszerfejlesztési módszertan (OMT – Rumbaugh; Booch; OOSE – Jacobson) egyesítése (1997-ben jelent meg) de ma már minden szofverfejlesztéssel foglalkozó világcég felismerte a szabvány jelentőségét, és foglalkozik annak továbbfejlesztésével. Az UML mint nevéből is látszik, egy modellező nyelv, és nem tervezési módszer. Egy grafikus jelölésrendszer, amelyet a tervezés/fejlesztés során használhatunk, de nem rögzíti a fejlesztés menetét.

Az UML nyelv két jól elkülöníthető része a jelölésrendszer, és a metamodell. Ebből az első az, amivel általában találkozunk, mindazok a grafikus jelek, amelyek a modellekben használunk. A jelölésrendszer mondja meg például, hogy az osztályok közötti asszociációt egy vonallal kell jelölni. Ez az UML szintaxisa.  

A metamodell a nyelv szemantikája. Osztály-diagrammokból áll, és a jelölésrendszert definiálja. Az UML használatához hasznos a metamodell ismerete is, de nem feltétlenül szükséges. 
Modellelemek

·  Statikus dolgok: Osztály; objektum; interfész; Aktor, használati eset (pl főzés) stb.

· Dinamikus dolgok: Aktivitás, Folyamat; Esemény küldés, fogadás; állapot;
· Csoportosító dolgok: Csomag; alrendszer

· Kommentáló dolgok:. megjegyzés
UML diagramok: használati eset diagram, objektumdiagram, kommunikációs diagram, állapot diagram, osztálydiagram és osztályleírás, komponens diagram
Diagramok

Struktúramodellezés: a rendszer struktúráját ábrázoló diagramok.

· Osztálydiagram: megadja a rendszer osztályait, és az azok közötti társítási és öröklési kapcsolatokat. Statikus modell, amely a rendszerben található összes osztályt és azok statikus kapcsolatait ábrázolja. Az osztálydiagramban minden osztály csak egyszer szerepel, ha több példány van akkor is.

· Objektumdiagram: megadja a rendszer objektumait (osztálypéldány) és az azok közötti kapcsolatokat. Az osztálydiagram egy pillanatfelvétele. A objektumdiagram az osztálydiagram egy előfordulása, példánya 
· Komponensdiagram: megadja a szoftver fizikai felépítését.
· Telepítési diagram: megadja hogy milyen szoftver elemeket milyen hardverre telepítünk.

Viselkedésmodellezés:

· Használatiesetdiagram: megadja, hogy a felhasználó mire tudja használni a rendszert. A diagram megmutatja, hogy a rendszer milyen külső felhasználókkal (aktorokkal) áll kapcsolatban és hogyan

· Szekvenciadiagram: Aktorokat, objektumokat és az azok közötti kapcsolatokat ábrázoló diagram. Olyan interakciódiagram, mely az idő múlására helyezi a hangsúlyt.

Együttműködési diagram: Az objektumoknak a probléma megoldásában való együttmőködését mutatja be. Olyan, konkrét objektumokat tartalmazó diagram, amely az objektumok közötti dinamikus kapcsolatokat ábrázolja. Tartalmazza az objektumok közötti ismeretségi, illetve tartalmazási (egész - rész) kapcsolatokat is. Az objektumok közötti információcsere üzenetekkel történik, ezeket olyan nyilakkal ábrázoljuk, amelyekre ráírjuk az üzenet nevét, és meg is számozhatjuk ıket, ahhoz, hogy az eseményeket relatív rendezettséggel tüntessük fel.
· Állapotdiagram: egy adott osztály vagy alrendszer állapotváltozásait írja le.
· Aktivitásdiagram: leír egy folyamatot (tevékenységek egymásutánját).

Osztályleírás

Az osztály jelölése UML-ben: egy három részre osztott téglalap jelöli:

· Felső részébe az az osztály nevét kiemelten

· A középsőbe az adatai

· Alulra a metódusokat tesszük.


[image: image72.wmf] 

Osztály

 

adatok

 

metódusok

 

Objektum:Osztály

 

állapot

 


Az osztálydiagramban szereplő osztályok téglalapjaiban csak a legfontosabb információk férnek el. Ezért minden olyan osztályt, amely a feladatra nézve specifikus (azaz nekünk kell megalkotni) valahol részletesebben ki kell fejteni. Az osztályleírás (az osztály dokumentációja) a következőket tartalmazza:

· Osztály neve

· Feladatleírás

· Közvetlen ős

· Objektumok száma (opcionális)

· Kapcsolatok (opcionális)  az osztály más osztályokkal való kapcsolatai. Itt írjuk le hogy az osztály milyen egyéb osztályokkal objektumokkal mőködik együtt..
· Adatok (az összes adat)  az osztálydiagramon az adatról csak kevés információt tudunk jelölni, itt megadható az összes adat neve, típusa, értékhatárai, beviteli formátuma, korlatozások, magyarázat, példák.
· Metódusok (röviden a feladatukat) itt röviden leírjuk a metódusok feladatát szövegesen és/vagy pszeudokódokkal.
16. A kliensoldali programozás alapelemei az Internetes alkalmazások fejlesztésénél. A kapcsolódó technológiák rövid bemutatása: HTML, XHTML, XML, CSS, XSL. A kliensoldali script nyelvek használata.

A kliensoldali programozás alapelemei az Internetes alkalmazások fejlesztésénél
A tisztán kliens oldali megoldások esetén a kibővített térinformatikai funkcionalitást a kliens számítógépen futó alkalmazás biztosítja. Ezt a megoldást vastag kliens megoldásnak is nevezik, mivel a munka nagyobbik része a kliens számítógépen folyik, a hálózati sávszélesség mellett a kliens számítógép teljesítménye a meghatározó. A web szerver az adatokat, esetleg a letöltendő programokat szolgáltatja. A szerver oldalon nincs szükség speciális térinformatikai igények támogatására. Ezt a legtöbbször Java Applet vagy a böngészőbe beépülő modul (plug-in) segítségével valósítják meg. Ez a megoldás már nem csak raszteres képek, hanem vektoros térképek publikálását is lehetővé teszi.
A kapcsolódó technológiák rövid bemutatása
Az appletek speciális Java nyelven írt programok, melyeket a böngészőből futtathatunk, amennyiben a számítógépünkre telepítettük a Java Runtime Environment (JRE) megfelelő verziójú változatát. Appletet nem kell a kliens gépre telepíteni, a szerverről automatikusan letölti a böngésző program, ha valamelyik HTML oldal egy Java Appletet használ. Az Appletek hívását a HTML kódban az <applet ...> </applet> elemek segítségével valósíthatjuk meg.

