19. tétel
Nukleinsavak

A nukleinsavak monomer nukleotid láncokból álló makromolekulák. A biokémiában ezek a molekulák felelősek a sejten belüli genetikai információ hordozásáért. A leggyakoribb nukleinsavak a dezoxiribonukleinsav (DNS) és a ribonukleinsav (RNS). Élő szervezetekben univerzálisan fordulnak elő, sejtekben és vírusokban egyaránt megtalálhatók. A nukleinsavak felfedezése (1871) Friedrich Miescher nevéhez fűződik.

A két természetesen előforduló DNS és RNS-en kívül léteznek még mesterséges nukleinsavak, ezek a peptid-nukleinsavak (PNS), Morfolino- és zárolt nukleinsavak (ZNS), valamint glikol nukleinsavak (GNS) és treóz nukleinsavak (TNS). Mindegyiket molekulagerincük változása különbözteti meg a természetes fajtáktól.

Kémiai felépítés:

A "nukleinsav" fogalom a biopolimerek családjának egy általános elnevezése ami a sejtmagon belüli szerepüktől származik. Ez utóbbit felépítő monomerek a nukleotidok.

Mindegyik nukleotid három összetevőből áll: - egy nitrogén alapú heterociklusos bázisból, ami egy összekapcsolt purinbázist és pirimidinbázist jelent; egy pentóz cukorból; és végül egy foszfátcsoportból. A nukleinsav típusai elsősorban a nukleotidokban lévő cukrok felépítésétől különböznek - a DNS 2-dezoxiribózt tartalmaz, az RNS ribózt (a különbséget a ribózban lévő hidroxilcsoport határozza meg). A két nukleinsav típusban található nitrogén alapú bázisok szintén különböznek egymástól: az adenin, guanin és citozin mind a DNS-ben, mind az RNS-ben megtalálható, azonban a timin csak a DNS-ben fordul elő, az uracil meg csak az RNS-re jellemző. Léteznek még egyéb ritkán előforduló nukleobázisok, mint az inozin ami az érett tRNS szálaiban fordul elő.

A nukleinsavak általában egy vagy kettős szálúak, noha három vagy több szállal rendelkező szerkezeteket tudnak létrehozni. Egy kettős szálú nukleinsav két darab egyszálú nukleinsavból áll amelyeket hidrogén kötés tart össze a DNS dupla-hélix szerkezetéhez hasonlóan. Ez utóbbival szemben az RNS szokásosan egyszálú, de bármilyen szál másodlagos szerkezetet tud létrehozni önmagára gyűrődve, pl.: tRNS és a rRNS. A sejteken belül a DNS szokás szerint kettős szálú, bár egyes vírusok egyszálúak genomjukhoz igazodva, hasonlóképpen, a retrovírusok RNS-e is egyszálú.

A nukleinsavakban lévő foszfátok és cukrok megosztott oxigénatomok kapcsolódása útján, váltakozó láncok formájában vannak egymáshoz kötve, ez által létrehozva egy foszfodiészter kötést. A szénatomok melyekhez a foszfátcsoportok kötődnek, a cukor 3' és 5' végén találhatók, ez által polaritást létrehozva a nukleinsavaknak. A bázisok a glikozid kapcsolódástól a pentóz cukorgyűrű 1' végéig terjednek. Egymással való kapcsolódásuk a pirimidinek első nitrogénatomja és a purinok kilencedik N-atomján keresztül jön létre (?)

Nukleinsav típusok:

Ribonukleinsav

A ribonukleinsav, vagy RNS, nukleotid monomerekből álló nukleinsav polimer, ami fontos szerepet tölt be a DNS-ről valő genetikiai információ átírásában. Az RNS hírvivőként érvényesül a DNS és a riboszomának nevezett fehérjeszintézis komplexek között, emellett nélkülözhetetlen riboszóma mennyiséget termel, és a fehérjeszintézisben felhasználandó aminosavaknak fontos szállító molekulája.

