Ebben a részben a galaxisokkal fogunk megismerkedni a lehetőlegrészletesebb módon. Nagyon fontos tudnunk, mi egy galaxis valójában, ha teljes képet akarunk kapni a világegyetemünkről.
Hogy mi az a galaxis? A galaxis szó a Tejútrendszer görög nevéből származik (a görög gala szó jelentése tej), a monda szerint ugyanis a Tejút a Herkulest szoptató Héra istennő szétfröccsent teje.
A galaxisok égitestek: csillagok, csillagközi gázok, por és a láthatatlan sötét anyag nagy kiterjedésű, gravitációsan kötött rendszerei. Egy tipikus galaxis tízmillió és ezermilliárd (107–1012) közötti számú csillaggal rendelkezik, és mind azonos középpont körül kering. A magányos csillagokon kívül egy galaxisban rengeteg több csillagot tartalmazó rendszer, nyílthalmaz, gömbhalmaz és köd található. A legtöbb galaxis átmérője több ezertől több százezer fényévig terjed és közöttük több millió fényév távolság a jellemző.
Felfedezésük
1610-ben Galileo Galilei távcsővel tanulmányozta azt a fényes csíkot az égen, amit Tejútként ismertek és felfedezte, hogy rengeteg halvány csillagból áll. 1755-ben egy tanulmányában Immanuel Kant helyesen feltételezte, hogy a galaxis egy forgó test lehet, amelyet rengeteg csillag alkot, és ezeket a csillagokat valamiféle vonzóerő tartja össze (a Naprendszerben tapasztalthoz hasonló, csak ennél sokkal erősebb). Az ezáltal létrejött csillagokból álló lemez egy csíkként látszik, ha mi is benne vagyunk.
A 18. század végén Charles Messier kiadott egy katalógust a 109 legfényesebb ködről és csillaghalmazról, amelyet később követett egy 5000 objektumból álló katalógus (William Herschel összeállításában). 1845-ben William Parsons egy olyan távcsövet épített, amely különbséget tudott tenni az elliptikus és spirális ködök között.
![]() |
Keletkezésük
Az univerzum első galaxisai sötét anyagból, valamint abból az ősi, főleg hidrogénből és héliumból álló gázból keletkeztek, ami az ősrobbanás után betöltötte az univerzumot. Azokon a helyeken, ahol a sötét anyag sűrűsége nagy volt, a gáz és a sötét anyag saját gravitációjának engedelmeskedve húzódott össze. A galaxisok összehúzódásának sebessége a sötét anyag létezésének egyik bizonyítéka: nélküle a sokkal kisebb tömegű gázból sokkal lassabban, akár 100 milliárd évet is elérő idő alatt keletkeztek volna az első galaxisok, így viszont körülbelül egymilliárd év is elég volt meglepően nagy, a Tejútrendszerünkével összevethető tömegű galaxisok kialakulására. A galaxisok összeállására két, egymásnak ellentmondó elmélet létezik:
A „felülről lefelé” elmélet szerint a csillagközi, főleg hidrogénből és héliumból álló gáz először igen nagy, a mai galaxisokéval összemérhető tömegű felhőkké állt össze saját gravitációjának köszönhetően, majd ezekben a felhőkben keletkeztek az első (III. populációs) csillagok, melyek megjelenése után már igazi galaxisról beszélhetünk. Az elmélet mellett szóló kísérleti bizonyítékok közül a legfontosabbak a fiatal Univerzumban talált nagyméretű galaxisok, melyeknek egyszerűen nem volt idejük „végigmenni” a hierarchikus skálán (azaz nem volt idő a törpegalaxisokból kicsi, majd közepes galaxisok összeállására pár száz millió év alatt).
![]() |
2009-ben a japán Subaru távcsővel fedeztek fel egy igen nagy méretű (mintegy 55 ezer fényév átmérőjű, ez Tejútrendszerünk átmérőjének a fele) gázfelhőt, mely az ősrobbanás után 800 millió évvel létezett, és hasonlít a feltételezett ősi gázfelhőkhöz.
A másik, „alulról felfelé” elmélet szerint az ősi gáz először törpegalaxis méretű felhőkké állt össze, amelyekben kigyúltak az első csillagok, majd ezek a törpegalaxisok egymással folyamatosan ütközve álltak össze egyre nagyobb galaxisokká. A legelső galaxisokat napjaink legnagyobb távcsöveivel sem tudjuk megfigyelni, de a Hubble űrtávcső által készített képek szerint a fiatal Univerzumban nagyon sok apró, de az ütközésektől és a kölcsönhatástól eltorzult formájú galaxist látni, amely az utóbbi elméletet látszik alátámasztani.