Az <applet> elemben számos paraméter adható meg. A code paraméter határozza meg, hogy melyik Java osztály végrehajtásával indul az applet, ennek az osztálynak a Java standard Applet osztályából kell származnia (extends Applet). A width és height paraméter az applet által elfoglalt képernyő terület méretét adja meg pixelekben. Ezt a méretet nem tudja megváltoztatni az applet. Az archive paraméter tartalmazza a használt java archive (jar/zip) fájlokat vesszővel elválasztva. 

A HTML 4.0 specifikációban az <applet> elem helyett az <object> elem használatát javasolják. A manapság használt böngészők mindegyike támogatja még az <applet> elem használatát is

A Java nyelv tartalmazza az alapvető grafikus elemek/objektumok halmazát (awt/Beens stb.), segítségével készíthetünk olyan appletet, mely a szerveren lévő térinformatikai adatbázisok tartalmát megjeleníti a kliens számítógép monitorán. Miután már többen felismerték ezt a lehetőséget és ilyen funkcionalitással bíró appletet, könyvtárat készítettek. Ebben az esetben a térinformatikai adatoknak és az appletnek ugyanazon a számítógépen kell lennie, ugyanis egy applet csak azon a számítógépen nyithat meg fájlokat, ahonnan letöltötték. Ez elsősorban a kliens számítógép védelmét szolgálja (pl. vírus). Az ilyen appletek használatához nincs szükség web szerverre, ha a kliens számítógépre telepítették az appletet és az adatokat is. Tehát ez a megoldás nem csak internetes elérést biztosít, hanem az intraneten belül (akár egy szóló számítógépen) is használható. 
Ilyen applet például a JShape és a GeoTools.
A kliensoldali script nyelvek használata

HTML
A HTML (angolul: HyperText Markup Language=hiperszöveges jelölőnyelv) egy leíró nyelv, melyet weboldalak készítéséhez fejlesztettek ki, és mára már internetes szabvánnyá vált

A HTML dokumentumot két részre lehet bontani a fejlécre és dokumentumtörzsre. (Egy harmadik rész lehet a keretek definíciója.) 

A dokumentumot a fejlécelemek vezetik be, melyek kezdetét a <HEAD> utasítás jelzi. A fejlécelemek között szokás a dokumentumcímet megadni, mely címet a <TITLE> és a </TITLE> utasítások közé kell zárni. A fejlécet a </HEAD> utasítás zárja. Ezt a részét a dokumentumnak általában az ablak címsorában jelenítik meg a böngészőprogramok. 



A dokumentumtörzs - amit voltaképpen a WEB-böngésző meg fog jeleníteni - a fájl <BODY> és </BODY> utasítások közötti része. Ezen elemek között kell elhelyezni mindent: a szöveget, hivatkozásokat, képeket, stb. (A keretek és a JavaScript kódok kivételével!)
XHTML

A HTML dokumentumokhoz hasonlóan az XHTML is ugyanazt a szerkezetet követi, tehát rendelkezik vezérlőinformációkat tartalmazó fejléccel, illetve törzzsel. Értelemszerűen az utóbbiban található a képernyőn megjelenő tartalom, mindazon címkékkel, amelyek hatására a böngésző megformázza a dokumentumot.
Az XHTML család dokumentumtípusai XML alapúak, és tulajdonképpen arra – is – lettek tervezve, hogy együttműködjenek az XML alapú felhasználói alkalmazásokkal.

A HTML-t XML-ben újradefiniálták, ez a nyelv az XHTML, ahol az X utal arra, hogy

ez a HTML nyelv az XML szintaxist követi.

Az XHTML a jelenlegi és jövőbeni dokumentumtípusok és modulok családja, amelyek

reprodukálják, részét képezik, és kiterjesztik a HTML 4-et. A különbség főleg a jól

formázottságban jelenik meg, amely egy XML dokumentum alapkövetelménye. Az

XHTML család dokumentumtípusok tehát XML alapúak, és végül is arra lettek tervezve,

hogy együttműködjenek az XML alapú felhasználói alkalmazásokkal.

Az XHTML 1.0 az elsődokumentumtípus az XHTML családban, amely 2000. január

26-án publikálták a W3C honlapján. Ez a verzió a három HTML 4 dokumentumtípus

(Strict, Transitional, Frameset) megújítása, XML 1.0 alkalmazásként.
XML

Az Extensible Markup Language (XML) megjelenése jelentős változást hozott az internetes térinformatikai formátumokban is. Az XML egy egyszerű, nagyon rugalmas szöveges formátum, melyet az SGML alapján dolgoztak ki. Előnye még, hogy a szöveges formátum miatt platform független, a számítógép architekturák (LSB/MSB) és az operációs rendszerek közötti különbségek nem okoznak problémát. Eredetileg nagyméretű elektronikus publikációkhoz tervezték, de napjainkban egyre szélesebb körben alkalmazzák az internetes adatátvitel területén, így a térinformatikai adatok esetén is. Sikerét annak is köszönheti, hogy ingyenes, nyíltforrású eszközök állnak a fejlesztők rendelkezésére, az XML állományok értelmezésére (parser), például a xerces Java parser.
Az XML elsősorban az internetre készült, így alkalmazható különböző dokumentumok

„webes” publikálására, feldolgozására. Formátuma automatikusan generálható különbözőı
más formátumokba, mint például HTML, PDF.
CSS
A CSS az angol Cascading Style Sheets kifejezés rövidítése, jelentése rangsorolt stíluslapok. A stíluslapot egy szöveges fájlban kell megírni, amit .css kiterjesztéssel kell elmenteni.
Az egyre szélesebb körben elterjedő CSS stíluslapnyelv népszerű XHTML, illetve XML formázási lehetőség. Szövegfeldolgozás során a megjelenítéshez leginkább ennek az utasítasításkészletét kell igénybe venni, ráadásul a böngészők is mind a mai napig ezt támogatják kifogástalanul.
A CSS megjelenését a HTML fejlesztői örömmel fogadták, mert meglátták benne a HTML-ből hiányzó speciális lehetőségeket.

