10. tétel
A fémek általános jellemzése

A fémek csoportjához tartozik a kémiai elemek nagyobbik része. (A transzurán elemekkel együtt 88.) A fémek a periódusos rendszerben a bór-asztácium vonaltól balra találhatóak, kivéve a hidrogént.

Általános tulajdonságaik:

Csoportosításuk:

Színük:

Ötvözetek:

 

Korrózió:

Korrózió-nak nevezzük elsősorban azokat a kémiai reakciókat, melyek során a fémek felületéről kiinduló és a fémek belseje felé haladó kémiai vagy elektrokémiai változások során az adott fémfelület roncsolódik.
A kémiai reakciók hajtóereje minden esetben a nemesgázszerkezet elérése, így a fémek idővel a levegő oxigénjével és a levegőben található vízpárával reakcióba lépnek és így alacsonyabb energiaszintre kerülnek. A fémek ezekben a folyamatokban oxidációt végeznek, vagyis
elektront adnak le. Leggyakoribb ilyen folyamat az acél és a vas oxidációja, vagyis a rozsdásodás.

Alkálifém

Az alkálifémek a periódusos rendszer I-es főcsoportjában, (IUPAC szerinti 1-es csoportjában) található elemek, a hidrogén kivételével (bár bizonyos esetekben a hidrogén is ide sorolható). Az alkálifémek közé a következő elemek tartoznak: lítium (Li), nátrium (Na), kálium (K), rubídium (Rb), cézium (Cs) és a francium (Fr). Az alkálifémek nagyon reakcióképesek, ezért elemi állapotban nem találhatóak meg a természetben.

Az alkálifémek közös tulajdonságai:

Extrém magas nyomáson, mint amilyen a Jupiter bolygó magjában uralkodik, a hidrogén is fémes tulajdonságúvá válik, és a többi alkálifémhez hasonlóan viselkedik.

Lángfestés:
Jellegzetes tulajdonságuk a lángfestés, ezt a pirotechnikában használják ki:

Előállítás:
Általában olvadékelektrolízissel, elsősorban kloridból, hidroxidból vagy karbonátból.

Felhasználás:

Fontosabb vegyületeik:

Alkáliföldfém

Az alkáliföldfémek a periódusos rendszer II-es főcsoportjában, (IUPAC szerinti 2-es csoportjában) található elemek. A berillium (Be), magnézium (Mg), kalcium (Ca), stroncium (Sr), bárium (Ba) és a rádium (Ra) tartozik ebbe a csoportba.

Az alkáliföldfémek közös tulajdonságai:

A magnézium kevésbé reakcióképes, mivel felületén – a levegő oxigénjével érintkezve – összefüggő oxidréteg alakul ki, mely megóvja a további oxidációtól. Az alkáliföldfémek közül külön kell említeni a berilliumot, mely a csoport többi elemétől erősen eltérő fizikai és kémiai tulajdonságokat mutat. Rideg, kemény fém, kevésbé reakcióképes, mint a csoport többi eleme. A másik érdekes elem a rádium, mely radioaktív tulajdonságokkal rendelkezik.

Fontosabb vegyületeik:

égetett mész + víz → mészhidrát (exoterm reakció, mészoltás) mészhidrát + víz → mészpép + víz → mésztej (meszelésnél használják) + víz, majd ülepítés → meszes víz (szén-dioxid kimutatására)

vízzel keverve sűrű szuszpenzió, mely vízben nem oldódik jól felveszi a kristályvizét → térfogatnövekedés ha túlhevítjük, összes kristályvizét elveszíti → anhidrit

Lángfestés:

Alumínium (Al)

Az alumínium (nyelvújításkori magyar nevén timany) a periódusos rendszer III. főcsoportjába tartozó könnyűfém. Rendszáma 13, vegyjele Al. Ezüstös színű, levegő hatására a felszínén pillanatok alatt oxidréteg alakul ki, amely megvédi a további oxidációtól. Nem színezi a lángot. Az alumíniumot és az ötvözeteit az iparban nagy mennyiségben alkalmazzák a kis sűrűségük és a kedvező mechanikai sajátságaik miatt.

Jellemzői:
Az alumínium puha, vágható, ezüstfehér, porrá törve szürke könnyűfém. A levegő oxigénjével gyorsan reagál, és a felületét védő alumínium-oxid (Al2O3) miatt passzív: a tömény savak nem támadják meg. Amfoter jellegű, ebből következik, hogy lúgok és híg savak oldják aluminátok, illetve alumínium-sók képződése közben. Ha eltávolítjuk az oxidréteget, reagál vízzel; ekkor alumínium-hidroxid (Al(OH)3) keletkezik és hidrogéngáz szabadul föl. Az alumíniumtermékeken a védő oxidréteget mesterségesen vastagítják (eloxálás). Az alumíniumedényeket nem jó súrolni, mert a védőréteg nélkül az alumínium reakcióba lép a levegő oxigénjével és víztartalmával.