Dezoxiribonukleinsav

A dezoxiribonukleinsav azon genetikai utasítások halmazát hordozza, amelyek az összes ismert élő organizmus fejlődéséért és működéséért felelősek. A DNS molekula fő szerepe a hosszútávú információtárolás ami egy tervrajzhoz hasonlítható mivel az összes utasítást tartalmazza a többi sejtalkotó felépítéséhez, pl. fehérjék és RNS molekulák. Ezt a genetikai információt hordozó részeket géneknek nevezzük, de léteznek egyéb ilyesféle DNS szakaszok, amelyek strukturális célokat szolgálnak, vagy ennek használatba vételét szabályozzák.

A DNS felépítése négy típusú bázisból áll: citozin, timin, guanin és adenin, ezek egymáshoz kapcsoltan láncot alkotnak. A nukleinsav bázisokat egy cukorfoszfát gerinc tartja össze. Két ilyen lánc egymásra csavarodva alkotja a DNS molekula dupla-hélix formáját.

A nukleinsav alkotóelemei:

Nukleobázisok

A nukleobázisok nitrogén tartalmú aromás heterociklusos szerves alkotóelemek, a bázis párosításban résztvevő DNS és RNS részei. A nukleinsav bázisok a következők : citozin (C), guanin (G), adenin (A), timin (T). Az RNS nem tartalmaz timint, helyette uracil (U) található.

http://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Adenine_chemical_structure.png/120px-Adenine_chemical_structure.png

Adenin

http://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Thymine_chemical_structure.png/120px-Thymine_chemical_structure.png

Timin

http://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Guanine_chemical_structure.png/120px-Guanine_chemical_structure.png

Guanin

http://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Cytosine_chemical_structure.png/120px-Cytosine_chemical_structure.png

Citozin

http://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Uracil_chemical_structure.png/120px-Uracil_chemical_structure.pngUracil

A nukleinsav bázisok kiegészítik egymást, és ehhez hűen a következő bázis párok jönnek létre: citozin-guanin, adenin-timin (RNS-ben adenin-uracil). A citozin-guanin páros kölcsönhatása az adenin-timin párosénál sokkal erősebb, ez a hidrogén kötések mennyiségétől függ, ami az első bázispárnál három, az utóbbinál csak kettő. Ebből adódóan, minél magasabb fokú a GC összetétel a kettős szálú DNS-en belül, annál stabilabb és magasabb olvadáspontú a molekula.

Két fő nukleinsav osztály létezik vázukat kialakítő molekulájukhoz igazodóan. Ezek a kettős szálú purinok, valamint az egyes szálú pirimidinek. A purinok az adenin és guanin (rövidítve R), a citozin, timin és uracil mind pirimidinek (rövidítés szerint Y).

A hipoxantin és xantin az adenin és guanin mutáns formái amelyek mutagén tényezők jelenléte által jöttek létre, kiemelhető a deamináció, ami az amincsoport egy hidroxilcsoporttal való helyettesítése. A xantin és hipoxantin rövidítése X és HX.

Nukleozidok

A nukleozidok egy ribóz vagy dezoxiribóz cukorgyűrű nukleinsav bázishoz való kapcsolódásának glikozinaminjai. Dióhéjban, a nukleozid egy cukorhoz kapcsolódó bázis. A megnevezés a nukleinsav bázisok neveiből származik. A nukleozidok a : citidin, uridin, adenozin, guanozin és timidin, DNS-ben és RNS-ben fordulnak elő. Nukleozidból foszfát hozzáadásával (egy specifikus kináz enzim foszforilációjával) jönnek létre. Antivirális tényezőként hatnak a nukleozid analógok, mint az aciklovir.

Nukleotidok és dezoxinukleotidok

A nukleotidok nukleozidokból és foszfátcsoportból állnak. A DNS és RNS monomerjei, valamint számos fontos kofaktor egységei mint a KoA, a FAD, FMN, ATP és a NADP+. A nukleozidok sejten belüli szerepe a metabolizmusban, és a jelzésben való részvétel.

A nukleotidok megnevezése a bázisukat alakító nukleozidokról kapták, elnevezésük szoros összeköttetésben van a bennük lévő foszfátok számától, pl.