A stíluslapok alkalmazásának még egy nagy előnye van. Használatukkal hatékonyabbá, gyorsabbá és rugalmasabbá tehetjük a webszerkesztést, elfelejthetjük a frame-eket, a „lassan” töltődő táblázatokat, a korlátozott formázási lehetőségeket stb., segítségükkel átláthatóbbá tehetjük forráskódjainkat.
A CSS (Cascading Style Sheets) jelentése egymásba ágyazott stíluslapok. A HTML

oldalak megjelenését befolyásoló egyszerű nyelv, mely segítségével meghatározhatjuk,

hogy hogyan (és hol) jelenjenek meg az egyes HTML elemek. (paragrafusok, címsorok,

stb.) Többek között befolyásolhatjuk a színüket, méretüket, elhelyezkedésüket, margóikat,

stb. Ezzel a módszerrel, sokkal szabadabban, rugalmasabban tudjuk kezelni HTML

oldalaink megjelenését. Az egymásba ágyazhatóság (kaszkádolás) arra utal, hogy több

stíluslapot, meghatározást is megadhatunk egyszerre, illetve egy stílus lehet több elemre is

érvényes, amit egy másik stílussal felüldefiniálhatunk. A stílusok öröklődnek az oldal

hierarchiája szerint, ha például a gyökér elemre definiálunk egy stílust, akkor többnyire az

oldal összes elemére érvényes (a tulajdonságok örökölhetőségétől függően).

Egy stíluslapot több dokumentumhoz is hozzárendelhetünk, ezzel egységes megjelenést

biztosíthatunk számukra. Egy dokumentumhoz pedig több stíluslap is csatolható.
XSL

Az XSL (eXtensible Stylesheet Language)[122] a legújabban megjelent szedési nyelv, szintaxisának alapjául az XML szolgál.
Kezdetben az XSL-t egy olyan egyszerű nyelvnek szánták, amely az összes lehetséges transzformációt el tudja végezni a jelölt szövegeken. Ez az elképzelés azonban kivitelezhetetlen volt, hiszen a nyelv ilyen formában meglehetősen bonyolult lett volna. A problémát úgy sikerült megoldani, hogy a nyelvet két összetevőre bontották szét, vagyis létrehozták az XSLT (eXtensible Stylesheet Language Transformation)[123] ajánlást, amely SGML/XML struktúrák közti átalakításokra használható; és az XSL-FO-t (XSL Formatting Objects), ami pedig egy hagyományos stíluslap lehetőségeit kínálja megjelenésbeli stílusok, formák, helyzetek meghatározására. E két technológiát egészíti ki egy harmadik, az ún. XPath (XML Path Language), amely nem más, mint nyelvi kifejezéskészlet XML dokumentumokban való keresésre, kapcsolódások kialakítására és az egyes elemtípusokra alkalmazható környezetfüggő formázási lehetőségek megvalósítására. Az XPath a dokumentumot csomópontok (node-ok) halmazának tekinti. A node lehet bármilyen alkotórész: elem, attribútum, attribútumérték stb. E három nyelv együttesen alkotja tehát a bővíthető stíluslapnyelv családot.

Gyakran előfordul, hogy az XSL és az XSLT kifejezéseket összekeverik és helytelenül használják még a fejlesztők is, de úgy gondoljuk, hogy a leírtakból már érthetők a különbségek és az összefüggések.
A kliensoldali script nyelvek használata
A böngészők (pl.: Navigator 2.0 és későbbi verziók) képesek értelmezni a HTML oldalakba ágyazott kliensoldali JavaScript utasításokat. Amikor a böngésző (vagy kliens) egy ilyen oldalt kér le, a szerver a hálózaton keresztül elküldi a dokumentum teljes tartalmát a kliensnek, a HTML és JavaScript utasításokkal együtt. A böngésző elolvassa az oldalt az elejétől a végéig, megjeleníti a HTML utasítások eredményét és végrehajtja a JavaScript utasításokat, azok előfordulásának sorrendjében. Ez a folyamat, ahogy a lenti ábrán látható, hozza létre a felhasználó által látott végeredményt.
A HTML oldalakba ágyazott kliensoldali JavaScript utasítások válaszolhatnak a felhasználói eseményekre (egérkattintás, űrlap adatbevitel, stb...). Például, írhatunk olyan JavaScript függvényt, amely ellenőrzi, hogy a felhasználó által beírt adatok érvényesek-e (telefonszám, irányítószám, stb...). A HTML oldalba beágyazott JavaScript minden hálózati adatátvitel nélkül meg tudja vozsgálni a beírt adatot és ha a felhasználó érvénytelen adatot írt be, arra párbeszédablak megjelenítésével figyelmeztetheti.

A JavaScript különböző verziói a Navigator meghatározott verziói alatt működnek. Például, a JavaScript 1.2 a Navigator 4.0 verziójához készült. Néhány olyan lehetőség, amely a JavaScript 1.2 verziójában megtalálható, nem elérhető a JavaScript 1.1 verziójában, ennélfogva nem elérhető a Navigator 3.0 verziójában sem. A JavaScript és Navigator verziókról szóló információkért lásd a JavaScript Verziók címszót.

A kliensoldali scriptek olyan programrészletek amelyek forrásnyelvi alakban a HTML dokumentum keretében töltődnek le a felhasználó számítógépre.
A scripteket a böngészőprogram hajtja végre. A végrehajtás bekövetkezhet:

· egérmozgatás a HTML dokumentum objektumára

· egérkattintás, vagy

· a HTML dokumentum letöltése miatt.