Fizikai tulajdonságai:

Kristályrácsa lapközepes köbös. Nem mágnesezhető. Szakítószilárdsága kicsi. Rosszul önthető.

Előfordulása:
Az alumínium az oxigén és a szilícium után a földkéreg harmadik leggyakoribb eleme. Nagy kémiai reakcióképessége miatt elemi állapotában nem fordul elő. Fontos összetevője az agyagásványoknak, a bauxitnak, a csillámoknak és számos kőzetalkotó ásványnak, az úgynevezett alumínium-szilikátoknak.

Előállítása:
Régebben alumínium-klorid nátriumos redukciójával, a Wöhler-eljárással állították elő:

\mathrm{AlCl_3 + 3 \ Na \rightarrow Al + 3\ 
NaCl}\,\!

Ma az alumíniumgyártás nyersanyaga a bauxit. A bauxitot először a Bayer-eljárással timfölddé alakítják, tehát az alumínium-oxidot nagy hőmérsékleten, NaOH oldattal oldják ki. A keletkezett aluminátlúgot ülepítéssel és szűréssel szétválasztják a fel nem oldott nagy vastartalmú maradéktól, a vörösiszaptól. Az oldatból hígítással és hűtéssel választják ki az alumínium-hidroxidot. Ezt szűrik, majd csőkemencében víztelenítik (kalcinálják), aminek eredményeként alumínium-oxid képződik. Ezután a Hall-Héroult eljárással a timföldhöz kriolitot kevernek, hogy csökkentsék olvadáspontját, majd hevítik és elektrolízissel alumíniummá redukálják:

\mathrm{2 \ Al_2O_3 \rightarrow 4\ Al + 3\ 
O_2}\,\!

Negatív elektródként grafittal, vagy tiszta szénnel bélelt acél kádakat használnak, és az olvadékba fölülről merítik a pozitív pólust, ami szintén szén vagy grafit. Az a pozitív elektródon fejlődő oxigén szén-dioxiddá és (mérgező) szén-monoxiddá oxidálja a szén- vagy grafitelektródot, amit ezért időnként cserélni vagy pótolni kell. Az alumínium a kád alján gyűlik össze.

Felhasználása :

Vas (Fe)

A vas fémes tulajdonságú kémiai elem, rendszáma a periódusos rendszerben 26, atomtömege 55,845 g/mol. A vegyjele Fe, ami a latin ferrum szóból ered. Elemi állapotban szürkésfehér, szívós, jól alakítható fém. A földkéreg 4,8% vasat tartalmaz különböző vegyületek alakjában, elemi vas a természetben nem található (eltekintve a meteoritvastól). Az elemek közül ennél több csak oxigénből, szilíciumból és alumíniumból van. A vas ipari fontosságú elem. Érceiből redukálással állítják elő. Először a nyersvasgyártási eljárással nyersvasat, öntészeti célra öntöttvasat, az acélgyártás műveleteivel acélt állítanak elő.

Reakciói:

A vas levegőn csak magas hőmérsékleten (1250 K) oxidálódik. Ekkor vas(II)-vas(III)-oxid, Fe3O4 keletkezik. A száraz klórgáz és a cseppfolyós klór közönséges körülmények között a vasat nem támadja meg, ezért hozható a klór vaspalackokban forgalomba. Viszont víznyomok jelenlétében a vas már szobahőmérsékleten is reagál a klórral. A jód 100 °C-on reagál a vassal. Ekkor a vas vas(II)-jodiddá (FeI2) oxidálódik. Hevítés hatására kénnel és foszforral is reakcióba lép, nitrogénnel azonban magas hőmérsékleten sem reagál.

Kémiai tulajdonságai:

A Fe2+ ion-vegyületek zöld színűek, az aniontól függően, de ezek a sók nem stabilak, levegőn átalakulnak sárga színű Fe3+ vegyületekké. A kettős szulfátok stabilabbak – például a Mohr-só, ennek képlete Fe(NH4)2(SO4)2 –, de levegőn lassan ezek is oxidálódnak. A vas(III)-oxalát ellenben fény hatására vas(II)-oxaláttá alakul (Fe2(C2O4)3 → 2 Fe(COO)2+2 CO2).