További foszfát hozzáadásával, a sorrend folyatódik adenozin di- és trifoszfátot létrehozva.

http://www.origo.hu/i/0901/20090111rnsesdnst1.jpg

Dezoxiribonukleinsav

A dezoxiribonukleinsav (közismert rövidítése: DNS; angolul: deoxyribonucleic acid – DNA) a nukleinsavaknak azon típusa, melyben a nukleotid alegységek dezoxiribózt (pontosabban 2-dezoxi-D-ribózt) tartalmaznak. Biológiai jelentősége igen fontos.
A biológiai információ átadódását egyik generációtól az azt követő generációnak az
örökítőanyag teszi lehetővé. A prokarióták és eukarióták genetikai információját hordozó anyag (genom) a DNS, vírusokban a genom lehet DNS vagy RNS.
A DNS szerkezete lehetővé teszi az információ majdnem tökéletesen stabil tárolását, pontos megkettőződését és átadását. A DNS kémiai szerkezete magában rejti az
evolúcióban fontos szerkezetváltozás lehetőségét is. Az információ nemcsak a fehérjék szerkezetére vonatkozik, hanem módot nyújt azok szintézisének mennyiségi és időbeli szabályozására is, így végső soron a sejtek csaknem valamennyi funkciója a DNS ellenőrzése alatt áll.
A fehérjék szerkezetére vonatkozó információ hárombetűs genetikai kód formájában tárolódik és adódik át. Az információáramlás iránya kevés
kivételtől eltekintve: DNS → RNS → fehérje.

A DNS szerkezete:

Mint ahogy az a nevéből is látható a DNS egy nukleinsav. A nukleinsavak ismétlődő nukleotid egységekből álló nagy méretű molekulák (polimerek). Minden nukleotid három egymáshoz kapcsolódó elemből áll:

A polimer váza a nukleotidok foszfodiészter kötéssel egymáshoz kapcsolódó dezoxiribóz részeiből áll. A foszfodiészter kötés az egyik nukleotid cukor komponensének 3'OH-csoportja és a következő cukorkomponensének 5'OH-ja között található, foszfátcsoport „közbeiktatásával”, amint erre a kötés neve is utal. A szerkezet változó része az egymást követő nukleotidok bázisainak a sorrendje, ez a bázissorrend határozza meg az információt. A bázisok két csoportra oszthatók: pirimidinekre és purinokra. A pirimidinek 6 atomos, a purinok 9 atomos heterociklusos gyűrűt tartalmaznak. Mindkét nukleinsavféleség (DNS, RNS) négyfajta bázist tartalmaz: a purinok közé tartozó adenin és guanin a DNS-nek és az RNS-nek egyaránt alkotórésze. A pirimidinek közül a DNS-ben citozin és timin található, az RNS-ben citozin és uracil van. Az uracil és timin közötti egyetlen különbség az, hogy az 5. szénatomon a timinben egy metilcsoport helyezkedik el. A bázisokat gyakran csak kezdőbetűikkel jelöljük, így a DNS-ben A, G, C és T, míg az RNS-ben A, G, C és U fordul elő.

A pentóznak két típusát találjuk meg a nukleinsavakban: a DNS-ben a dezoxiribóz, míg az RNS-ben a ribóz fordul elő. A különbség közöttük az, hogy a dezoxiribóz 2. szénatomján -OH csoport helyett csak -H van. A bázisok a pentóz 1. szénatomjához kapcsolódnak glikozid kötéssel. (A pirimidinek az 1., a purinok a 9. nitrogénatomjukkal kapcsolódnak a pentózhoz.) Hogy megkülönböztethessük a bázisok és a pentózok atomszámait, az utóbbiakat vesszővel (pl: 5', 3') jelöljük.

A bázisok és a pentózok által alkotott vegyületeket nukleozidoknak nevezzük, melyek egy foszfát csoporttal kiegészülve alkotják a nukleotidokat. A nukleinsavakban a nukleotidok összekapcsolódva polinukleotid láncokat hoznak létre, melyek gerincét alternáló pentóz és foszfátcsoportok képezik.