Fontos megjegyzés:

A böngészőprogramnak tudnia kell interpretálni az alkalmazott script nyelv utasításait.
17. A szerveroldali programozás alapelemei az Internetes alkalmazások fejlesztésénél. A szerveroldali objektumok bemutatása. Adatbázis-kezelés webűrlapokkal. Egy szerveroldali programnyelv rövid bemutatása, jellemzése.

A szerveroldali programozás alapelemei az Internetes alkalmazások fejlesztésénél.
A szerveroldali programozás (Server-Side Scripting) esetében a szerveroldali scriptek a Web szerveren futnak le és dinamikus HTML oldalakat hoznak létre.

A egyik legelterjedtebb szerveroldali programozási technológia az ASP – Active Server Pages.

Az ASP a Microsoft technológia (1996), úgy tervezték, hogy a Web oldalak tartalma minden új beolvasás esetében megváltozhat.

Alapelve: a Web oldalba olyan programkódot építünk be, amely a szerveroldalon lefut mielőtt a felhasználó böngészője beolvassa a Web lapot.
A szerveroldali programozás előnye könnyen megérthető a következő példából:
· Célkitűzés: az aktuális dátum leolvasása a Web lapról

· Statikus HTML oldalon minden nap be kell írni az aktuális dátumot.

· Az ASP technológia lehetővé teszi egy script megírását amely a beolvasott Web lapon megjeleníti az aktuális dátumot. Mielőtt a felhasználó beolvassa a Web lapot, a szerver lefutatja a scriptet és így a beolvasott Web lapon mindig az aktuális dátum jelenik meg.
A szerveroldali programozás több szempontból is előnyös a Web fejlesztő számára:
1. A szerveroldali scriptek fejlesztése teljesen független a felhasználó által alkalmazott böngészőtől.
2. Így a szerveroldali scripteket olyan programnyelvben is fejleszthetjük amelyt a felhasználó böngészője nem támogat.

3. A szerveroldali scriptek forrásnyelvi változata nem olvasható a felhasználó böngészőjében. Ez fontos momentum a forrásnyelvi változat védettsége szempontjából.

4. A letöltendő HTML dokumentum mérete csökken (mivel a böngészőben csak a szerveroldali scriptek végrehajtási eredménye látszik). Így a Web oldal beolvasása is gyorsabb.

5. Egy szerveroldali  komponens alkalmazásával leolvashatjuk a felhasználó  gép operációs rendszerét és böngészőprogramját, így a szerveroldalról leküldött HTML dokumentum a kliens gép környezetére alakítható.

6. Az ASP fájl az adatbázis szerverről adatbázist használhat fel a megjelenítendő Web lap feldolgozására.
A szerveroldali objektumok bemutatása. 
A JavaScript alkalmazások egy része a kliensen, más része a szerveren fut. Számos JavaScript alkalmazás a LiveWire nevű adatbázis-szolgáltatást használva önmagát egy relációs adatbázishoz köti. Ebből kifolyólag a JavaScript alkalmazásokat úgy kell elképzelnünk, mint egy háromsoros kliens-szerver architektúrát.
A három rész az alábbi:

1. WWW kliens (Internet Explorer, Netscape Navigator)

2. WWW szerver/adatbázis kliens

3. Adatbázis-szerverek

A JavaScript kliens-oldali környezete WWW kliensek részeként fut. A JavaScript szerver-oldali környezete a webszerver részeként fut, mely egy vagy akár több adatbázis-szervert is elér.
A JavaScript futásidejű környezetnek három elsődleges komponense van:

1. A JavaScript futásidejű könyvtár

2. LiveWire adatbázis-elérés könyvtár

3. Java virtuális gép (JVM)

A kliens által értelmezhető scripteket azért használhatjuk, mert a webböngészőkben beépített interpreter van. Egy JavaScript alkalmazást futtatva számos dolog bekövetkezhet, akár a kliensen, akár a szerveren. Egy alkalmazás fejlesztése közben mind kliens-oldali, mind szerver-oldali JavaScript utasításokat tartalmazó HTML oldalakat írunk. A HTML forráskódban a kliens-oldali scripteket a SCRIPT tag, a szerver-oldaliakat a SERVER tag határolja.

Olyan állományokat is létrehozhatunk, melyek pusztán JavaScript utasításokat tartalmaznak és egyetlen HTML tag sincs bennük. Egy ilyen külső scriptfájl vagy kliens-oldali vagy szerver-oldali JavaScriptet tartalmazhat. Nincs lehetőség egy külső fájlban kliens- és szerver-oldali objektumok vagy függvények egyidejű használatára. A globális (a <SERVER> és </SERVER> tag-ek között deklarált) változók használatát célszerű a minimálisra korlátozni, az alkalmazásokban a lehető legtöbb részt függvényekkel megoldani. Ezzel jelentősen javíthatjuk az alkalmazások működését.

Adatbázis-kezelés webűrlapokkal. 
Web megoldásokat nyújtó adatbázis-kezelõk 
A nagy adatbázis-kezelõ gyártók hamar felismerték a Web technológia által nyújtott elõnyöket. Ma már nincs olyan rendszer, amely ne kínálna valamilyen megoldást a Web és az adatbázisok összekapcsolására. A megoldások azonban nem egységesek, ahány gyártó annyi technológia. Ki lehet azonban emelni néhány általánosan nyújtott szolgáltatást, mint pl. a dinamikus HTML generálás, a CGI támogatás, a Web szerverek API-jeinek támogatása és a Java támogatás. 

Az adatbázis-kezelõ gyártók természetesen fejlesztõ eszközöket is kínálnak termékeikhez. Ezek az eszközök azonban ma még elég kiforratlanok és használatukhoz az illetõ rendszer alapos ismerete szükséges. Ráadásul az ügyfél oldali fejlesztõeszközök általában csak egy adatbázis-kezelõ rendszerrel használhatóak, amely óriási hátrány a kliens-szerver technológia adatbázis-kezelõ független fejlesztõ környezeteivel (pl. Delphi) szemben. 

