Chapter 1. Introduction to Parallel Computing
The past decade has seen tremendous advances in microprocessor technology. Clock rates of processors have increased from about 40 MHz (e.g., a MIPS R3000, circa 1988) to over 2.0 GHz (e.g., a Pentium 4, circa 2002). At the same time, processors are now capable of executing multiple instructions in the same cycle. The average number of cycles per instruction (CPI) of high end processors has improved by roughly an order of magnitude over the past 10 years. All this translates to an increase in the peak floating point operation execution rate (floating point operations per second, or FLOPS) of several orders of magnitude. A variety of other issues have also become important over the same period. Perhaps the most prominent of these is the ability (or lack thereof) of the memory system to feed data to the processor at the required rate. Significant innovations in architecture and software have addressed the alleviation of bottlenecks posed by the datapath and the memory.
The role of concurrency in accelerating computing elements has been recognized for several decades. However, their role in providing multiplicity of datapaths, increased access to storage elements (both memory and disk), scalable performance, and lower costs is reflected in the wide variety of applications of parallel computing. Desktop machines, engineering workstations, and compute servers with two, four, or even eight processors connected together are becoming common platforms for design applications. Large scale applications in science and engineering rely on larger configurations of parallel computers, often comprising hundreds of processors. Data intensive platforms such as database or web servers and applications such as transaction processing and data mining often use clusters of workstations that provide high aggregate disk bandwidth. Applications in graphics and visualization use multiple rendering pipes and processing elements to compute and render realistic environments with millions of polygons in real time. Applications requiring high availability rely on parallel and distributed platforms for redundancy. It is therefore extremely important, from the point of view of cost, performance, and application requirements, to understand the principles, tools, and techniques for programming the wide variety of parallel platforms currently available.
|