Overclocking involves manipulating the processor's multiplier and the motherboard's front-side bus speed, in small increments, until a maximum stable operating frequency is reached. The idea is simple, but variation in both the electrical and physical characteristics of x86 computing systems complicates this process. Processor multipliers, bus dividers, voltages, thermal loads, cooling techniques, and many other issues can affect your ability to push any given system to its maximum potential.
On most systems, processor multiplier values, motherboard bus speeds, and voltage levels can be adjusted, either through hardware-level jumpers and dipswitches or firmware BIOS settings. The brand and model of the motherboard determine how easy and effective the process will be. Most boards allow you to configure at least a portion of these settings, though many low-end and original equipment manufacturer (OEM) designs opt for autodetection routines that prevent manual manipulation.
Jumpers and dipswitches are the predominant methods for adjusting motherboard values in many computing platforms. Jumpers are small electrically conductive devices that push into place over a series of pins to establish an electrical connection (essentially, a removable on/off switch). Jumper points are usually arranged in block patterns, each jumper connecting two pins within the series. Connecting a series of pins in a specific sequence within the block creates the signaling data required to set parameters for proper motherboard operation.
Dipswitches are tiny switching devices, usually found in groups among a single interface block. Electrically, dipswitches work the same way their jumper cousins do. The dipswitch design was introduced to simplify the motherboard configuration process. Dipswitches are available in a variety of sizes. The smallest types require particular care because they can be damaged easily, especially after multiple changes in position or through the overexertion of force.
Many of the latest motherboard architectures allow for advanced hardware configuration through the system's CMOS BIOS Setup. Methods of entering the BIOS interface vary according to brand, but basic procedures are generic. Most systems prompt for a specific keystroke to enter the BIOS Setup menu. The most common of these are DEL and F2, but others include DEL-ESC, CTRL-ESC, and F10, F12, CTRL-ALT, ESC, CTRL-ALT-ENTER, CTRL-ALT-F1, CTRL-ALT-S, and simply ESC. If your system boots with a custom graphics screen, you can often press the ESC key to bypass it and view the standard interface. Custom boot screens are common in OEM-built systems.
No two motherboards are alike, so it is nearly impossible to determine how to alter hardware settings without researching the documentation provided by the motherboard manufacturer or system integrator. Some companies even choose to implement a combination of hardware and BIOS-level configuration options. They may use both jumpers or dipswitches and a BIOS Setup menu in order to appeal to both the OEM and retail markets.