A teljesség igénye nélkül felsorolunk néhány terméket (és gyártóikat), amelyek Web megoldást kínálnak: DB2 (IBM), Online Dynamic Server (Informix), Open Ingres (CA), Oracle (Oracle), Progress (PS), SQL Server (Microsoft), SQL Anywhere (Sybase) [1]. 

Egy szerveroldali programnyelv rövid bemutatása, jellemzése.
Szerveroldali JavaScript

HTML oldalakba szerveroldalon is beágyazható JavaScript. A szerveroldali utasítások különböző gyártók relációs adatbázisait kapcsolhatják össze, megoszthatják egy alkalmazás adatait a felhasználók között, hozzáférést nyújthatnak a szerver fájlrendszeréhez, vagy a LiveConnect és Java használatával kommunikálhatnak más alkalmazásokkal. A szerveroldali JavaScript-tel ellátott HTML oldalak magukban foglalhatnak kliensoldali JavaScript utasításokat is.

Az egyszerű kliensoldali JavaScript oldalakkal szemben, a szerveroldali JavaScriptet használó HTML oldalak bytekódba fordított végrehajtható fájlok. Ezek a végrehajtható alkalmazások a webszerveren futnak, ahol rendelkezésre áll a JavaScript futásidejű motor. Ez okból a JavaScript alkalmazások létrehozása kétlépcsős művelet.

Az első lépcsőben, létre kell hozni a HTML oldalakat (amelyek tartalmazhatnak kliensoldali és szerveroldali JavaScript utasításokat is) és JavaScript állományokat. Ezek után az összes fájlt egy végrehajtható állományba kell fordítani.

A második lépcsőben az alkalmazás egyik lapját lekéri egy kliens böngésző. A futásidejű motor a végrehajtható alkalmazást használja, hogy kikeresse a forrásoldalt és dinamikusan létrehozza az elküldendő HTML oldalt. Az futtat minden szerveroldali JavaScript utasítást, ami az oldalon található. Az utasítások eredménye a HTML oldalhoz adhat új HTML elemekt, vagy kliensoldali JavaScript utasításokat is. A futásidejű motor ezután a hálózaton keresztül elküldi a kész oldalt a böngészőkliensnek, amely lefuttatja a kliensoldali JavaScripteket és megjeleníti a végeredményt.
18. Az informatikai biztonság fogalma. A biztonsági rendszer tervezése, a tervezés szakaszai. Az egyes tervezési szakaszok fő feladatai. A kockázatelemzés célja és lépései. Az informatikai rendszerek elleni támadások típusai. 

Az informatikai biztonság fogalma
Az informatikai biztonság a védelmi rendszer olyan, a védő számára kielégítő mértékű állapota, amely az informatikai rendszerben kezelt adatok bizalmassága, sértetlensége és rendelkezésre állása szempontjából zárt, teljes körű, folyamatos és a kockázatokkal arányos.

A védelmi rendszer fõbb tervezési lépései:

· Az informatikai biztonság tervezése és megteremtése - analóg módon más biztonsági feladatok megoldásával - a következô kérdések köré épül: 

· Mely információk szükségesek a szervezeti célok elérése érdekében? 

· Adott információra mely alapfenyegetések érvényesek? 

· Hol, milyen rendszerelemhez kötve jelennek meg az információk a rendszerben? 

· Adott helyen milyen tényezôk válthatják ki az alapfenyegetettség bekövetkeztét? 

· Mi a kockázata a fenyegetéseknek? 

· Milyen intézkedések tehetôk a kockázat csökkentésére? 

· Gyakorlatilag lehetséges-e, illetve megéri-e az adott intézkedés? 

· Milyen feladatok adódnak az elhatározott intézkedésekbôl?

A kockázatelemzés célja és lépései
Elemző és értékelő jellegű szakértői vizsgálat melynek során a rendszer biztonságát feltérképezik, a nem elviselhető kockázatot jelentő fenyegetést mutatja ki, a fenyegetés által okozott kárt is elemzi és annak előfordulásának gyakoriságát.

A kockázatelemzés olyan elemző és értékelő jellegű szakértői vizsgálat, amely az informatikai rendszerekben kezelt adatok és alkalmazások értékelése, gyenge pontjainak és fenyegetettségeinek elemzése útján meghatározza a potenciális kárértékeket és azok bekövetkezési gyakoriságát.

Lépései:

1. A módszertan szakaszainak és lépéseinek részletes leírása

2. A védelmi igény feltárása,

3. Fenyegetettség elemzés,

4. Kockázatelemzés,

5. Kockázatmenedzselés,

6. Az informatikai biztonsági vizsgálati dokumentum tartalmi felépítése,

7. Segédletek.

Az informatikai rendszerek elleni támadások típusai

Az adatot, mint a támadások alapvető célját a következő rendszerelemek veszik körül: 

· az informatikai rendszer fizikai környezete és infrastruktúrája, 

· hardver rendszer, 

· szoftver rendszer, 

· kommunikációs, hálózati rendszerek 

· adathordozók, 

· dokumentumok és dokumentáció, 

· személyi környezet (külső és belső). 

19. A megbízható informatikai rendszer alapfunkciói, biztonsági követelményeit szabályozó hazai és nemzetközi szabványok, ajánlások, dokumentumok. Az informatikai rendszer elleni támadások kivédésének eszközei. Kriptográfiai módszerek és eszközök, azok gyakorlati alkalmazásai.
A megbízható informatikai rendszer alapfunkciói, biztonsági követelményeit szabályozó hazai és nemzetközi szabványok, ajánlások, dokumentumok.