A DNS szerkezetének felfedezése:

Az 1950-es években három csoport tűzte ki céljául a DNS szerkezetének felfedezését. Az első csoport a londoni King's College-en alakult és Maurice Wilkins vezette. Később Rosalind Franklin csatlakozott. Egy másik, Francis Crickből és James D. Watsonból álló csoport alakult Cambridge-ben. A harmadik csoport Caltechben volt és Linus Pauling vezette. Crick és Watson fizikai modelleket készített fémrudakból és golyókból, amikben egyesítették a nukleotidok ismert kémiai szerkezetét ugyanúgy, mint a kapcsolatokat, amik a nukleotidokat a következőhöz kapcsolják a polimer hosszában. A King's College-en Maurice Wilkins és Rosalind Franklin röntgensugár-elhajlási mintákat vizsgáltak a DNS-láncon. A három csoport közül csak a londoni csoport tudott a szerkezet tisztázására alkalmas, jó minőségű elhajlási mintát készíteni.

A DNS kémiai szerkezete:

A hélix-szerkezet

1948-ban Pauling felfedezte, hogy sok protein tartalmaz hélikus alakzatokat. Pauling erre a szerkezetre röntgenmintákból következtetett. (Pauling Astbury adatai alapján később egy háromláncos hélix-szerkezetre következtetett hibásan.) Még a kezdeti elhajlási adatokból a DNS-ről, amit Maurice Wilkins készített, nyilvánvaló volt, hogy a szerkezetben hélixek vannak. De ez a megérzés csak a kezdet volt. Az a kérdés, hogy hány szál kapcsolódik, még nyitott maradt, ugyanúgy, mint hogy vajon ez a szám ugyanannyi-e minden hélixnél, vagy hogy a bázisok a hélixtengely felé néznek, vagy attól el, és végül hogy mik a konkrét kötési szögek és az atomok pontos koordinátái. Ezek a kérdések motiválták Watson és Crick modellezési próbálkozásait.

Egymást kiegészítő nukleotidok

A modellezésben Watson és Crick arra korlátozták magukat, amit kémiailag és biológiailag ésszerűnek láttak. A lehetőségek spektruma viszont még mindig széles volt. 1952-ben áttörés következett be, amikor Erwin Chargaff meglátogatta Cambridge-t és Cricket inspirálta azokkal a kísérletekkel, amiket 1947-ben publikált. Chargaff megfigyelte, hogy a négy nukleotid aránya változik a különböző mintákban, de bizonyos nukleotidpárok esetén – adenin és timin, guanin és citozin – a két nukleotid mindig egyenlő arányban mutatkozik.

Watson és Crick modellje

Crick és Watson DNS modellje, ami 1953-ban épült, jelenleg a Londoni Nemzeti Tudományos Múzeumban tekinthető meg.

Watson és Crick elkezdtek kettős hélix elrendezéseken gondolkodni, de nem volt elég információjuk a csavarodásról és a távolságról a két szál között. Rosalind Franklinnek fel kellett fednie néhány felfedezését az Orvosi Kutatási Tanácsnak és Crick ezt az anyagot láthatta Max Perutz OKT-hez fűződő kapcsolatain keresztül. Franklin munkája igazolt egy kettős hélixet, ami a molekula külsején volt, és betekintést nyújtott a szimmetriájába, pontosabban, hogy a két spirális szál ellenkező irányba fut.

Watson és Crick ki lettek segítve Franklin adataival. Ez vitatható, mivel Franklin kritikus röntgenmintáját Franklin tudomása és beleegyezése nélkül mutatták meg Watsonnak és Cricknek. Wilkins a híres 51-es fotót egyből azután mutatta meg Watsonnak a laborjában, miután az sikertelenül próbálta rávenni Franklint, hogy segítsen megelőzni Paulingot a szerkezet megtalálásában.

Az 51-es fotó adatai alapján Watson és Crick nem csak azt tudták megállapítani, hogy a távolság a két szál között állandó, hanem a pontos 2 nanométeres értékét is meg tudták mérni. Ugyanaz a fotó adta meg nekik a a hélix 3,4 nanométer/10 bázispár „sűrűségét”.