Az első galaxisok létrehozatalában nagyon fontos szerepet játszottak a fiatal világegyetemben (az ősrobbanás utáni 1 milliárd éven belül) már létező szupermasszív fekete lyukak, melyek, maguk köré anyagot gyűjtve létrehozták az első galaxisok kezdeményeit. Napjainkban ezen központi fekete lyukak tömege arányos a galaxisok központi dudorának tömegével, a korai univerzumban viszont a fekete lyukak a galaxismagok tömegének lényegesen nagyobb részét tették ki, azaz nem a galaxisok központi régiói hizlalták a fekete lyukakat a mai méretükre, hanem ellenkezőleg, a fekete lukak gyűjtötték maguk köré a ezeket.
Az ősi anyagból eredetileg sok csillagközi gázt és port tartalmazó szabálytalan és spirálgalaxisok keletkeznek, melyekben a csillagközi anyag csillagokká alakul. Az intenzív csillagkeletkezést mutató galaxisokban sok a fiatal, kék csillag, így színük is kékesebb. Bár a folyamatok részleteit ma még nem ismerjük, de az utóbbi időben felfedeztek vörös spirálgalaxisokat, melyekben a csillagkeletkezés már jórészt leállt. A csillagkeletkezés üteme függ a galaxisok környezetétől, a galaxishalmazok központi vidékein ezek a folyamatok már jórészt lezajlottak, a magányos csillagvárosokban még napjainkban is tarthatnak.
Forgásuk
A Tejútrendszerhez hasonlóan más galaxisok is forognak, amit a Doppler-effektus segítségével vizsgálhatunk. Ha egy galaxist éléről látunk, akkor az egyik fele viszonylagosan felénk mozog, a másik fele pedig távolodik tőlünk. Ebben az esetben a forgási sebességek közvetlenül, sőt a centrumtól mért távolság függvényében mérhetők. Az esetek döntő részében azonban nem pontosan oldalról látjuk a galaxisokat. Ilyenkor – hasonlóan a kettőscsillagok egymás körüli keringéséhez – látszólag kisebb sebességeket mérhetünk. Megfigyeléseinknél komoly előny, hogy a galaxisok esetében a rálátás szöge megbecsülhető, és ebből a tényleges sebességek meghatározhatóak. Mindezek ellenére a rotációs sebességek kimérése egyelőre csak néhány, hozzánk közeli galaxis esetén sikerült. A galaxisok csillagainak keringési sebessége, illetve ennek eloszlása jelentősen eltér a tömeg-eloszlásuk alapján előrejelzett értéktől, ez a sötét anyag megléte melletti egyik fő érv.
Osztályozásuk
Hubble-féle osztályozás
Spirálgalaxisok (S): A leggyakoribb galaxistípus. Ahogy azt nevük is mutatja, spirális szerkezetűek. A központi, megközelítőleg gömb alakú mag II. populációs csillagokból áll, melynek középpontjában, a galaxisok nagy részében, több millió naptömegű fekete lyuk van.
A galaxismagot lapos korong veszi körül, amelyben – hasonlóan a Tejútrendszerhez – spirálkarok helyezkednek el, ezek I. populációs csillagokból állnak, és sok csillagközi anyagot tartalmaznak, bennük jelenleg is zajlik csillagkeletkezés. A csillagközi anyag az össztömegnek csupán néhány százalékát teszi ki, és a galaxis fősíkja mentén erősen koncentrált. A csillagokhoz hasonlóan a spirálkarok is keringenek a központ körül, de nem állandó szögsebességgel.
A galaxis legkülső vidéke a gömb alakú halo, ennek sugara megközelítőleg a spirálkarokéval egyezik meg, és öreg, II. populációs csillagokból, valamint gömbhalmazokból áll. A magtól a periféria felé folyamatosan ritkul.
![]() |
Elliptikus galaxisok (E):Kozmikus környezetünkben ezek a leggyakoribbak. Átlagosan 4-3500 milliárd naptömegnyi anyagot tartalmaznak. Csillagközi anyag nagyon kevés van bennük, ezért csillagkeletkezés sem zajlik bennük, következésképpen a nyílthalmazok is hiányoznak ezekből a galaxisokból. Csillagaik öregek, a II. populációba tartoznak. Ezen tulajdonságaik miatt hasonlítanak a gömbhalmazokra, csak sokkal nagyobbak, bár valószínűleg átmenet van a két égitesttípus között. Az elliptikus galaxisokat lapultság szerint csoportosítjuk az E0-E7 osztályokba.