· TCSEC - Trusted Computer System Evaluation Criteria = Biztonságos Számítógépes Rendszerek Értékelési Kritériumai (Narancs Könyv)

· ITSEC - Information Technology Security Evaluation Criteria = Információtechnológia Biztonsági Értékelési Kritériumok (Fehér Könyv)

· FC - Federal Criteria for Information Technology Security = Az Információtechnológia Biztonságára vonatkozó Szövetségi Kritériumok

· CTCPEC - Canadian Trusted Computer Product Evaluation Criteria = A Biztonságos Számítástechnikai Termékek Értékelési Kritériumai Kanadában

· CC - Common Criteria = Közös Követelmények

· OSI ISO 7498-2 (X.800) szabvány a nyílt hálózatok felépítésénél szükséges biztonságos szolgálatokról és az ezeket megvalósító mechanizmusokról.

Hazai ajánlások

A Miniszterelnöki Hivatal Információs Koordinációs Irodája teszi közzé az Információs Tárcaközi Bizottság(ITB) ajánlásait. Ezek az ajánlások adaptálják a nemzetközi ajánlásokat a magyar viszonyokra, és jól használhatóak az üzleti területen működő szervezeteknél is.

Az informatikai rendszer elleni támadások kivédésének eszközei.
A tűzfal egy belépési pontot biztosít, ahol a behatolók tevékenysége auditálható. A bejelentkezési kísérletektől az eldobott csomagokig széles lehet a naplózási tevékenység. Ez nagyon fontos tevékenység, mivel ennek segítségével detektálhatóak az egyes betörési kísérletek, követhetők végig a felhasználói aktivitások. A fejlettebb rendszerek riasztási funkcióval is rendelkeznek, azaz gyanús tevékenység esetén riasztják az adminisztrátort.

Behatolás detektor
Olyan szoftver, amely a hálózaton észlelt gyanús tevékenységek alapján gyakran a tűzfallal együttműködve figyelmezteti a rendszergazdát s önállóan is képes lépéseket tenni a károkozás megakadályozására.

Kriptográfiai módszerek és eszközök, azok gyakorlati alkalmazásai.

· Szimmetrikus rejtjelezés: jellemzője, hogy a titkosításra és a dekódolásra ugyanazt a kulcsot használjuk, amelyet mind a küldő félnek, mind a fogadó félnek ismernie kell. Ehhez viszont a kommunikáció megkezdése előtt meg kell állapodniuk egy közös kulcsban, és azt titokban kell tartaniuk. Az üzeneteket csak a titkos kulcs segítségével lehet dekódolni, így egy esetleges támadó a kommunikációt lehallgatva se tudja megérteni az üzeneteket, illetve rejtjelezni se tud egy hamis üzenetet. A szimmetrikus kulcsú titkosírás legnagyobb előnye a gyorsaság, a kódolás sebessége, hátránya, hogy a kódoláshoz használt kulcsot el kell juttatni minden érintetthez. Ha bárkinek sikerül elfognia az üzenetet és a kulcsot is megszerezte, akkor képes a dekódolására.

· Aszimmetrikus rejtjelezés: A rendszer lényege, hogy a kommunikáló feleknek nem kell előre megegyezniük egy közös titkos kulcsban, hanem mindenkinek két kulcsa van: egy titkos és egy nyilvános. A titkosat csak tulajdonosa ismeri, a nyilvánost bárkinek átadhatja. Ezután a feladó a címzett nyilvános kulcsával egy olyan rejtjelezett szöveget tud generálni, amit csak és kizárólag a címzett titkos kulcsa tud megfejteni. Előnye, hogy szükségtelenné teszi a kulcs elküldését, és így a rendszer sokkal biztonságosabb, hátránya a műveletek lassúsága.

20. Az információs rendszer fogalma és összetevői. Adat, információ, tevékenység, esemény, felhasználó, szabvány. Az információs rendszer szintjei és nézetei. Rendszerszervezési életciklus. Tervezés, szervezés, modell. Szervezetek strukturálási módjai. Átvilágítás, diagnosztizálás.
Az információs rendszer fogalma és összetevői

Információk, a rájuk vonatkozó információs események, az információkon végrehajtott tevékenységek, az előzőekkel kapcsolatos felhasználók és erőforrások, valamint a mindezeket szabályozó eljárások szervezett együttese.
Az egymással kapcsolatban álló információs folyamatokat együtt információs rendszernek nevezzük. 

Az információs rendszerrel szemben támasztott követelmények: 
- gyors és pontos kommunikáció 
- nagy mennyiségű adat tárolása 
- gyors adatfeldolgozás 

Ezen követelményeket a számítógép tökéletesen kielégíti!
Információs rendszer: kiindulópont + végpont + információs csatorna
Adat, információ, tevékenység, esemény, felhasználó, szabvány

Az ADAT

A valóság nem értelmezett (de értelmezhetõ) tükörképe. Az adat nyers (feldolgozatlan)tény, ami valakit vagy  valamit jellemez.
Adatnak nevezünk minden olyan ismeretet, mely előzőleg már rögzítésre került. 

Az ismeret közlésének szabályai: 
- szintaktikai szabályok (forma) 
- szemantikai szabályok (tartalom)

Az INFORMÁCIÓ

az ember által értelmezett adat. Az ember észleli, felfogja, megérti és értelmezi az adatot, olyan formára hozza, amelyben emberi lény számára az jelentéssel bír.
Információs tevékenységnek az adatok kezelését és előállítását célzó illetve az előbbieket vezérlő műveletek szervezett egységét tekintjük.

Információs esemény
· a változás váltja ki az eseményt

· mi a változás?
· számítás technikus: kötegelt feldolgozás

· informatikus: program elindítása, hanem maga a változás az információs esemény

· az állapot változása: különleges esemény

· ravasz [trigger]

· valamivel le is kell zárni

Információs eseménynek az információs tevékenységet kiváltó illetve az azt lezáró momentumot nevezzük.