Az utolsó ötlet akkor jött, amikor Crick és Watson meglátták, hogy a bázisok kiegészítő párosítása magyarázattal szolgálhat Chargaff elgondolkoztató felfedezésére. Ennek ellenére a bázisok szerkezetét hibásan tippelték a tankönyvekben enol tautomernek, mivel nagyobb eséllyel vannak ketonformában. Amikor Jerry Donohue rámutatott erre a téveszmére Watsonnak, Watson gyorsan rájött, hogy az adenin-timin párok, és a guanin és citozin párok majdnem megegyező formájúak, és egyenlő méretű „létrafokokat” hoznak létre a két szál között. A bázispárokkal Watson és Crick gyorsan olyan modell felé tért, amit már azelőtt bejelentettek, mielőtt Franklin bármelyik munkáját publikálta volna.

Franklin két lépésre volt a megoldástól. Nem jött rá a bázispárok létezésére és alábecsülte a szimmetria létét. Ennek ellenére egyedül dolgozott, nem volt rendszeres kapcsolata egy partnerrel (mint Crick és Watson esetében) és más szakértőkkel (mint Jerry Donohue-val). A jegyzetei azt mutatják, hogy mind Jerry Donohue munkájára tekintettel volt a bázisok tautomer formájával kapcsolatban (a ketonformát használta 3 bázisnál), mind Chargaff munkájára.

Franklin adatainak elárulása Watsonnak dühített néhány embert, akik úgy hitték, Franklin nem kapta meg a kellő elismerést és esetleg felfedezte a szerkezetet egyedül, Crick és Watson előtt. Crick és Watson híres cikkében a Nature-ben 1953-ban azt mondták, hogy a munkájukat Wilkins és Franklin munkája ösztönözte, a munkájuk alapja volt. Ennek ellenére megegyeztek Wilkins-szel és Franklinnel, hogy cikkeiket a Nature közös lapszámában hozzák nyilvánosságra az ígért szerkezet hasznára.

A Watson-Crick modell

Watson és Crick modellje nagy figyelmet vonzott már a bemutatásakor. Az 1953. február 21-i végkövetkeztetésükhöz jutván Watson és Crick az első bejelentést február 28-án tették közzé. Cikkük az „Egy szerkezeti változat a dezoxiribonukleinsavra” április 25-én került nyomtatásba. Egy hangsúlyos bemutatón 1957-ben Crick lefektette a "központi dogmát", ami megjósolta a kapcsolatot a DNS, az RNS és a fehérjék között, és megformálta a „szekvencia-elméletet”. A replikációt, a kettős hélix szerkezet egy kritikus bizonyítékát 1958-ban fedezték fel, a Meselson-Stahl kísérlet formájában. Crick és munkatársai kimutatták, hogy a genetikai kód egymást nem átfedő, kodonnak nevezett bázishármasokból áll. Har Gobind Khorana és mások nem sokkal ezután megfejtették a DNS-kódot. Ezek a felfedezések voltak a molekuláris biológia kezdetei.

Watsont, Cricket, és Wilkinst 1962-ben orvosi Nobel-díjjal jutalmazták a DNS szerkezetének felfedezéséért. Franklin addigra meghalt rákban 37 éves korában. A Nobel-díjat nem osztják posztumusz, ha még élt volna, a döntés a megosztott Nobel-díjról nehéz lett volna, mivel maximum hárman oszthatják meg a díjat, de mivel a munkájuk vegyészetnek számít, feltételezhető, hogy Wilkins és Franklin inkább kémiai Nobelt kapott volna.

Ribonukleinsav

A ribonukleinsav (RNS) a DNS-hez (dezoxiribonukleinsav) hasonló polimer óriásmolekula, amely sok ismétlődő egységből épül fel. Egységei a ribonukleotidok. A ribonukleotidok száma egy RNS-molekulán belül 75-től több ezerig terjedhet. Minden ribonukleotid egy ribóz cukormolekulából, egy nitrogéntartalmú szerves bázisból és egy foszfátcsoportból áll. Az egyes egységek a foszfátcsoporton keresztül, ún. foszfodiészter-kötéssel kapcsolódnak egymáshoz. A szerves bázisok az RNS-ben adenin (A), citozin (C), guanin (G) és uracil (U) lehetnek (a DNS-ben az uracil helyett timin található). Minden szervezet RNS-molekulák segítségével szintetizál fehérjéket. Néhány egyszerű szervezet (például vírusok) örökítőanyaga RNS. Egyes RNS-molekulák katalitikus tulajdonságokkal bírnak, így enzimfunkciót is betöltenek (ribozim enzimek).