Lentikuláris galaxisok (S0):Szerkezetüket tekintve átmenetet képeznek a spirálgalaxisok és az elliptikus galaxisok között. Korongjukban nincsenek spirálkarok, magjuk szokatlanul nagy méretű. Általában kevesebb csillagközi anyagot tartalmaznak, mint a spirálgalaxisok, csillagtartalmuk az elliptikus galaxisokhoz áll közelebb, napjainkban már nem zajlik bennük csillagkeletkezés.
![]() |
Szabálytalan (irreguláris) galaxisok (IR):Olyan galaxisok, amelyeknél központi mag és szimmetriatengely sem figyelhető meg. Semmilyen lényeges jellegzetességet nem mutatnak, és a legkülönfélébb alakúak lehetnek. Tömegük 0,7-100 milliárd naptömeg közötti, előfordulásuk ritka (3%). Az ilyen galaxisokat alkotó csillagok általában I. populációsak, vagyis sok csillagközi (intersztelláris) anyagot tartalmaznak. Jellegzetes képviselőik a szabad szemmel is látható, de hazánkból nem megfigyelhető Magellán-felhők. A szabálytalan extragalaxisokban igen nagy mennyiségű intersztelláris anyag található; a Nagy Magellán-felhő tömegének például több mint felét gáz- és porfelhők teszik ki. Az Univerzum korábbi korszakában a szabálytalan galaxisok aránya lényegesen nagyobb volt, egy, 6 a milliárd fényévre lévő galaxisokról készült felmérésben számarányuk 52% volt (ellentétben a közeli galaxisok közötti, a vizsgálat szerint 10%-os arányukkal).
de Vaucouleurs-féle kétdimenziós osztályozás (1959)
Lényegében a Hubble-féle osztályozási rendszer továbbfejlesztése. Allan Sandage és de Vaucouleurs felosztották az S0-típusú galaxisokat: S0-, S0° és S0+ alosztályokat vezettek be az intersztelláris por és gáz mennyisége alapján. Az osztályozásban itt a normál spirálgalaxisok SA jelölést kaptak, illetve definiáltak SAB osztályokat is.
Yerkes-Morgan-féle osztályozás (1957)
Morgan olyan osztályozást javasolt, amely a morfológiai tulajdonságok mellett a galaxisok színképét is figyelembe veszi. Ennek megfelelően a Hubble-féle rendszerben használatos jelöléseket kiegészítette; a galaxisok fő szimmetriasíkjának a látóvonallal bezárt szögét 1-7-ig terjedő számokkal jelzi, ahol 1 a látóvonalra merőleges szimmetriasíkot jelent.
Néhány különleges galaxis
A blazárok
A blazárok nevüket az elsőként felfedezett ilyen objektumról (BL Lacertae, más néven Lacertid) kapták. Két fő típusuk a BL Lac objektumok és a heves optikai változásokat mutató kvazárok. Színképükben – ellentétben a kvazárokéval – nem figyelhetők meg emissziós vonalak, és a kvazárokkal szemben százszor halványabbak a Seyfert-galaxisoknál.
A kvazárok
Rendkívül kis méretű, optikailag is nagy luminozitású, erős rádióforrások. A kvazárokat 1963-ban fedezte fel Allan Sandage. Nevük a „csillagszerű rádióforrás” angol rövidítéséből („quasi stellar”) ered. Ennek ellenére csak kevés kvazár bocsát ki rádiósugárzást, ugyanakkor viszont erős röntgen- és infravörös-források. Az optikai tartományban általában csillagszerű pontként figyelhetők meg (innen ered az elnevezés).
![]() |
A rádiógalaxisok
Olyan galaxisok, amelyek rádiófluxusa nagyságrendekkel erősebb annál, mint ami az optikai fényességük alapján várható, figyelembe véve az úgynevezett rádióindexet, azaz az elektromágneses hullámok formájában leadott energiájának nagy részét a rádióhullámok tartományában sugározza ki. A rádiógalaxisok döntő része fényes elliptikus galaxis, -12m < Mpg < -20mközé eső abszolút magnitúdóval.
A rádiógalaxisokból gyakran olyan gáznyúlványok (relativisztikus jetek) indulnak ki két, egymással ellentétes irányba, amelyek különálló csomókra bonthatók fel. A jetekben gyors változások is vannak, egészen a rádióobjektum mélyéig benyúlva. Egyes feltételezések szerint az Univerzum történetének egy korai korszakában, a kvazár-korszakban a rádiógalaxisokból kinyúló jetek alapvető szerepet játszottak a galaxisok közötti gáz összecsomósításában, így a kisebb galaxisok létrejöttét katalizálták.