(a tevékenység az az adatfeldolgozási egység, amelyet a felhasználói igény indító és lezáró eseményei határolnak)

A felhasználó az ismeretekkel kapcsolatban álló embercsoport
· ismeretátadás

· végső felhasználó

· alkalmazási felhasználó

· adatszolgáltató - adatfelhasználó 

a vezetők felelőssége
Szabvány

· konvenció (megegyezés)

· szabványok és szabványos eljárások

· nyílt rendszerek - rendezetlen kereskedelem

· eligazítás, korlát, tájékoztatás

A szabvány az IR valamilyen tényezőjére vonatkozó megegyezés 

Az információs rendszer szintjei és nézetei

1-Adatot tárol, 
2-Adatot lehív, 
3-Kapcsolatba lép a módszerbankkal, 
4-Lehívja a kiválasztott módszert(eljárást), 
5-Ellátja a módszert adatokkal és adatokat dolgoz fel, 
6-Az így kapott eredményeket tárolja az adatabankban, 
7-Az adott vállalti prob. Szerint a modellbanktól informálódik, 
8-kiválasztja a szükséges modellt, 
9-a modellt infókkal látja el, esetleg új infókombinációk révén a modellt is gazdagítja, 
10-a keletkező informatikai eredményt tárolja, s ezáltal, 
11-új módszer, esetleg , 
12-új modell jön létre.

Rendszerszervezési életciklus

8 fázis

I. Követelmények meghatározása, elemzés

1. A feladat és a célok meghatározása

2. Megvalósíthatósági tanulmány készítése

3. Rendszerelemzés

II. Rendszertervezés

4. Koncepcionális tervezés

5. Részletes tervezés

III. Megvalósítás

6. Kivitelezés

7. Átállás

8. Kiértékelés és üzemeltetés
Tervezés, szervezés, modell. Szervezetek strukturálási módjai

Tervezés: különböző tevékenységek szervezése bizonyos eredmények elérése céljából.

• Cél: egy üzletet, vállalkozást a jövőnek építeni, a változásokat követve és menedzselve.
· stratégiai

· taktikai

· operatív

szinteken valósul meg.
Tervezési szintek

STRATÉGIAI

 TAKTIKAI 

OPERATIV

Koncepcionális 
Fejlesztési 

Végrehajtási

Vállalati szint 

Főosztály szint 

Osztály szint
Általános

Termék


Feladat

irányítás

Hosszútávú 

Középtávú 

Rövidtávú
Alapvetõ strukturális jellemzõk: 
(munkamegosztás 
(hatáskörmegosztás 
(koordinációs eszközök 
(konfiguráció
Modell
A szervezetfejlesztés folyamatmodellje: 
(problématudatositás-a változtatás szükségessége 
( tanácsadó belépése 
(diagnózis 
(akcióterv 
( megvalósítás 
(szerv. fejl. program befejezése

Átvilágítás, diagnosztizálás

Átvilágítás
1-kiindulási helyzet megismerése (felmérés) és a felmerült igények feltárása. 

2-a kiinduló helyzet elemzése, „diagnózis” készítése. 

3-a számba vehető változtatási alternatívák tanulmányozása. 

4-a megfelelő alternatíva kiválasztása és ütemezése.

Diagnosztizálásának céljai:
1 –jól és minél teljesebb körűen észlelje a szervezet betegségtüneteit. 

2-e tünetek alapján körül tudja határolni magát a szervezeti betegséget, hogy a bajok orvosolhatók legyenek.

3-a diagnózis teljes azaz komplex legyen.

Diagnosztikai tényezők:
1- melyek a vállalkozás céljai, mi az üzleti filozófiája és stratégiája. Ezek milyen módon és mértékben felelnek meg a külső követelményeknek, milyen piaci igényeket és hogyan elégítenek ki. 

2-milyen a vállalkozás piaci helyzete, státusa. 

3-milyen a vevő helyzete, milyenek az igényeik.

4-milyen a szállítók köre és viszonya a vállalkozáshoz. 

5-mekkorák a vállalkozás költségei.

6-hogyan fest a vállalkozás pénzügyi helyzete, likviditása. 

7-mekkora a vállalkozás jövedelemtermelő képessége, tőkeereje, milyen a vagyoni helyzete. 

8-mennyire jól hasznosítja a vállalkozás a saját erőforrásait. 
-milyen a vállalkozás vezetésének stílusa, módszerei, színvonala. 

10-milyen a szervezeten belüli munkamegosztás és az alkalmazott szervezeti forma. 

11-milyen az ösztönzési rendszer, milyenek a munkavégzés fizikai, szociális és szervezeti feltételei. 12-milyen a vállalkozás hatalmi szerkezete , miként alakulnak érdekviszonyai. 

13-milyen gazdasági, társasági formában működik a vállalkozás.

Hasznos és célszerű a szervezet mint kvázi felbontható rendszer felbontása és a diagnosztikai tevékenységnek e szerint történő szisztematizálása. A felbontással definiált belső struktúra „a baj keresését” gyorsítja. Ez utóbbi persze nem lehet tetszőleges, azaz egy „mesterséges” rendező elv szükséges. A strukturálás akkor sikeres ha az a szervezet rendszerjellegét tükrözi.

A szervezetek strukturális módjai

a; Munkamegosztás és annak szabályozása

A munkamegosztás egy nagyobb feladat részfeladatokra bontása és egyes szervezeti egységekhez történő telepítése; a szervezetek tagolásának alapja.

Az elsődleges munkamegosztás alapvetően három elv szerint történik:

· funkció 

· tárgy (termék illetve termékcsoport) 

· régió

b; Hatáskörmegosztás és annak szabályozása

A hatáskörök szabályozásának célja:

· a szervezeti egységek, személyek kompetenciájának megállapítása 

· a döntési jogkörök felosztása 

· az utasítási hatáskörök megállapítása

A munkamegosztás és hatáskörmegosztás összhangja esetén megfelelő felelősségi, elszámolási és érdekeltségi rendszert lehet létrehozni.

c; Koordináció és annak szabályozása

Koordináció: az eltérő feladatokkal és hatáskörökkel rendelkező, de egymással szoros kapcsolatban álló szervezeti egységek működésének, tevékenységének a szervezeti cél érdekében történő összehangolása.