Az RNS típusai:

A génexpresszióban, tehát a DNS-ben kódolt öröklött tulajdonságok kifejeződésében szerepet játszó RNS-molekulák főbb csoportjai a következők:

RNS-szintézis (transzkripció):

Az RNS-molekulák szintézisét specifikus enzimek, az RNS-polimerázok katalizálják. A polimerázok működéséhez a következő összetevőkre van szükség:

Az RNS-szintézis mechanizmusa hasonlít a DNS-replikáció mechanizmusához: az RNS-polimeráz enzim mintegy „leolvassa” a DNS-t felépítő nukleotidok sorrendjét, és olyan nukleozidokat épít be a hosszabbodó RNS-láncba, melyek bázisai a DNS-bázisaival ideiglenes hidrogénkötéseket képesek létesíteni (az adenin az uracillal, a guanin a citozinnal állítható párba ilyen szempontból). Az épülő lánchoz egy újabb nukleozid-trifoszfát kötődik, miközben a ribóz 3’ szénatomjához kapcsoló hidroxilcsoport (OH-) közvetítésével a trifoszfátot alkotó három foszfátcsoport két tagja hidrolizál, pirofoszfátként leválik, a megmaradt nukleozid-monofoszfát ezzel egy időben a lánchoz kapcsolódik. A DNS templát azon helyét, ahol az átírás megkezdődik, promóter szakasznak, ahol befejeződik, terminátor szakasznak nevezzük.

Az RNS-polimeráz és a DNS-polimeráz működése különbözik abban, hogy az RNS-polimeráznak nincsen nukleáz (nukleinsav bontó) aktivitása, így képtelen kijavítani a hibásan bekötött nukleotidokat. Ez evolúciós szempontból megengedhető hibarátát eredményez. A hibás átírás a transzkripció esetében csak az aktuálisan képződő fehérjemolekulát teszi nagy valószínűséggel működésképtelenné, de mikor újból fehérjeátirat képződik az adott génről (expresszálódik), már helyesen íródhat át újra. Ezzel szemben, ha a DNS-polimeráz hibázik, a sejt osztódása után az egyik utódsejtben lévő DNS hibás lesz, arról már nem íródhat át helyes sorrendű mRNS. Különbség a DNS-polimerázzal szemben az is, hogy az RNS-polimeráz nem igényel primert, tehát olyan rövid láncrészletet, ahol megkezdheti a lánc hosszabbítását.

Az RNS-átszabás (splicing):

A baktériumok DNS-e teljes egészében kódoló szakaszokból, génekből áll. Ezzel szemben az eukarióta szervezetek DNS-ében a gének nem folyamatosan tartalmaznak kódoló régiókat, közéjük ékelődve aminosavat nem kódoló szakaszokat találunk. Ezeket a szakaszokat intronoknak nevezzük, míg a kódoló szakaszokat exonoknak. A transzkripció során a teljes gén átíródik mRNS-be, függetlenül attól, hogy az adott szakasz exon vagy intron. Az átíráskor létrejött mRNS-t „primer transzkriptumnak", átiratnak nevezzük. Ebből a fehérjeszintézis (transzláció) előtt az átszabásnak (splicing) nevezett folyamat során kivágódnak az intronok. Az átszabás a spliceosomákban megy végbe, amelyet fehérjék és egy kis molekulájú RNS, az snRNS alkotnak. Az intronok felismerését segíti, hogy kezdetükön szinte mindig GU-t (guanin-uracil) találunk, és AG-vel végződnek, amit egy pirimidinben gazdag régió előz meg. Az exonok egy génen belül sokszor, de nem mindig a kódolt fehérje egy-egy doménjét (alegységét) kódolják.