A Fe2+ iont tartalmazó vas(II)-vegyületek redukáló tulajdonságúak (legerősebben lúgos közegben), könnyen oxidálódnak stabilabb vas(III)-vegyületekké. Bár a vas oxidációs száma vegyületeiben leggyakrabban +2 vagy +3, egyes vegyületeiben (a ferrátokban) a vas oxidációs száma +6 is lehet.

Reakcióképessége miatt kísérő elemeitől nehezen, hosszadalmas laboratóriumi műveletekkel is csak részben sikerül megtisztítani. A színvasnak minősíthető fém is csak mintegy 99,998% Fe-t tartalmaz; ezt főleg kísérleti célokra használják. Ipari célra – amennyiben tiszta vasra van szükség – nem ennyire tiszta, hanem gazdaságosabban előállítható vasfajtákat használnak, például az elektrolitvasat, vagy a túloxidálással készült Armco-vasat.

Fizikai tulajdonságai:

A vas 1538 °C-on olvad. Az olvadt vas hűlés közben ugyanezen a hőmérsékleten szabályos rendszerbeli, térben középpontos kockarácsú (vagy tércentrált) kristályokká dermed; a kockarács élei 0,293 nm hosszúak. További hűlés során a kristályszerkezet megváltozik az A4 = 1394 °C hőmérsékleten: felületen középpontos (lapcentrált) rácsúak lesznek, a rácselem élei 0,368 nm-re változnak. Miközben az acél tovább hűl, A3 = 912 °C hőmérsékleten a kristályok ismét térben középpontos kockarácsúak lesznek, a rácselem mérete 0,290 nm. Ezután több átalakulásra már nem kerül sor; szobahőmérsékleten a vas szintén tércentrált kockarácsú, csupán az élei rövidülnek meg 0,286 nm-re a zsugorodás miatt.

A vasnak tehát három kristályos módosulata van: 1538 és 1394 °C között a δ-vas, 1394 és 912 °C között a γ-vas, 912 °C-nál kisebb hőmérsékleten pedig az α-vas állandó. Látható, hogy az α(δ)- és az α-vas azonos rácsszerkezetű, csupán a rácselemük méretében különböznek egymástól, ami pedig a hőtágulással magyarázható (ebből adódik jelzésük egyezősége is). Régebben megkülönböztették a β-vasat is, de ez csak a mágnesezhetőség határát (770 °C) jelölte, nem külön módosulat. Fontos megjegyezni, hogy a vas módosulatainak a sűrűsége (fajtérfogata) különböző. Ennek az az oka, hogy az α-vas kockarácsában a vasatomok nem olyan szorosan helyezkednek el, mint a γ-vaséban.

A vas legfontosabb ötvözete az acél, ami ötvözőként szenet és más ötvözőelemeket tartalmaz. Az ötvözők, de a szándék nélkül vasba került többi elem hatására is, az acél keményebbé, szilárdabbá – bizonyos határon túl pedig akár rideggé is – válik.
A vas az elektromosságot és a hőt közepesen vezeti, és mágnesezhető. A vason kívül csak két másik fémes elem, a
kobalt és a nikkel mágnesezhető.

Előállítás:

A vasgyártás alapanyaga a vasérc és különböző segédanyagok (szén-koksz, salakképző anyag és levegő). A folyamat a nagyolvasztóban történik, ahol felülről adagolják a vasércet, a kokszot és salakképző anyagként mészkövet. A befúvott levegő a szénnel (koksz) reakcióba lép és szén-dioxid, majd szén-monoxid képződik. A keletkező szén-monoxid, illetve a szén a vasérccel reagálva elemi vasat és valamilyen szén-oxidot eredményez. A keletkező olvadt vas az ún. nyersvas, amely széntartalma (1,6-4%) miatt rideg, törékeny anyag. Az emlíett tulajdonságai miatt a nyersvas nem sok mindenre használható, ezért acélt gyártanak belőle. Az acélgyártás során a nyersvas széntartalmát 1,7 % alá csökkentik, valamint különböző ötvöző anyagokat adagolnak hozzá. A keletkező acél (az ötvözőelemektől függően) kemény, szívós, jól megmunkálható, korrózió- és saválló.

A befúvott levegő elégeti a szenet:
C + O2 = CO2

Magas hőmérsékleten az izzó szén reakcióba lép a szén-dioxiddal
 CO2 + C = 2CO
A vasércet az izzó szén és a szén-monoxid redukálja ("oxigén elvonás")
Fe2O3 + 3C = 2Fe + 3CO
Fe2O3 + 3CO = 2Fe + 3CO2