A koordináció eszközei:

· technokratikus típusú a vállalati tervezési, pénzügyi és költségvetési rendszer, a belső elszámolás rendszere, a szabályozottság 

· strukturális típusúak a projektek, a teamek, az ad hoc bizottságok és a termékmenedzseri rendszer 

· személyorientált koordinációt jelentenek az egyéneket közvetlenül ösztönző, kényszerítő eszközök, a pszichológiai befolyásolások, amelyek segítik az egyének azonosulását aszervezettel

A kommunikációs utak iránya szerint a koordináció típusa lehet:

· vertikális és 

· horizontális

d; Konfiguráció

A szervezeti séma, a szervezeti struktúra vázának, formájának megalkotása

A konfiguráció jellemzői:

· a szervezet mélységi tagozódása, azaz a hierarchikus szintek száma a fő tevékenységi profilt tekintve 

· a szélességi tagozódás, azaz az egy vezető alá közvetlenül tartozó alárendeltek száma a hierarchia különböző szintjein 

· az egyes szervezeti egységekben foglalkoztatottak száma

21. Egy választott, mai rendszerfejlesztési (szoftverfejlesztési) módszertan felépítése és szerepe a szoftvertechnológiában. Adat- és folyamatmodellezés.

Szoftverfejlesztési módszertanok

Az 1960-as évek végén – a szoftverfejlesztés hajnalán – a programozók számára az egyénileg kidolgozott technikák követése volt az általános, nagyrészt azért, mert a programozás egyszemélyes feladat volt. Csapatmunka kialakítása szinte reménytelen volt, mert az elkészült programkód logikáját gyakran csak az alkotója értette. Az 1970-es évek elején bizonyos programozási gyakorlatok (pl. GOTO alkalmazása – Edsger Wybe Dijkstra, 1968) nehezen kezelhetőnek nyilvánításával indult el egy folyamat a szoftverfejlesztés technikájának elvi alapokon történő megfogalmazása felé. Bizonyos módszerek nagyon sikeresnek bizonyultak, amely újabb szabályozások kialakítására ösztönözte a szakterület képviselőit. Évtizedek során egyre több szabályrendszer követése vált elfogadottá, amelyekből lassan egy-egy szervezet által menedzselt komplex módszertanok alakultak ki.

A szoftverfejlesztési módszertan tehát különböző szabályok, eljárások, módszerek halmazának tekinthető, amely egy szoftvertermék elkészítését segíti elő. A különböző standardok pedig más és más tevékenységi területen igyekeznek minél szélesebb körben elfogadott és alkalmazott ajánlásokat adni.

A célokról és a követelményekről rendelkezése álló információk rendszerezése és analizálása egy bizonyos határ felett megköveteli azok egységesen struktúrált dokumentálását. Az alkalmazott szoftver-életciklus modelltől függetlenül több követelményelemzési és tervezési módszertan iránymutatását is követhetjük, mint pl. az SSADM (Structured Systems Analysis and Design Method), illetve az objektum-orientált rendszereket leíró UML (Unified Modelling Language).

Bizonyos módszertanok – mint pl. az iteratív Incremental vagy Spiral Model esetében alkalmazható, objektum-orientált szemléletet követő RUP (Rational Unified Process) – a teljes szoftver-életciklus időtartama alatt útmutatóként szolgálnak a napi tevékenységek elvégzéséhez.

Más módszertanok – mint pl. az MSF (Microsoft Solutions Framework) – egy-egy konkrét részterületre fókuszálva (a projektszervezet felépítése, a képességek menedzselése, a kockázatkezelés, stb.) és azokat egységes keretbe helyezve nyújtanak mintát a munkavégzéshez.

A legfrissebb irányzatok közé tartozik az XP (Extreme Programming), ami programozói szemszögből számos hasznos ötlettel képes orvosolni általános szoftverfejlesztési problémákat.

A következőkben az itt ismertetett fogalmakat szeretnénk részletesebben ismertetni.





SSADM
Structured Systems Analysis and Design Method 



[2] Az SSADM a „Struktúrált Rendszerelemzési és Tervezési Módszer” rövidítése. Az SSADM egy olyan módszertan, amely információs rendszereken alapuló alkalmazások elemzésére és tervezésére szolgál. A módszer első változatát a brit kormányzat megbízásából dolgozták ki 1980-ban, hogy kormányzati szabványként alkalmazzák az információs rendszerek fejlesztésében. Világosan meghatározott kezdő- és végpontok között az SSADM egy pontos megközelítést tesz lehetővé az elemzés, tervezés és specifikálás tevékenységeit illetően. A SSADM jellegzetessége, hogy minden egyes tevékenység az előző tevékenység dokumentációjára épül, így biztosítva a modell folyamatos konzisztenciáját.

Az SSADM célja az, hogy segítsen a projekt tagjainak az informatikai stratégia részeként kitűzött információs rendszerre vonatkozó követelmények pontos elemzésében, valamint a követelményeknek legjobban megfelelő információs rendszer megtervezésében és specifikálásában.

adatok → adatfolyam-modell (DFM – Data Flow Modelling)
Ebben a megvilágításban kerülnek azonosításra, modellezésre és dokumentálásra a rendszerrel kölcsönhatásba kerülő adatok. Az adatfolyam ábrák (DFD – Data Flow Diagrams) a következő objektumokat ábrázolják:

· folyamatok (processes)
információkat átalakító feldolgozási folyamatok

· adattárak (data stores)
az információk tárolási helye

· külső egyedek (external entities)
a rendszeren kívüli objektumok, amelyek adatokat cserélnek a rendszerrel

· adatfolyamok (data flows)
az információk áramlásának útvonala

ha mindez teljesül





Háttértárolók





Központi feldolgozó egység





Beviteli eszköz





Kiviteli eszköz





Memória








32

_1036167899.doc


ŐsOsztály







UtódOsztály2







Mezők







Metódusok







Metódusok







Mezők







Metódusok







Mezők







UtódOsztály1












_1047224581

_1214211329.doc


Osztály







adatok







metódusok







állapot







Objektum:Osztály












_1035007439.doc


EgyObjektum







SokObjektum1







SokObjektum2







SokObjektum3







SokOsztály







EgyOsztály







1







1..5







Osztálydiagram







Példánydiagram (Objektumdiagram)







használja












